首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
采用臭氧-曝气生物滤池组合工艺对石化废水厂二级出水进行深度处理,系统探讨了pH值对臭氧氧化单元的影响,组合工艺对废水中COD、UV254的去除效果,对废水中有机物相对分子质量分布以及荧光物质含量的影响.结果表明,在臭氧投加量为10 mg·L-1,接触时间为4 min,pH值偏碱性时,臭氧预氧化石化二级出水效果较好.臭氧氧化能将大分子有机物转化为小分子物质,使得相对分子质量小于1 000的有机物比例增加约15%,有效提高了废水的可生化性,有利于后续曝气生物滤池的运行.在曝气生物滤池的停留时间为3 h,气水比为3∶1时,组合工艺对COD、UV254的去除率分别达到40.8%和45.8%.在最佳运行条件下,进水平均COD为86.5 mg·L-1时,组合工艺出水平均COD为49.4 mg·L-1.  相似文献   

2.
混凝-臭氧-曝气生物滤池处理港口洗舱废水的中试研究   总被引:1,自引:0,他引:1  
根据船舶清洗废水水质变化大,成分复杂,生物毒性高的特点,提出了混凝-臭氧氧化-曝气生物滤池(BAF)的组合工艺.该组合工艺的关键是采用臭氧进行氧化处理,去除色度和部分有机物,并且提高废水的可生化性,再通过后续的BAF工艺去除大部分有机物.中试结果表明,在原水CODCr为2 000~3 500 mg/L的情况下,最终出水的CODCr低于300 mg/L,能有效处理此类有机物浓度高,水质变化复杂的洗舱废水.  相似文献   

3.
一体式臭氧-曝气生物滤池(biological aerated filter,BAF)是工业废水臭氧氧化深度处理节能降耗的潜在工艺,但臭氧氧化方式对该组合工艺处理效果的影响目前鲜见报道.研究了单独臭氧、臭氧/双氧水和臭氧/催化剂3种臭氧氧化方式下一体式臭氧-BAF工艺对石化废水生化出水有机物的处理效果,并结合出水有机物...  相似文献   

4.
采用臭氧-生物滤池对石化厂二级出水进行深度处理,研究臭氧对废水COD的去除效果,废水中有机物相对分子质量及荧光物质含量的影响。研究结果表明投加O3后出水COD明显下降,臭氧投加量为20 mg/L,接触时间为15 min,臭氧能有效将大分子有机物转化为小分子物质。使相对分子质量为2.5×103~3.5×103的有机物所占比例由28.46%下降至23.45%,稳定运行时,臭氧-生物滤池对COD平均去除率为47%。  相似文献   

5.
生化尾水污染物浓度较低,可生化性差,采用生物处理效果较差。本研究的目的是针对山东某工业园区COD浓度在100~150 mg/L的生化尾水出水,对其进行深度处理使COD达到GB 18918—2002《城镇污水厂污染物排放标准》一级A排放要求。试验采用臭氧预氧化强化活性焦曝气生物滤池工艺方法,考察臭氧预处理对废水水质及后续活性焦曝气生物滤池的强化作用,确定臭氧的最佳投加量,验证臭氧/活性焦曝气生物滤池工艺处理生化尾水效果。试验结果表明;经过50个完整周期的连续运行,臭氧预处理的最佳投加量为20 mg/L,滤池空床停留时间8 h,进水负荷为0.11 kg/(m3·d),臭氧/活性焦曝气生物滤池工艺处理出水COD稳定在50 mg/L以内,NH3-N浓度低于5 mg/L,出水基本无色,浊度低于10 NTU,有较好的工程应用前景。  相似文献   

6.
O3-BAF深度处理制革废水中沿程污染物降解规律   总被引:2,自引:2,他引:0  
针对浙江省某制革园区污水处理厂二级生化出水,开展了处理规模36 t.d-1的臭氧-曝气生物滤池中试研究,考察了不同填料曝气生物滤池沿程高度上污染物的降解规律.结果表明:活性炭曝气生物滤池在沿程1 500 mm处的平均出水COD和色度分别为55.4 mg·L-1和12.6倍,混合填料曝气生物滤池在沿程1 800 mm处的平均出水COD和色度分别为55.6 mg·L-1和9.4倍,出水达到《城镇污水厂污染物排放标准》(GB 18918-2002)中的一级B排放要求.陶粒曝气生物滤池在整个沿程高度上COD和色度变化幅度较小.在沿程高度上活性炭曝气生物滤池和混合填料曝气生物滤池的COD和氨氮在1 200 mm内降幅较大,之后降幅趋缓.3个曝气生物滤池的生物量在沿程900 mm时达到最大,分别为30.69、28.87和15.94 nmol·g-1.  相似文献   

7.
曝气生物滤池(Fe2+)-臭氧组合工艺强化处理石化二级出水   总被引:1,自引:0,他引:1  
为了强化曝气生物滤池(BAF)-臭氧组合工艺的处理效果,以石化二级出水为处理对象,研究了投加Fe SO_4·7H_2O对组合工艺处理COD和TP效果的影响,同时采用分子量分级、三维荧光扫描、气相色谱-质谱联用仪(GC-MS)等手段对工艺处理前后水质进行了系统分析.结果表明,在二级出水COD平均浓度82.91 mg·L~(-1),TP平均浓度1.37 mg·L~(-1),Fe SO_4·7H_2O投加浓度为9 mg·L~(-1)时,组合工艺COD平均去除率为52.20%,TP平均去除率为71.50%,相比不加Fe SO_4·7H_2O的对照组,COD去除率提高17.15%,除磷效率提高51.81%.原水中相对分子质量小于1×103的有机物占52%,铁盐强化组合工艺处理后该部分比例增加至75.39%;同时各区间分子量的有机物去除效率提高.三维荧光分析结果表明,Fe SO_4·7H_2O可以提高BAF-臭氧对水中荧光类物质的去除效果.GC-MS结果表明,与对照组相比,Fe SO_4·7H_2O的投加使得出水中有机物的种类减少,浓度降低.铁盐可以强化BAF-臭氧组合工艺处理石化二级出水的能力.  相似文献   

8.
根据食品添加剂废水水质变化大,成分复杂特点,提出了"水解酸化—接触氧化—臭氧催化氧化—曝气生物滤池(BAF)"的组合工艺。废水COD从进水2000~7000mg/L降到100mg/L以下,最低为33mg/L,排放水质达到国家排放标准。水解酸化系统使废水平均COD从5290mg/L降到2323mg/L,并使大颗粒难降解分子部分转化为小颗粒可降解分子,为后续的接触氧化系统处理提供良好的条件,接触氧化出水平均COD为268mg/L。接触氧化出水含较多难生物降解有机物,经O3氧化预处理后在COD下降45%的情况下其BOD5/COD由0.3升为0.44,更易于生化降解。废水经曝气生物滤池平均出水COD为66mg/L。中试研究表明,水解酸化系统和臭氧催化氧化(负载MnO2的陶粒为催化剂)-曝气生物滤池深度处理系统是该工艺处理高浓度废水稳定达标的关键。  相似文献   

9.
臭氧预氧化对城市污水二级出水可生化性的影响   总被引:1,自引:0,他引:1  
以臭氧预氧化强化后续曝气生物滤池对城市污水二级出水中难降解有机物净化效率为目的,研究了臭氧预氧化对二级出水可生化性的影响。臭氧投量为10mg/L、接触时间为4min时,臭氧氧化对COD和TOC去除率分别达到25.7%和16.5%;臭氧氧化使二级出水的生物可降解有机碳(BDOC)值提高为原来的2.45倍;臭氧氧化使二级出水中有机物的分子量分布发生了明显的变化:大分子有机物比例减少,小分子有机物比例增加,使分子量小于1kDalton的有机物的比例由原来的52.9%提高到72.6%;通过UV254值变化可知,臭氧氧化能将大多数含有C=C、C=O双键等活性基团破坏;臭氧氧化后,GC/MS检测到的有机物种类和数量明显增多,氧化前后烷烃种类明显增多,而环状结构、羧酸和醇类化合物明显减少。  相似文献   

10.
臭氧-曝气生物滤池处理港口化学品洗舱废水   总被引:3,自引:1,他引:2  
采用臭氧-曝气生物滤池工艺对广东某港口化学品废水进行处理。针对此类废水COD高、水质变化大、成分复杂的特点,探讨了废水的初始pH、臭氧投加量和催化剂等因素对臭氧氧化的影响,臭氧对废水可生化性的改善情况、不同曝气生物滤池停留时间对废水COD去除率的影响。试验结果表明:进水化学需氧量(COD)约1700mg/L,在臭氧投加量538~716mg/L,BAF水力停留时间30h的情况下,经组合工艺处理后出水COD低于250mg/L,处理后废水达到排放城市污水处理厂的废水接纳标准。  相似文献   

11.
Toxic effects of two agrochemicals on nifH gene in agricultural black soil were investigated using denaturing gradient gel electrophoresis (DGGE) and sequencing approaches in a microcosm experiment. Changes of soil nifH gene diversity and composition were examined following the application of acetochlor, methamidophos and their combination. Acetochlor reduced the nifH gene diversity (both in gene richness and diversity index values) and caused changes in the nifH gene composition. The effects of acetochlor on nifH gene were strengthened as the concentration of acetochlor increased. Cluster analysis of DGGE banding patterns showed that nifH gene composition which had been affected by low concentration of acetochlor (50 mg/kg) recovered firstly. Methamidophos reduced nifH gene richness that except at 4 weeks. The medium concentration of methamidophos (150 mg/kg) caused the most apparent changes in nifH gene diversity at the first week while the high concentration of methamidophos (250 mg/kg) produced prominent effects on nifH gene diversity in the following weeks. Cluster analysis showed that minimal changes of nifH gene composition were found at 1 week and maximal changes at 4 weeks. Toxic effects of acetochlor and methamidophos combination on nifH gene were also apparent. Different nifH genes (bands) responded differently to the impact of agrochemicals: four individual bands were eliminated by the application of the agrochemicals, five bands became predominant by the stimulation of the agrochemicals, and four bands showed strong resistance to the influence of the agrochemicals. Fifteen prominent bands were partially sequenced, yielding 15 different nifH sequences, which were used for phylogenetic reconstructions. All sequences were affiliated with the alpha- and beta-proteobacteria, showing higher similarity to eight different diazotrophic genera.  相似文献   

12.
The effects of arbuscular mycorrhizal (AM) fungus (Glomus mosseae) and phosphorus (P) addition (100 mg/kg soil) on arsenic (As) uptake by maize plants (Zea mays L.) from an As-contaminated soil were examined in a glasshouse experiment.Non-mycorrhizal and zero-P addition controls were included.Plant biomass and concentrations and uptake of As,P,and other nutrients,AM colonization,root lengths,and hyphal length densities were determined.The results indicated that addition of P significantly inhibited root colonization and development of extraradical mycelium.Root length and dry weight both increased markedly with mycorrhizal colonization under the zero-P treatments,but shoot and root biomass of AM plants was depressed by P application.AM fungal inoculation decreased shoot As concentrations when no P was added,and shoot and root As concentrations of AM plants increased 2.6 and 1.4 times with P addition,respectively.Shoot and root uptake of P,Mn,Cu,and Zn increased,but shoot Fe uptake decreased by 44.6%,with inoculation, when P was added.P addition reduced shoot P,Fe,Mn,Cu,and Zn uptake of AM plants,but increased root Fe and Mn uptake of the nonmycorrhizal ones.AM colonization therefore appeared to enhance plant tolerance to As in low P soil,and have some potential for the phytostabilization of As-contaminated soil,however,P application may introduce additional environmental risk by increasing soil As mobility.  相似文献   

13.
Several main metabolites of benzo[a]pyrene (BaP) formed by Penicillium chrysogenum, Benzo[a]pyrene-1,6-quinone (BP 1,6- quinone), trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (BP 7,8-diol), 3-hydroxybenzo[a]pyrene (3-OHBP), were identified by high-performance liquid chromatography (HPLC). The three metabolites were liable to be accumulated and were hardly further metabolized because of their toxicity to microorganisms. However, their further degradation was essential for the complete degradation of BaP. To enhance their degradation, two methods, degradation by coupling Penicillium chrysogenum with KMnO4 and degradation only by Penicillium chrysogenum, were compared; Meanwhile, the parameters of degradation in the superior method were optimized. The results showed that (1) the method of coupling Penicillium chrysogenum with KMnO4 was better and was the first method to be used in the degradation of BaP and its metabolites; (2) the metabolite, BP 1,6-quinone was the most liable to be accumulated in pure cultures; (3) the effect of degradation was the best when the concentration of KMnO4 in the cultures was 0.01% (w/v), concentration of the three compounds was 5 mg/L and pH was 6.2. Based on the experimental results, a novel concept with regard to the bioremediation of BaP-contaminated environment was discussed, considering the influence on environmental toxicity of the accumulated metabolites.  相似文献   

14.
Sorption of chlorotoluron in ammonium sulfate, urea and atrazine multi-solutes system was investigated by batch experiments. The results showed application of nitrogen fertilizers to the soil could affect the behavior of chlorotoluron. At the same concentration of N, sorption of chlorotoluron decreased as the concentration of atrazine increased on the day 0 and 6 in soil, respectively. The sorption of chlorotoluron increased from 0 to 6 d when soils were preincubated with deionized water, ammonium sulfate and urea solution for 6 d. That indicated incubation time was one of the most important factors for the sorption of chlorotoluron in nitrogen fertilizers treatments. The individual sorption isotherms of chlorotoluron in rubbery polymer and silica were strictly linear in single solute system, but there were competition sorption between pesticides or between pesticides and nitrogen fertilizers. That indicated the sorption taken place by concurrent solid-phase dissolution mechanism and sorption on the interface of water-organic matter or water-mineral matter.  相似文献   

15.
In this study an effort has been made to use plant polyphenol oxidases; potato (Solanum tuberosum) and brinjal (Solanum melongena), for the treatment of various important dyes used in textile and other industries. The ammonium sulphate fractionated enzyme preparations were used to treat a number of dyes under various experimental conditions. Majority of the treated dyes were maximally decolorized at pH 3.0. Some of the dyes were quickly decolorized whereas others were marginally decolorized. The initial first hour was sufficient for the maximum decolorization of dyes. The rate of decolorization was quite slow on long treatment of dyes. Enhancement in the dye decolorization was noticed on increasing the concentration of enzymes. The complex mixtures of dyes were treated with both preparations of polyphenol oxidases in the buffers of varying pH values. Potato polyphenol oxidase was significantly more effective in decolorizing the dyes to higher extent as compared to the enzyme obtained from brinjal polyphenol oxidase. Decolorization of dyes and their mixtures, followed by the formation of an insoluble precipitate, which could be easily removed simply by centrifugation.  相似文献   

16.
RemovalofheavymetalsfromsewagesludgebylowcostingchemicalmethodandrecyclinginagricultureWuQitang,NyirandegePascasie,MoCehuiF...  相似文献   

17.
Single and joint effects of pesticides and mercury on soil urease   总被引:6,自引:3,他引:3  
The influence of two pesticides including chlorimuron-ethyl and furadan and mercury (Hg) on urease activity in 4 soils (meadow burozem and phaeozem) was investigated. The soils were exposed to various concentrations of the two pesticides and Hg individually and simultaneously. Results showed that there was a close relationship between urease activity and organic matter content in soil. Chlorimuron-ethyl and furadan could both activate urease in the 4 soils. The maximum increment of urease activity by chlorimuronethyl was up to 14%-18%. There was almost an equal increase (up to 13%-21%) in the urease activity by furadan. On the contrary, Hg markedly inhibited soil urease activity. A logarithmic equation was used to describe the relationship (P〈0.05) between the concentration of Hg and the activity of soil urease in the 4 tested soils. Semi-effect dose (ED50) values by the stress of Hg based on the inhibition of soil urease in the 4 soils were 88, 5.5, 24 and 20 mg/kg, respectively, according to the calculation of the corresponding equations. The interactive effect of chlorimuron-ethyl or furadan with metal Hg on soil urease was mainly synergic at the highest tested concentrations.  相似文献   

18.
A study was conducted to compare the diversity of 2-, 3-, and 4-chlorobenzoate degraders in two pristine soils and one contaminated sewage sludge. These samples contained strikingly different populations of mono-chlorobenzoate degraders. Although fewer cultures were isolated in the uncontaminated soils than contaminated one, the ability of microbial populations to mineralize chlorobenzoate was widespread. The 3- and 4-chlorobenzoate degraders were more diverse than the 2-chlorobenzoate degraders. One of the strains isolated from the sewage sludge was obtained. Based on its phenotype, chemotaxonomic properties and 16S rRNA gene, the organism S-7 was classified as Rhodococcus erythropolis. The strain can grow at temperature from 4 to 37℃. It can utilize several (halo)aromatic compounds. Moreover, strain S-7 can grow and use 3-chlorobenzoate as sole carbon source in a temperatures range of 10-30℃ with stoichiometric release of chloride ions. The psychrotolerant ability was significant for bioremediation in low temperature regions. Catechol and chlorocatechol 1,2-dioxygenase activities were present in cell free extracts of the strain, but no (chloro)catechol 2,3- dioxygenase activities was detected. Spectral conversion assays with extracts from R. erythropolis S-7 showed accumulation of a compound with a similar UV spectrum as chloro-cis,cis-muconate from 3-chlorobenzoate. On the basis of these results, we proposed that S-7 degraded 3-chlorobenzoate through the modified ortho-cleave pathway.  相似文献   

19.
A field study was conducted in the Taihu Lake region, China in 2004 to reveal the organochlorine pesticide concentrations in soils after the ban of these substances in the year 1983. Thirteen organochlorine pesticides (OCPs) were analyzed in soils from paddy field, tree land and fallow land. Total organochlorine pesticide residues were higher in agricultural soils than in uncultivated fallow land soils. Among all the pesticides, ΣDDX (DDD, DDE and DDT) had the highest concentration for all the soil samples, ranging from 3.10 ng/g to 166.55 ng/g with a mean value of 57.04 ng/g and followed by ΣHCH, ranging from 0.73 ng/g to 60.97 ng/g with a mean value of 24.06 ng/g. Dieldrin, endrin, HCB and α-endosulfan were also found in soils with less than 15 ng/g. Ratios of p,p'-(DDD DDE)/DDT in soils under three land usages were: paddy field > tree land > fallow land, indicating that land usage inlfuenced the degradation of DDT in soils. Ratios of p,p'-(DDD DDE)/DDT >1, showing aged residues of DDTs in soils of the Taihu Lake region. The results were discussed with data from a former study that showed very low actual concentrations of HCH and DDT in soils in the Taihu Lake region, but according to the chemical half-lives and their concentrations in soils in 1980s, the concentration of DDT in soils seemed to be underestimated. In any case our data show that the ban on the use of HCH and DDT resulted in a tremendous reduction of these pesticide residues in soils, but there are still high amounts of pesticide residues in soils, which need more remediation processes.  相似文献   

20.
The contribution of aliphatic-rich plant biopolymer to sorption of hydrophobic organic compounds is significantly important because of their preservation and accumulation in the soil environment,but sorption mechanism is still not fully understood.In this study, sorption of 1-naphthol by plant cuticular fractions was examined to better understand the contributions of respective fraction.Toward this end,cuticular materials were isolated from the fruits of tomato by chemical method.The tomato cuticle sheet consisted of waxes (6.5 wt%),cuticular monomer (69.5 wt%),and polysaccharide (24.0 wt%).Isotherms of l-naphthol to the cuticular fractions were nonlinear (N value (0.82-0.90)) at the whole tested concentration ranges.The KodKow ratios for bulk cuticle (TC1),dewaxed cuticle (TC2),cutin (TC4),and desugared cuticle (TC5) were larger than unity,suggested that tomato bulk cuticle and cutin are much powerful solption medium.Sorption capability of cutin (TC4) was 2.4 times higher than the nonsaponifiable fraction (TC3).The 1-naphthol interactions with tomato cuticular materials were governed by both hydrophobic-type interactions and polar (H-bonding) interactions. Removal of the wax and polysaccharide materials from the bulk tomato cuticle caused a significant increase in the sorption ability of the cuticular material.There was a linear negative trend between K_(oc) values and the amount of polysaccharides or fraction's polarities ((N O)/C);while a linear positive relationship between K_(oc) values and the content of cutin monomer (linear R~2=0.993) was observed for present in the cuticular fractions.Predominant sorbent of the hydrophobic organic compounds (HOCs) in the plant cuticular fraction was the cutin monomer,contributing to 91.7% of the total sorption of tomato bulk cuticle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号