首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 15 毫秒
1.
Objective: Distinguished from the traditional perspectives in crash analyses, which examined the effects of geometric design features, traffic factors, and other relevant attributes on the crash frequencies of roadway entities, our study focuses on exploring the effects of highway safety laws, as well as sociocultural characteristics, on fatal crashes across states.

Methods: Law and regulation related data were collected from the Insurance Institute for Highway Safety, State Highway Safety Offices, and Governors Highway Safety Association. A variety of sociodemographic characteristics were obtained from the U.S. Census Bureau. In addition, cultural factors and other attributes from a variety of resources are considered and incorporated in the modeling process. These data and fatal crash counts were collected for the 50 U.S. states and the District of Columbia and were analyzed using zero-truncated negative binomial (ZTNB) regression models.

Results: The results show that, in law and regulation–related factors, the use of speed cameras, no handheld cell phone ban, limited handheld cell phone ban, and no text messaging ban are found to have significant effects on fatal crashes. Regarding sociocultural characteristics, married couples with both husband and wife in the labor force are found to be associated with lower crash frequencies, the ratios of workers traveling to work by carpool, those driving alone, workers working outside the county of residence, language other than English and limited English fluency, and the number of licensed drivers are found to be associated with higher crash frequencies.

Conclusions: Through reviewing and modeling existing state highway safety laws and sociocultural characteristics, the results reveal new insights that could influence policy making. In addition, the results would benefit amending existing laws and regulations and provide testimony about highway safety issues before lawmakers consider new legislation.  相似文献   


2.
Objective: Guardrail heights play a crucial role in the way that errant vehicles interact with roadside barriers. Low rail heights increase the propensity of vehicle rollover and override, whereas excessively tall rails promote underride. Further, rail mounting heights and post embedment depths may be altered by variations in roadside terrain. An increased guardrail height may be desirable to accommodate construction tolerances, soil erosion, frost heave, and future roadway overlays. This study aimed to investigate and identify a maximum safe installation height for the Midwest Guardrail System that would be robust and remain crashworthy before and after pavement overlays.

Methods: A research investigation was performed to evaluate the safety performance of increased mounting heights for the standard 787-mm (31-in.)-tall Midwest Guardrail System (MGS) through crash testing and computer simulation. Two full-scale crash tests with small passenger cars were performed on the MGS with top-rail mounting heights of 864 and 914 mm (34 and 36 in.). Test results were then used to calibrate computer simulation models.

Results: In the first test, a small car impacted the MGS with 864-mm (34-in.) rail height at 102 km/h (63.6 mph) and 25.0° and was successfully redirected. In the second test, another small car impacted the MGS with a 914-mm (36-in.) rail height at 103 km/h (64.1 mph) and 25.6° and was successful. Both system heights satisfied the Manual for Assessing Safety Hardware (MASH) Test Level 3 (TL-3) evaluation criteria. Test results were then used to calibrate computer simulation models. A mounting height of 36 in. was determined to be the maximum guardrail height that would safely contain and redirect small car vehicles. Simulations confirmed that taller guardrail heights (i.e., 37 in.) would likely result in small car underride. In addition, simulation results indicated that passenger vehicle models were successfully contained by the 34- and 36-in.-tall MGS installed on approach slopes as steep as 6:1.

Conclusions: A mounting height of 914 mm (36 in.) was determined to be the maximum guardrail height that would safely contain and redirect 1100C vehicles and not allow underride or excessive vehicle snag on support posts. Recommendations were also provided regarding the safety performance of the MGS with increased height.  相似文献   


3.
Objectives: To overcome the limitations of previous highway alignment safety evaluation methods, this article presents a highway alignment safety evaluation method based on fault tree analysis (FTA) and the characteristics of vehicle safety boundaries, within the framework of dynamic modeling of the driver–vehicle–road system.

Methods: Approaches for categorizing the vehicle failure modes while driving on highways and the corresponding safety boundaries were comprehensively investigated based on vehicle system dynamics theory. Then, an overall crash probability model was formulated based on FTA considering the risks of 3 failure modes: losing steering capability, losing track-holding capability, and rear-end collision.

Results: The proposed method was implemented on a highway segment between Bengbu and Nanjing in China. A driver–vehicle–road multibody dynamics model was developed based on the 3D alignments of the Bengbu to Nanjing section of Ning-Luo expressway using Carsim, and the dynamics indices, such as sideslip angle and, yaw rate were obtained. Then, the average crash probability of each road section was calculated with a fixed-length method. Finally, the average crash probability was validated against the crash frequency per kilometer to demonstrate the accuracy of the proposed method. The results of the regression analysis and correlation analysis indicated good consistency between the results of the safety evaluation and the crash data and that it outperformed the safety evaluation methods used in previous studies.

Conclusion: The proposed method has the potential to be used in practical engineering applications to identify crash-prone locations and alignment deficiencies on highways in the planning and design phases, as well as those in service.  相似文献   


4.
Objective: The ability to detect changing visual information is a vital component of safe driving. In addition to detecting changing visual information, drivers must also interpret its relevance to safety. Environmental changes considered to have high safety relevance will likely demand greater attention and more timely responses than those considered to have lower safety relevance. The aim of this study was to explore factors that are likely to influence perceptions of risk and safety regarding changing visual information in the driving environment. Factors explored were the environment in which the change occurs (i.e., urban vs. rural), the type of object that changes, and the driver's age, experience, and risk sensitivity.

Methods: Sixty-three licensed drivers aged 18–70 years completed a hazard rating task, which required them to rate the perceived hazardousness of changing specific elements within urban and rural driving environments. Three attributes of potential hazards were systematically manipulated: the environment (urban, rural); the type of object changed (road sign, car, motorcycle, pedestrian, traffic light, animal, tree); and its inherent safety risk (low risk, high risk). Inherent safety risk was manipulated by either varying the object's placement, on/near or away from the road, or altering an infrastructure element that would require a change to driver behavior. Participants also completed two driving-related risk perception tasks, rating their relative crash risk and perceived risk of aberrant driving behaviors.

Results: Driver age was not significantly associated with hazard ratings, but individual differences in perceived risk of aberrant driving behaviors predicted hazard ratings, suggesting that general driving-related risk sensitivity plays a strong role in safety perception. In both urban and rural scenes, there were significant associations between hazard ratings and inherent safety risk, with low-risk changes perceived as consistently less hazardous than high-risk impact changes; however, the effect was larger for urban environments. There were also effects of object type, with certain objects rated as consistently more safety relevant. In urban scenes, changes involving pedestrians were rated significantly more hazardous than all other objects, and in rural scenes, changes involving animals were rated as significantly more hazardous. Notably, hazard ratings were found to be higher in urban compared with rural driving environments, even when changes were matched between environments.

Conclusion: This study demonstrates that drivers perceive rural roads as less risky than urban roads, even when similar scenarios occur in both environments. Age did not affect hazard ratings. Instead, the findings suggest that the assessment of risk posed by hazards is influenced more by individual differences in risk sensitivity. This highlights the need for driver education to account for appraisal of hazards’ risk and relevance, in addition to hazard detection, when considering factors that promote road safety.  相似文献   


5.
Safety integrity level (SIL) verification of functional safety fieldbus communication is an essential part of SIL verification of safety instrumented system (SIS), and it requires quantifying residual error probability (RP) and residual error rate of function safety communication. The present quantification method of residual error rate uses RP of cyclic redundancy check (CRC) to approximately replace the total RP of functional safety communication. Since CRC only detects data integrity-related errors and CRC has intrinsically undetected error, some other residual errors are not being considered. This research found some residual errors of the present quantification method. Then, this research presents an extended new approach, which takes the found residual errors into account to determine more comprehensive and reasonable RP and residual error rate. From perspective of the composition of safety message, this research studies RPs of those controlling segments (sequence number, time expectation, etc.) to cover the found residual errors beyond CRC detection coverage, and the influences of insertion/masquerade errors and time window on RP are investigated. The results turn out these residual errors, especially insertion/masquerade errors, may have a great influence on quantification of residual error rate and SIL verification of functional safety communication, and they should be treated seriously.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号