首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dispersal is the key process enhancing the long-term persistence of metapopulations in heterogeneous and dynamic landscapes. However, any individual emigrating from a occupied patch also increases the risk of local population extinction. The consequences of this increase for metapopulation persistence likely depend on the control of emigration. In this paper, we present results of individual-based simulations to compare the consequences of density-independent (DIE) and density-dependent (DDE) emigration on the extinction risk of local populations and a two-patch metapopulation. (1) For completely isolated patches extinction risk increases linearly with realised emigration rates in the DIE scenario. (2) For the DDE scenario extinction risk is nearly insensitive to emigration as longs as emigration probabilities remain below ≈0.2. Survival chances are up to half an order of magnitude larger than for populations with DIE. (3) For low dispersal mortality both modes of emigration increase survival of a metapopulation by ca. one order of magnitude. (4) For high dispersal mortality only DDE can improve the global survival chances of the metapopulation. (5) With DDE individuals are only removed from a population at high population density and the risk of extinction due to demographic stochasticity is thus much smaller compared to the DIE scenario.With density-dependent emigration prospects of metapopulations survival may thus be much higher compared to a system with density-independent emigration. Consequently, the knowledge about the factors driving emigration may significantly affect our conclusions concerning the conservation status of species.  相似文献   

2.
For species at risk of decline or extinction in source–sink systems, sources are an obvious target for habitat protection actions. However, the way in which source habitats are identified and prioritized can reduce the effectiveness of conservation actions. Although sources and sinks are conceptually defined using both demographic and movement criteria, simplifications are often required in systems with limited data. To assess the conservation outcomes of alternative source metrics and resulting prioritizations, we simulated population dynamics and extinction risk for 3 endangered species. Using empirically based habitat population models, we linked habitat maps with measured site‐ or habitat‐specific demographic conditions, movement abilities, and behaviors. We calculated source–sink metrics over a range of periods of data collection and prioritized consistently high‐output sources for conservation. We then tested whether prioritized patches identified the habitats that most affected persistence by removing them and measuring the population response. Conservation decisions based on different source–sink metrics and durations of data collection affected species persistence. Shorter time series obscured the ability of metrics to identify influential habitats, particularly in temporally variable and slowly declining populations. Data‐rich source–sink metrics that included both demography and movement information did not always identify the habitats with the greatest influence on extinction risk. In some declining populations, patch abundance better predicted influential habitats for short‐term regional persistence. Because source–sink metrics (i.e., births minus deaths; births and immigrations minus deaths and emigration) describe net population conditions and cancel out gross population counts, they may not adequately identify influential habitats in declining populations. For many nonequilibrium populations, new metrics that maintain the counts of individual births, deaths, and movement may provide additional insight into habitats that most influence persistence.  相似文献   

3.
Yaari G  Ben-Zion Y  Shnerb NM  Vasseur DA 《Ecology》2012,93(5):1214-1227
Recent theory and experimental work in metapopulations and metacommunities demonstrates that long-term persistence is maximized when the rate at which individuals disperse among patches within the system is intermediate; if too low, local extinctions are more frequent than recolonizations, increasing the chance of regional-scale extinctions, and if too high, dynamics exhibit region-wide synchrony, and local extinctions occur in near unison across the region. Although common, little is known about how the size and topology of the metapopulation (metacommunity) affect this bell-shaped relationship between dispersal rate and regional persistence time. Using a suite of mathematical models, we examined the effects of dispersal, patch number, and topology on the regional persistence time when local populations are subject to demographic stochasticity. We found that the form of the relationship between regional persistence time and the number of patches is consistent across all models studied; however, the form of the relationship is distinctly different among low, intermediate, and high dispersal rates. Under low and intermediate dispersal rates, regional persistence times increase logarithmically and exponentially (respectively) with increasing numbers of patches, whereas under high dispersal, the form of the relationship depends on local dynamics. Furthermore, we demonstrate that the forms of these relationships, which give rise to the bell-shaped relationship between dispersal rate and persistence time, are a product of recolonization and the region-wide synchronization (or lack thereof) of population dynamics. Identifying such metapopulation attributes that impact extinction risk is of utmost importance for managing and conserving the earth's evermore fragmented populations.  相似文献   

4.
Simonis JL 《Ecology》2012,93(7):1517-1524
Dispersal may affect predator-prey metapopulations by rescuing local sink populations from extinction or by synchronizing population dynamics across the metapopulation, increasing the risk of regional extinction. Dispersal is likely influenced by demographic stochasticity, however, particularly because dispersal rates are often very low in metapopulations. Yet the effects of demographic stochasticity on predator-prey metapopulations are not well known. To that end, I constructed three models of a two-patch predator-prey system. The models constitute a hierarchy of complexity, allowing direct comparisons. Two models included demographic stochasticity (pure jump process [PJP] and stochastic differential equations [SDE]), and the third was deterministic (ordinary differential equations [ODE]). One stochastic model (PJP) treated population sizes as discrete, while the other (SDE) allowed population sizes to change continuously. Both stochastic models only produced synchronized predator-prey dynamics when dispersal was high for both trophic levels. Frequent dispersal by only predators or prey in the PJP and SDE spatially decoupled the trophic interaction, reducing synchrony of the non-dispersive species. Conversely, the ODE generated synchronized predator-prey dynamics across all dispersal rates, except when initial conditions produced anti-phase transients. These results indicate that demographic stochasticity strongly reduces the synchronizing effect of dispersal, which is ironic because demographic stochasticity is often invoked post hoc as a driver of extinctions in synchronized metapopulations.  相似文献   

5.
Flügge AJ  Olhede SC  Murrell DJ 《Ecology》2012,93(7):1540-1549
The current spatial pattern of a population is the result of previous individual birth, death, and dispersal events. We present a simple model followed by a comparative analysis for a species-rich plant community to show how the current spatial aggregation of a population may hold information about recent population dynamics. Previous research has shown how locally restricted seed dispersal often leads to stronger aggregation in less abundant populations than it does in more abundant populations. In contrast, little is known about how changes in the local abundance of a species may affect the spatial distribution of individuals. If the level of aggregation within a species depends to some extent on the abundance of the species, then changes in abundance should lead to subsequent changes in aggregation. However, an overall change of spatial pattern relies on many individual birth and death events, and a surplus of deaths or births may have short-term effects on aggregation that are opposite to the long-term change predicted by the change in abundance. The change in aggregation may therefore lag behind the change in abundance, and consequently, the current aggregation may hold information about recent population dynamics. Using an individual-based simulation model with local dispersal and density-dependent competition, we show that, on average, recently growing populations should be more aggregated than shrinking populations of the same current local abundance. We tested this hypothesis using spatial data on individuals from a long-term tropical rain forest plot, and find support for this relationship in canopy trees, but not in understory and shrub species. On this basis we argue that current spatial aggregation is an important characteristic that contains information on recent changes in local abundance, and may be applied to taxonomic groups where dispersal is limited and within-species aggregation is observed.  相似文献   

6.
Abstract: Wildflower harvesting is an economically important activity of which the ecological effects are poorly understood. We assessed how harvesting of flowers affects shrub persistence and abundance at multiple spatial extents. To this end, we built a process‐based model to examine the mean persistence and abundance of wild shrubs whose flowers are subject to harvest (serotinous Proteaceae in the South African Cape Floristic Region). First, we conducted a general sensitivity analysis of how harvesting affects persistence and abundance at nested spatial extents. For most spatial extents and combinations of demographic parameters, persistence and abundance of flowering shrubs decreased abruptly once harvesting rate exceeded a certain threshold. At larger extents, metapopulations supported higher harvesting rates before their persistence and abundance decreased, but persistence and abundance also decreased more abruptly due to harvesting than at smaller extents. This threshold rate of harvest varied with species’ dispersal ability, maximum reproductive rate, adult mortality, probability of extirpation or local extinction, strength of Allee effects, and carrying capacity. Moreover, spatial extent interacted with Allee effects and probability of extirpation because both these demographic properties affected the response of local populations to harvesting more strongly than they affected the response of metapopulations. Subsequently, we simulated the effects of harvesting on three Cape Floristic Region Proteaceae species and found that these species reacted differently to harvesting, but their persistence and abundance decreased at low rates of harvest. Our estimates of harvesting rates at maximum sustainable yield differed from those of previous investigations, perhaps because researchers used different estimates of demographic parameters, models of population dynamics, and spatial extent than we did. Good demographic knowledge and careful identification of the spatial extent of interest increases confidence in assessments and monitoring of the effects of harvesting. Our general sensitivity analysis improved understanding of harvesting effects on metapopulation dynamics and allowed qualitative assessment of the probability of extirpation of poorly studied species.  相似文献   

7.
Abstract:  Metapopulations may be very sensitive to global climate change, particularly if temperature and precipitation change rapidly. We present an analysis of the role of climate and other factors in determining metapopulation structure based on presence and absence data. We compared existing and historical population distributions of desert bighorn sheep ( Ovis canadensis ) to determine whether regional climate patterns were correlated with local extinction. To examine all mountain ranges known to hold or to have held desert bighorn populations in California and score for variables describing climate, metapopulation dynamics, human impacts, and other environmental factors, we used a geographic information system (GIS) and paper maps. We used logistic regression and hierarchical partitioning to assess the relationship among these variables and the current status of each population (extinct or extant). Parameters related to climate—elevation, precipitation, and presence of dependable springs—were strongly correlated with population persistence in the twentieth century. Populations inhabiting lower, drier mountain ranges were more likely to go extinct. The presence of domestic sheep grazing allotments was negatively correlated with population persistence. We used conditional extinction probabilities generated by the logistic-regression model to rank native, naturally recolonized, and reintroduced populations by vulnerability to extinction under several climate-change scenarios. Thus risk of extinction in metapopulations can be evaluated for global-climate-change scenarios even when few demographic data are available.  相似文献   

8.
Assessing causes of population decline is critically important to management of threatened species. Stochastic patch occupancy models (SPOMs) are popular tools for examining spatial and temporal dynamics of populations when presence–absence data in multiple habitat patches are available. We developed a Bayesian Markov chain method that extends existing SPOMs by focusing on past environmental changes that may have altered occupancy patterns prior to the beginning of data collection. Using occupancy data from 3 creeks, we applied the method to assess 2 hypothesized causes of population decline—in situ die-off and residual impact of past source population loss—in the California red-legged frog. Despite having no data for the 20–30 years between the hypothetical event leading to population decline and the first data collected, we were able to discriminate among hypotheses, finding evidence that in situ die-off increased in 2 of the creeks. Although the creeks had comparable numbers of occupied segments, owing to different extinction–colonization dynamics, our model predicted an 8-fold difference in persistence probabilities of their populations to 2030. Adding a source population led to a greater predicted persistence probability than did decreasing the in situ die-off, emphasizing that reversing the deleterious impacts of a disturbance may not be the most efficient management strategy. We expect our method will be useful for studying dynamics and evaluating management strategies of many species.  相似文献   

9.
Many biological populations are subject to periodically changing environments such as years with or without fire, or rotation of crop types. The dynamics and management options for such populations are frequently investigated using periodic matrix models. However the analysis is usually limited to long-term results (asymptotic population growth rate and its sensitivity to perturbations of vital rates). In non-periodic matrix models it has been shown that long-term results may be misleading as populations are rarely in their stable structure. We therefore develop methods to analyze transient dynamics of periodic matrix models. In particular, we show how to calculate the effects of perturbations on population size within and at the end of environmental cycles. Using a model of a weed population subject to a crop rotation, we show that different cyclic permutations produce different patterns of sensitivity of population size and different population sizes. By examining how the starting environment interacts with the initial conditions, we explain how different patterns arise. Such understanding is critical to developing effective management and monitoring strategies for populations subject to periodically recurring environments.  相似文献   

10.
11.
Forecasting extinction risk with nonstationary matrix models.   总被引:1,自引:0,他引:1  
Matrix population growth models are standard tools for forecasting population change and for managing rare species, but they are less useful for predicting extinction risk in the face of changing environmental conditions. Deterministic models provide point estimates of lambda, the finite rate of increase, as well as measures of matrix sensitivity and elasticity. Stationary matrix models can be used to estimate extinction risk in a variable environment, but they assume that the matrix elements are randomly sampled from a stationary (i.e., non-changing) distribution. Here we outline a method for using nonstationary matrix models to construct realistic forecasts of population fluctuation in changing environments. Our method requires three pieces of data: (1) field estimates of transition matrix elements, (2) experimental data on the demographic responses of populations to altered environmental conditions, and (3) forecasting data on environmental drivers. These three pieces of data are combined to generate a series of sequential transition matrices that emulate a pattern of long-term change in environmental drivers. Realistic estimates of population persistence and extinction risk can be derived from stochastic permutations of such a model. We illustrate the steps of this analysis with data from two populations of Sarracenia purpurea growing in northern New England. Sarracenia purpurea is a perennial carnivorous plant that is potentially at risk of local extinction because of increased nitrogen deposition. Long-term monitoring records or models of environmental change can be used to generate time series of driver variables under different scenarios of changing environments. Both manipulative and natural experiments can be used to construct a linking function that describes how matrix parameters change as a function of the environmental driver. This synthetic modeling approach provides quantitative estimates of extinction probability that have an explicit mechanistic basis.  相似文献   

12.
Erosion of Heterozygosity in Fluctuating Populations   总被引:1,自引:0,他引:1  
Abstract: Demographic, environmental, and genetic stochasticity threaten the persistence of isolated populations. The relative importance of these intertwining factors remains unresolved, but a common view is that random demographic and environmental events will usually drive small populations to the brink of extinction before genetic deterioration poses a serious threat. To evaluate the potential importance of genetic factors, we analyzed a model linking demographic and environmental conditions to the loss of genetic diversity in isolated populations undergoing natural levels of fluctuation. Nongenetic processes—environmental stochasticity and population demography—were modeled according to a bounded diffusion process. Genetic processes were modeled by quantifying the rate of drift according to the effective population size, which was predicted from the same parameters used to describe the nongenetic processes. We combined these models to predict the heterozygosity remaining at the time of extinction, as predicted by the nongenetic portion of the model. Our model predicts that many populations will lose most or all of their neutral genetic diversity before nongenetic random events lead to extinction. Given the abundant evidence for inbreeding depression and recent evidence for elevated extinction rates of inbred populations, our findings suggest that inbreeding may be a greater general threat to population persistence than is generally recognized. Therefore, conservation biologists should not ignore the genetic component of extinction risk when assessing species endangerment and developing recovery plans.  相似文献   

13.
Globally, the mean abundance of terrestrial animals has fallen by 50% since 1970, and populations face ongoing threats associated with habitat loss, fragmentation, climate change, and disturbance. Climate change can influence the quality of remaining habitat directly and indirectly by precipitating increases in the extent, frequency, and severity of natural disturbances, such as fire. Species face the combined threats of habitat clearance, changing climates, and altered disturbance regimes, each of which may interact and have cascading impacts on animal populations. Typically, conservation agencies are limited in their capacity to mitigate rates of habitat clearance, habitat fragmentation, or climate change, yet fire management is increasingly used worldwide to reduce wildfire risk and achieve conservation outcomes. A popular approach to ecological fire management involves the creation of fire mosaics to promote animal diversity. However, this strategy has 2 fundamental limitations: the effect of fire on animal movement within or among habitat patches is not considered and the implications of the current fire regime for long-term population persistence are overlooked. Spatial and temporal patterns in fire history can influence animal movement, which is essential to the survival of individual animals, maintenance of genetic diversity, and persistence of populations, species, and ecosystems. We argue that there is rich potential for fire managers to manipulate animal movement patterns; enhance functional connectivity, gene flow, and genetic diversity; and increase the capacity of populations to persist under shifting environmental conditions. Recent methodological advances, such as spatiotemporal connectivity modeling, spatially explicit individual-based simulation, and fire-regime modeling can be integrated to achieve better outcomes for biodiversity in human-modified, fire-prone landscapes. Article impact statement: Land managers may conserve populations by using fire to sustain or enhance functional connectivity.  相似文献   

14.
Dispersal can strongly affect the spatiotemporal dynamics of a species (its spread, spatial distribution and persistence). We investigated how two dispersal behaviours, namely prey evasion (PE) and predator pursuit (PP), affect the dynamics of a predator-prey system. PE portrays the tendency of prey avoiding predators by dispersing into adjacent patches with fewer predators, while PP describes the tendency of predators to pursue the prey by moving into patches with more prey. Based on the Beddington predation model, a spatially explicit metapopulation model was built to incorporate PE and PP. Numerical simulations were run to investigate the effects of PE and PP on the rate of spread, spatial synchrony and the persistence of populations. Results show that both PE and PP can alter spatial synchrony although PP has a weaker desynchronising effect than PE. The predator-prey system without PE and PP expanded in circular waves. The effect of PE can push the prey to distribute in a circular ring front, whereas the effect of PP can change the circular waves to anisotropic expansion. Furthermore, weak PE and PP can accelerate the spread of prey while strong and disproportionate intensities slow down the range expansion. The effects of PE and PP further enhance the population size, break down the spatial synchrony and promote the persistence of populations.  相似文献   

15.
Shefferson RP  Roach DA 《Ecology》2012,93(4):793-802
The theory of evolution via natural selection predicts that the genetic composition of wild populations changes over time in response to the environment. Different genotypes should exhibit different demographic patterns, but genetic variation in demography is often impossible to separate from environmental variation. Here, we asked if genetic variation is important in determining demographic patterns. We answer this question using a long-term field experiment combined with general linear modeling of deterministic population growth rates (lambda), deterministic life table response experiment (LTRE) analysis, and stochastic simulation of demography by paternal lineage in a short-lived perennial plant, Plantago lanceolata, in which we replicated genotypes across four cohorts using a standard breeding design. General linear modeling showed that growth rate varied significantly with year, spatial block, and sire. In LTRE analysis of all cohorts, the strongest influences on growth rate were from year x spatial block, and cohort x year x spatial block interactions. In analysis of genetics vs. temporal environmental variation, the strongest impacts on growth rate were from year and year x sire. Finally, stochastic simulation suggested different genetic composition among cohorts after 100 years, and different population growth rates when genetic differences were accounted for than when they were not. We argue that genetic variation, genotype x environment interactions, natural selection, and cohort effects should be better integrated into population ecological studies, as these processes should result in deviations from projected deterministic and stochastic population parameters.  相似文献   

16.
Relationship between Population Size and Fitness   总被引:8,自引:1,他引:8  
Abstract:  Long-term effective population size, which determines rates of inbreeding, is correlated with population fitness. Fitness, in turn, influences population persistence. I synthesized data from the literature concerning the effects of population size on population fitness in natural populations of plants to determine how large populations must be to maintain levels of fitness that will provide adequate protection against environmental perturbations that can cause extinction. Integral to this comment on what has been done and what needs to be done, sThe evidence suggests that there is a linear relationship between log population size and population fitness over the range of population sizes examined. More importantly, populations will have to be maintained at sizes of >2000 individuals to maintain population fitness at levels compatible with the conservation goal of long-term persistence. This approach to estimating minimum viable population size provides estimates that are in general agreement with those from numerous other studies and strengthens the argument that conservation efforts should ultimately aim at maintaining populations of several thousand individuals to ensure long-term persistence.  相似文献   

17.
A key question facing conservation biologists is whether declines in species' distributions are keeping pace with landscape change, or whether current distributions overestimate probabilities of future persistence. We use metapopulations of the marsh fritillary butterfly Euphydryas aurinia in the United Kingdom as a model system to test for extinction debt in a declining species. We derive parameters for a metapopulation model (incidence function model, IFM) using information from a 625-km2 landscape where habitat patch occupancy, colonization, and extinction rates for E. aurinia depend on patch connectivity, area, and quality. We then show that habitat networks in six extant metapopulations in 16-km2 squares were larger, had longer modeled persistence times (using IFM), and higher metapopulation capacity (lambdaM) than six extinct metapopulations. However, there was a > 99% chance that one or more of the six extant metapopulations would go extinct in 100 years in the absence of further habitat loss. For 11 out of 12 networks, minimum areas of habitat needed for 95% persistence of metapopulation simulations after 100 years ranged from 80 to 142 ha (approximately 5-9% of land area), depending on the spatial location of habitat. The area of habitat exceeded the estimated minimum viable metapopulation size (MVM) in only two of the six extant metapopulations, and even then by only 20%. The remaining four extant networks were expected to suffer extinction in 15-126 years. MVM was consistently estimated as approximately 5% of land area based on a sensitivity analysis of IFM parameters and was reduced only marginally (to approximately 4%) by modeling the potential impact of long-distance colonization over wider landscapes. The results suggest a widespread extinction debt among extant metapopulations of a declining species, necessitating conservation management or reserve designation even in apparent strongholds. For threatened species, metapopulation modeling is a potential means to identify landscapes near to extinction thresholds, to which conservation measures can be targeted for the best chance of success.  相似文献   

18.
Abstract: Habitat fragmentation and the division of populations into spatially separated units have led to the increasing use of metapopulation models to characterize these populations. One prominent model that has served as a heuristic tool was introduced by Levins and is based on a collection of simplifying assumptions that exclude information on the dynamics and spatial distribution of local populations. Levins's and similar models predict the proportion of occupied habitat patches at equilibrium and the conditions needed to avoid total extinction. There are many obvious concerns about using such models, including how realistic alterations might change the predictions and whether occupancy has any relationship to population-level processes. Although many of the assumptions of these simple models are known to be unrealistic, we do not know how the assumptions affect model predictions. We simulated a metapopulation, and our results show that assumptions such as homogeneity of habitat patches, random migration among patches, equivalent extinction probabilities in all patches, and a large number of patches can lead to large overestimations of habitat occupancy. But when we explicitly modeled the underlying population dynamics within each patch, we found (1) that there was a strong correlation between proportion of occupied patches and total metapopulation size and (2) that the distribution of individuals among patches was relatively insensitive to model assumptions. Thus, our results show that although realistic modifications will change model predictions for occupancy, occupancy and population trends will be correlated. These correlations between occupancy and population size suggest that occupancy models may have some utility in conservation applications.  相似文献   

19.
Overexploitation of wildlife populations occurs across the humid tropics and is a significant threat to the long-term survival of large-bodied primates. To investigate the impacts of hunting on primates and ways to mitigate them, we developed a spatially explicit, individual-based model for a landscape that included hunted and un-hunted areas. We used the large-bodied neotropical red howler monkey (Alouatta seniculus) as our case study species because its life history characteristics make it vulnerable to hunting. We modeled the influence of different rates of harvest and proportions of landscape dedicated to un-hunted reserves on population persistence, population size, social dynamics, and hunting yields of red howler monkeys. In most scenarios, the un-hunted populations maintained a constant density regardless of hunting pressure elsewhere, and allowed the overall population to persist. Therefore, the overall population was quite resilient to extinction; only in scenarios without any un-hunted areas did the population go extinct. However, the total and hunted populations did experience large declines over 100 years under moderate and high hunting pressure. In addition, when reserve area decreased, population losses and losses per unit area increased disproportionately. Furthermore, hunting disrupted the social structure of troops. The number of male turnovers and infanticides increased in hunted populations, while birth rates decreased and exacerbated population losses due to hunting. Finally, our results indicated that when more than 55% of the landscape was harvested at high (30%) rates, hunting yields, as measured by kilograms of biomass, were less than those obtained from moderate harvest rates. Additionally, hunting yields, expressed as the number of individuals hunted/year/km2, increased in proximity to un-hunted areas, and suggested that dispersal from un-hunted areas may have contributed to hunting sustainability. These results indicate that un-hunted areas serve to enhance hunting yields, population size, and population persistence in hunted landscapes. Therefore, spatial regulation of hunting via a reserve system may be an effective management strategy for sustainable hunting, and we recommend it because it may also be more feasible to implement than harvest quotas or restrictions on season length.  相似文献   

20.
Inbreeding depression is environmentally dependent, such that a population may suffer from inbreeding depression in one environment but not another. We examined the phenotypic responses of 35 inbred ( F = 0.672) lineages of the red flour beetle Tribolium castaneum in two different climatic environments. We found a significant environmental effect on males but not females. More important, we found that the rank fitness order of lineages differs between environments; lineages of high fitness in one environment may have low fitness in another environment. This change in rank is evident in a significant genotype-by-environment interaction for inbreeding depression for both females and males. These results suggest that even if we know the average environmental effect of inbreeding depression in a population, for any particular lineage measurements of inbreeding depression in one environment may not predict the level of inbreeding depression in another environment. Conservation biologists need to be aware of the environmental dependency of inbreeding depression when planning wildlife refuges or captive propagation programs for small populations. Ideally, captive propagation programs should maintain separate lineages for release efforts. Refuge design programs should consider maintaining a range of habitat types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号