首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Harsh physico-chemical conditions during early development may select for parental care. However, no study on the evolution of parental care has focused on the physico-chemical conditions in the environment, the physiological needs of early life stages and the significance of parental care. Early development of the bromeliad crab is completed in small rainwater reservoirs in bromeliad leaf axils. Axils not cared for by mother crabs are acidic, hypoxic and contain very little Ca2+. Maternal care buffers axil water and increases oxygen and Ca2+ availability. Our results show that (a) bromeliad crab larvae die at pH levels usually found in unattended axils, but develop successfully into the first crab stage at the pH typical of cared-for axils; (b) oxygen concentration in unattended axils is below the critical concentration for larvae, but is high enough for normal respiration in cared-for axils; (c) the calcium demand of larvae for moulting and development cannot be satisfied in unattended axils, but is met by the higher calcium content of cared-for axils. Therefore, physicochemical conditions in the bromeliad axil habitat exert strong selection for the maintenance of parental care in the bromeliad crab. Correspondence to: R. Diesel  相似文献   

2.
The hermit crab Pagurus longicarpus was shown to inhabit shells that were partially predated from intertidal areas of Long Island, New York. Among field collections of P. longicarpus, 2.13% of the hermit crabs (46 of 2155) were found with shells with snail tissue present. Over 90% of these partially predated snail shells were occupied by male hermit crabs. Although hermit crabs were in 8 species of snail shells, only Littorina littorea and Nassarius obsoletus were found occupied by hermit crabs and containing snail tissue. In the laboratory, we found that specimens of the spider crab Libinia emarginata were able to pull off the operculum of snails, leaving damage as found in field collections. In contrast, specimens of P. longicarpus were not able to prey on live, healthy snails. When specimens of P. longicarpus were placed in communal tanks, hermit crabs preferred partially predated snail shells to empty and original shells. However, original shells and empty shells were occupied with more frequency than partially predated shells when crabs were isolated. These findings indicate P. longicarpus actively seeks shells soon after attack and abandonment by snail predators, especially in the presence of competitors.  相似文献   

3.
Curvemysella paula is a markedly crescent-shaped bivalve that lives inside snail shells occupied by hermit crabs. Here, we describe the unique symbiotic life, growth pattern, and reproductive biology of this bivalve, based on specimens collected from the shallow, muddy bottom of the Seto Inland Sea, Japan. C. paula was found attached to columellae in the siphonal canal, mainly of nassariid snail shells occupied by two types of hermit crabs: Diogenes edwardsii (Diogenidae) and Spiropagurus spiriger (Paguridae). The crescent-shaped shell of C. paula is an adaptation to symbiotic life in the narrow interspace between the snail shell and the hermit-crab abdomen. C. paula is a protandric hermaphrodite. In our samples, each host snail shell harbored one (or rarely a few) large female and several males. All the female bivalves settled on the host shells with their anterior end facing outward and benefited from currents created by the hermit crab when feeding. In the muddy bottom, snail shells are a limited resource for both the hermit crabs and symbiotic bivalves. The bivalves benefit from the mobility of the hermit crabs, which prevent the shells from becoming buried in the mud. C. paula represents the only example of obligate commensalism with hermit crabs found in Bivalvia.  相似文献   

4.
This study evaluated selection for shell size by three species of tropical intertidal hermit crabs, Clibanarius antillensis, C. sclopetarius, and C. vittatus, from species of shells which are frequently used in nature. Crab size and weight were strongly and significantly related to all measured parameters of the selected shells. The strength of these relationships (r2 values) depended neither on the crab nor on the shell variables taken into account. The relationships between crab size and the dimensions of the selected shells showed higher r2 values than the corresponding relationships with the shells that the crabs had occupied when they were collected (0.482–0.903 in comparison to 0.091–0.652, respectively), indicating that the crabs were occupying sub-optimal shells in nature. Negative allometry was frequently found in the relationships between crab and shell variables, indicating that large crabs select and use proportionally lighter shells than do small crabs. This negative allometry was stronger for the shells used in nature (except for C. antillensis), i.e. larger crabs tended to select heavier shells in the laboratory than in nature. Different allometric relationships were also recorded among the dimensions of shells used in nature and those selected by the hermit crabs in free-access experiments: as shell length increased, the selected shells were heavier and had larger apertures than the shells used in nature. The relationships between crab size and the length and weight of the selected shells did not depend on the species of crab or species of shell, but only on crab size. Therefore, analyses using these variables can be performed without taking the species of crab or shell into account, i.e. data from different crab or shell species can be pooled. The influence of crab and/or shell species was recorded only in the models fitted for aperture length and width, variables which were more related to shell architecture than did shell length or weight. In contrast, if crab weight is used as an independent variable, different crab or shell species can be analyzed together independently of the particular shell parameter. This indicates that crab weight may be less susceptible than crab shield length to shell morphological constraints. Finally, the results indicate that the preferred size of a given shell type chosen by a given hermit crab will depend more on crab size or weight, than on the crab or shell species under consideration, i.e. crab shell-size relationships are not species specific.Communicated by P.W. Sammarco, Chauvin  相似文献   

5.
The feeding ecology of Sesarma plicata (Grapsidae: Sesarminae), the most abundant crab species in a mangrove forest dominated by Kandelia candel at Jiulongjiang Estuary, China, was investigated through field and laboratory experiments. Feeding preference and consumption rates were determined on mature, senescent and decomposed leaves of Kandelia candel, Bruguiera gymnorrhiza and Aegiceras corniculatum. In the laboratory, S. plicata preferred leaves of K. candel over those of B. gymnorrhiza and A. corniculatum, and consumed significantly more decomposed leaves than mature and senescent ones, irrespective of crab size. Field experiments with limited power failed to reveal detectable species preferences despite more consumption of K. candel, but decomposed leaves of each species were again preferred. Leaf characteristics associated with preference changed with plant species and leaf state. Low tannins and high water content characterized the preference for decomposed state of leaves. Species preference was significantly and negatively related to crude fibers and C:N ratios for mature leaves, and crude fiber for senescent leaves, but significantly and positively related to water content for decomposed leaves. Leaf consumption rates averaged for all leaf categories from laboratory no-choice feeding experiments were 0.101, 0.055 and 0.017 gDW ind−1 d−1 for large, medium and small crabs, respectively. In this forest, mean density of S. plicata was 20.5 ind m−2 as assessed by a manual catching method. Leaf litter removal rate during neap tides by sesarmid crabs was about 1.33 gDW m−2 d−1 in April 2006. The leaves removed by crabs were grazed on the sediment surface or taken into crab burrows, shredded and stored before being eaten.  相似文献   

6.
Pagurus longicarpus hermit crabs depend on empty gastropod shells for protection against predation. Hermit crabs avoid gastropod shells in which holes have been drilled by naticid gastropods, and hermit crabs forced to occupy drilled shells are more vulnerable to predation by green crabs, Carcinus maenas. In this study, we examined the effect of predator cues on P. longicarpus shell investigation behavior and shell choice. In paired laboratory shell choice trials, we examined hermit crab response to green crab chemical cues. We compared hermit crabs from two sites differing in the percentage of Littorina littorea shells with drill holes. The percentage of time hermit crabs spent occupying intact shells increased significantly in the presence of predator cues. The effect of predator cues on the amount of time hermit crabs spent investigating shells differed between individuals from the two sites. Predator effluent had a marginal effect on the proportion of hermit crabs initially choosing intact shells and within 15 min most hermit crabs in both treatments occupied intact shells due to shell switching. These results indicate that predation cues alter P. longicarpus shell choice behavior favoring intact shells, which provide greater protection. In summary, predation appears to be a key factor influencing hermit crab shell selection behavior.Communicated by T. Czeschlik  相似文献   

7.
Littoral hermit crabs, Pagurus bernhardus, show a strong preference for Littorina obtusata shells rather than those of Gibbula species. The fitness consequences, in terms of fecundity, for this shell preference is examined for female crabs. Females in the preferred species produced eggs earlier in the season, produced more eggs in the first brood, and produced a second brood more often than did females in the less preferred species. The smaller brood for Gibbula spp. was not a consequence of egg loss from the pleopods due to an unfavourable shape of shell, but rather reflected lower egg production. It is not clear, however, if this differential reproduction is due to direct costs of carrying an unfavourable shell, i.e. the shell impedes reproduction, or whether crabs compete aggressively for favoured shells so that only crabs of low quality inhabit lowquality shells.  相似文献   

8.
The crab Pachygrapsus laevimanus and the zebra winkle Austrocochlea constricta were exposed for 40 d to uranium (1.5 to 10 mg l-1) in continuous-flow sea water in separate starved and fed treatments, and the kinetics of uranium bioaccumulation were estimated from an exponential model. Starved and fed crabs took up U at a similar rate, which suggests that sea water was the major source of U to the crab; the fed crabs excreted U more rapidly than the starved crabs and this led to a lower net uptake of U by fed crabs. Fed and starved winkles took up U at similar rates and excreted it at similar rates, so the sea water was also the major source of U to winkles. Crabs took up more U than winkles; the concentration factors were 7 to 18 and 4, respectively. Uranium turnover was quite slow for both species (11 to 36 d) as it was also for winkle shells (6 d); this suggests that the rate-limiting processes which control turnover are biological (e.g. growth or tissue replacement) or physical (e.g. diffusion into the shell) rather than chemical (e.g. precipitation, adsorption or exchange). There was no effect of increasing U concentration in water on the U kinetic parameters.  相似文献   

9.
J. C. Creed 《Marine Biology》2000,137(5-6):775-782
The cerith Cerithium atratum (Born 1778) is an abundant gastropod in the seagrass beds at Cabo Frio, Brazil. In order to estimate the ecological importance of cerith shells as a rare hard substratum in the seagrass bed, the abundances of C. atratum and of cerith shells occupied by hermit crabs were quantified. The mean densities of C. atratum and hermit crabs were 1887 and 100 individuals m−2, respectively, and these provided 0.5 m2 shell area m−2 available for epizoite colonization. The tube-forming polychaete Hydroides plateni (Kinberg 1867) and oyster Ostrea puelchana Orbigny, 1841 were the dominant visible epizoites on inhabited cerith shells. These epizoite populations were compared in order to investigate whether the temporal and spatial patterns in the epibiotic community were related to ecological and behavioral aspects of the occupant species (cerith or hermit crab). Larger cerith shells had a greater abundance of epizoites. Each epizoite showed a preference for a different occupant of the shells (the oyster for C. atratum and the polychaete for cerith shells occupied by hermit crabs). The oyster showed a seasonal pattern in abundance on C. atratum, being more common in fall (March–April). The distribution of the epizoites on the shells depended on the shell occupant species and was probably related to their different foraging activity –C. atratum ploughs half buried through the sediment, while the hermit crab crawls on the sediment surface. In both cases, the activity of the shell occupant was considered to be beneficial to the epizoites, as empty shells and shell fragments did not support a macroepifauna. Received: 1 May 2000 / Accepted: 8 August 2000  相似文献   

10.
The hydrothermal vent crab Bythograea thermydron is exposed to high environmental concentrations of sulfide and low levels of oxygen for extended periods of time. It has previously been shown that hydrogen sulfide is oxidized to the relatively non-toxic thiosulfate (S2O 3 2– ), which accumulates in the hemolymph. Hemolymph thiosulfate levels in freshly captured crabs vary significantly among crabs from different hydrothermal vent sites as well as between crabs from different microhabitats within the same site. Hemolymph thiosulfate concentrations were not significantly different between crabs captured at the same site 6 mo apart. Hemolymph thiosulfate concentrations ranged from 66 mol 1–1 in a crab captured at a site with relatively low sulfide venting, to 3206 mol 1–1 in an individual that was netted from an active smoker vent with much higher sulfide exposure. The differences in hemolymph thiosulfate between sites and the stability of hemolymph thiosulfate in crabs captured at the same site at different times suggest that sulfide exposure is significantly different between sites and that this exposure may not vary significantly over the course of a few months. B. thermydron experimentally exposed to sulfide had high levels of thiosulfate in their hemolymph and increased abilities to regulate oxygen consumption in conditions of low oxygen. This enhancement of regulatory abilities suggests that the previously demonstrated increased hemocyaninoxygen (Hc–O2) affinity due to elevated thiosulfate may be adaptive in vivo. Average oxygen-consumption rates were much higher in crabs experimentally exposed to sulfide than in unexposed crabs. Crabs injected with isosmotic thiosulfate did not have increased oxygen-consumption rates as did the sulfide-exposed individuals, but did show a similar reduction in P c (the critical partial pressure of oxygen at which crabs can no longer regulate oxygen consumption). This suggests that it is the sulfide exposure and/or detoxification rather than the elimination of thiosulfate that causes the increase in metabolic rate. Thiosulfate diffuses into dead crabs and into live crabs exposed to 15 mmol S2O 3 2- l–1, indicating substantial permeability, and yet live crabs are able to eliminate thiosulfate when incubated in sea water containing 1.5 mmol S2O 3 2- l–1, suggesting a process that has an active component.  相似文献   

11.
Marsh hermit crabsPagurus longicarpus Say directly acquire new shells as the predatory gastropodMelongena corona Gmelin consumes marsh periwinkles,Littorina irrorata Say. The influx rate of new shells into a salt marsh hermit crab population was measured by marking live periwinkles and daily recovering the shells from hermit crabs over periods of 3 to 6 d. Average rates of new shell acquisition ranged from 4.0 to 23.3 new shells per day from salt marsh areas of 4×10 m. Such consistently high rates contrast with the negligible rates generally assumed for new shell entry into hermit crab populations. The number of new shells acquired each day varied directly with the number of the predatory gastropod,M. corona, present in each study area at both natural and manipulated predator densities. Empty shells on the substrate are usually considered as the primary source of new shells to hermit crabs. However, over 500 empty shells had to be placed on the substrate in a 4×10 m area to provide a daily rate of 20 new shells to the hermit crab population.This is the first in a new contribution series from the Florida State University Marine Laboratory No. 1001  相似文献   

12.
The hermit crab Pagurus pollicaris is the common host for the polyclad turbellarian Stylochus zebra in the Atlantic coastal waters from Massachusetts to North Carolina, USA. S. zebra is reported for the first time from two other hermit crabs, Pagurus impressus and Petrochirus diogenes. It was not found with Clibanarius vittatus or Pagurus longicarpus, although the latter serves as a host along the Gulf coast of Florida. The incidence of the polyclad with P. pollicaris in Massachusetts is more than twice that in populations to the south. Multiple infestations (up to 7 worms/crab) occur in over 50% of the infested crabs from Massachusetts, but they are rare elsewhere. Worms living in clear plastic shells with crabs orient in the body whorl dorsal to the host. Egg masses of worms are cemented in the same position within gastropod shells harboring the crabs. In the laboratory, the worm feeds on the gastropod Crepidula plana, a common inhabitant of shells occupied by P. pollicaris. Its feeding behavior is described. The relationship between S. zebra and P. pollicaris appears to be generally commensalistic, but it could be more complicated if the predation of crab embryos observed in the laboratory is confirmed under natural conditions.Contribution No. 755 from the Virginia Institute of Marine Science, Gloucester Point, Virginia, USA.  相似文献   

13.
A study was conducted to determine whether asymmetries in both resource-holding potential (RHP) and resource value (RV) influence dominance and fighting behavior in the hermit crab Pagurus longicarpus. A total of 120 groups of three crabs were observed for 10 min in four experiments that tested all diverse combinations of equal/different RHP (i.e. ‘body size’) and equal/different RV (i.e. ‘shell size’ and ‘shell quality’). In a fifth experiment, dominant and subordinate individuals of the same size category (26 groups) were forced to enter shells of opposite quality than those previously occupied, and then the behavior of the reconstituted original groups was observed for additional 10 min. As expected, crabs in lower quality shells were more willing to initiate and to escalate fights. However, their attacks were directed to any crab of the group, independently of the defender's shell quality, and the fight duration did not vary with the different value of the resources at stake. This may indicate that P. longicarpus is unable to assess the quality of the shells available in its social environment but bases its tactical decisions during fights solely on its own resource. This suggestion was confirmed by the change in the fighting behavior of crabs whose shell quality was experimentally altered. This manipulation induced an overall increase in the intensity of aggression, drastic modification of crab behavior, and inversion of the hierarchy even though these crabs have had previous experiences of wins/losses and were familiar to the other members of the group. In this species, large crab size and/or the occupancy of adequate (and oversized) shells appeared to be the most likely determinant of contest resolution. Individuals seemed to retain a memory of the previously held resource and behaved accordingly.  相似文献   

14.
D. Barnes 《Marine Biology》2003,142(3):549-557
Many mobile animals migrate because of the different benefits provided by different localities in time and space. For hermit crabs, such benefits include resource (shell, water, food) acquisition and gamete release. One of the more successful crustacean land-invaders, Coenobita hermit crabs, undertake complex short-range migrations in SW Madagascar. Number of active hermit crabs was inversely related to wind strength and positively related to tidal range, emphasising that movement would conserve water. A circadian component was also recorded in the locomotory activity of Coenobita pseudorugosus and C. rugosus. Path linearity varied with many of the same parameters, but also with beach slope. Movement was primarily perpendicular to shore in small individuals, but the parallel proportion increased with hermit crab size and tidal range, probably driven mostly by shell and food searching. Despite the costs of movement and shell carriage in the terrestrial environment, C. pseudorugosus and C. rugosus were as fast as their marine counterparts. Their speeds varied principally with individual size and were approximately 20% faster without shells and about 20% slower when climbing up a 20° slope, compared to horizontal or downhill travel. Hermit crabs, which are highly numerous and speciose in SW Madagascar, do not seem to partition niches by differential movement patterns. Aside from provision of shells in middens and capturing large adults for bait or pets, human activity may have a profound effect on hermit crab movement: observations at rare uninhabited marine reserves like Nosy Ve show that considerable diurnal activity may take place despite the apparent hostility of the environment to an essentially marine animal.  相似文献   

15.
Positive plant–animal interactions are important in community ecology, but relatively little attention has been paid to their effect on the production of mangroves, dominant halophytic trees in tropical coastal marshes. Here, the role of fiddler crab (Uca spp.) burrowing on the growth and production of the white mangrove, Laguncularia racemosa (<2 years old), was examined in a restored marsh in Tampa Bay, Florida (27°41.65 N, 82°30.34 W) with manipulative experiments from June 2006 to May 2007. Fiddler crab burrowing significantly increased mangrove height by 27%, trunk diameter by 25%, and leaf production by 15%, compared to mangroves in crab exclusion enclosures. Additionally, the exclusion of fiddler crabs significantly increased interstitial water salinity from 32.4 to 44.2, and decreased the oxidation–reduction potential of the low organic sediments, but did not affect soil pH or sulfide concentration. Mangrove height, trunk diameter, and leaf production along a transect that varied in crab burrow density were positively associated with the number of crab burrows. Further, the density of sympatric Spartina alterniflora shoots was positively correlated with crab burrow density along the transect. As in temperate marshes, fiddler crabs can have significant ecological effects on mangrove communities, serving as ecological engineers by modulating the amount of resources available to marsh plants, and by altering the physical, chemical, and biological state of these soft sediment communities. In restored coastal systems that typically have very poor sediment quality, techniques such as soil amendment could be used to facilitate a more natural interaction between crabs and mangroves in ecosystem development.  相似文献   

16.
Two South Australian rocky intertidal platforms were sampled in April 1981 and December 1982 (Marino Rocks) and in December 1982 (Lady Bay), respectively. Three snail species, Nerita atramentosa Reeve, 1855, Bembicium nanum (Lamarck, 1822) and Austrocochlea concamerata (Wood, 1828), exhibited shore-level size-gradients, with smaller individuals occupying the higher intertidal levels. The reef crab (Ozius truncatus M.-Edwards, 1834), whose distribution overlaps that of the gastropods, is an important predator of these gastropods. The shore-level distribution of shell sizes can be explained by differential selection against smaller individuals by reef crabs. The decreased density of small snails at lower intertidal levels may be the result of either their consumption by reef crabs and/or their movement to higher shore levels where crab predation is less intense.  相似文献   

17.
Heterotrophic nitrogen-fixation (acetylene reduction) was measured during decomposition (under dark conditions) of Rhizophora mangle L. and Avicennia germinans (L.) Stearn leaf litter. Nitrogen-fixation rates in leaf litter increased following 24 d incubation, then decreased after ≃44 d for both species. Maximum rates of 66.2 and 64.6 nmol C2H4 g−1 dry wt h−1 were reached by R. mangle and A. germinans leaf litter, respectively. Higher fixation rates of leaf litter were associated with an increase in water content and sediment particles on leaf surfaces of both species. Rates of nitrogen fixation by diazotrophs attached to sediment particles were not significantly different from zero. With additions of d-glucose, ethylene production rates increased by factors of 625-, 34- and 7-fold for sediment, R. mangle and A.␣germinans leaf litter, respectively, compared to rates prior to enrichment. These organically enhanced rates of nitrogen fixation on leaves could be accounted for by increased activity associated with attached sediment particles and not the leaf material. Total phenolics [reported as tannic acid equivalent (TAE) units] decreased nitrogen-fixation rates when added to d-glucose-enriched sediment at >20 mg TAE l−1. Phenolic compounds could explain the initial lag in rates of nitrogen fixation during leaf-litter decomposition of R. mangle (initial content of 110.8 mg TAE g−1 dry wt), but not of A. germinans (initial content of 23.4 mg TAE g−1 dry wt). The higher phenolic content and reportedly lower carbon substrate of R. mangle did not result in species-specific differences in either the magnitude or temporal pattern of nitrogen fixation compared to A. germinans leaf litter. We conclude that the availability of organic substrates leached from the leaf litter along with colonization by the heterotrophic diazotrophs (as indicated by sediment accumulation) controls nitrogen-fixation rates in a similar manner in the leaf litter of both species. Received: 8 August 1997 / Accepted: 4 December 1997  相似文献   

18.
The exploitation of microhabitats is widely considered to increase biodiversity in marine ecosystems. Although intertidal hermit crabs and gastropods may inhabit the same shell type and shore level, their microhabitat may differ depending on the state of the tide. On the south coast of Wales the hermit crab Pagurus bernhardus mainly inhabits the shells of Nucella lapillus (84%). Hermit crab shells had a significantly different encrusting community compared with live N. lapillus shells. At low tide the live gastropods were found on exposed rock surfaces whereas hermit crabs were restricted to tidal pools. Communities encrusting live gastropod shells were characterised by lower species richness and abundance compared with shells inhabited by hermit crabs (12 species found in total). A greater abundance and richness of epibionts was recorded from both shell types during the summer compared with winter. Differences in community composition between shell occupant types were attributed to microhabitats used by gastropods and hermit crabs and the associated desiccation pressures, rather than competitive interactions or shell characteristics. This contradicts earlier studies of subtidal shells where biological processes were considered more important than physical factors in controlling species abundance and richness patterns. The use of rockpool microhabitats by hermit crabs increases the biodiversity of rocky shores, as some species commonly found on hermit-crab-inhabited shells were rare in other local habitats.Communicated by J.P. Thorpe, Port Erin  相似文献   

19.
Chemically mediated alarm reactions of the common periwinkle, Littorina littorea (L.), were studied in laboratory experiments during two consecutive summers, and one intermediate autumn season. Responses to chemical stimuli were detected as crawl-out responses, i.e. movements of snails out of the water. Snails were exposed to extracts of injured conspecifics, extracts of the mussel Modiolus modiolus (L.), and water conditioned by the predatory crab Carcinus maenas (L.), which had been maintained on different diets. In experiments carried out during the summer, a significantly larger number of snails moved out of the water when exposed to chemical stimuli from injured conspecifics, compared to chemical stimuli from injured mussels or filtered seawater. These results suggest that chemical alarm substances are present in L. littorea. Water conditioned by crabs that had been fed L. littorea released significantly more crawl-out responses compared to water conditioned by crabs that had been kept on a fish diet. When tested in autumn, no significant differences were found in responses to the above-mentioned water samples. Crawl-out responses under different light regimes were also investigated. All series of experiments carried out in the dark evoked a higher number of responses compared to series that took place in light. These findings may indicate an adaptation of snails to night-active predators. In total, the current results suggest that a L. littorea diet may chemically “label” the predator crab with snail alarm substances, and that predator-induced responses of L. littorea are actually responses to conspecific alarm substances released from crabs that have been maintained on a L. littorea diet. The response to the alarm signal, however, appears to be dependent on season and light conditions; some ecological implications of these findings are also discussed. Received: 8 January 1999 / Accepted: 29 March 1999  相似文献   

20.
Three shell variables were deemed to be important in the selection of a shell by the hermit crab Pagurus bernhardus (L.). These were the weight, volume and aperture width of a shell. Each of these variables were used in multiple regressions against crab weight for 25 Littorina littorea and 25 Thais lapillus shells chosen when both shell species were together in a tank, and for a further 25 L. littorea and 25 T. lapillus when the two shell species were separate. Principal component analysis was performed on the four groups of 25 shells selected, and multiple-regression equations were calculated using the principal components as the new variables. It was found that crabs chose a shell of suitable general dimensions rather than solely on the basis of one shell variable. The advantages of using statistical techniques developed in this paper over previous approaches to shell selection are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号