首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Yan H  Pan G 《Chemosphere》2004,55(9):1281-1285
The effect and mechanism of inorganic carbon (IC) on the biodegradation of dimethyl phthalate (DMP) by a green microalga Closterium lunula was investigated. The growth of this microalga and the biodegradation of DMP were significantly enhanced when the initial IC was increased. An intermediate product of DMP biodegradation was identified as phthalic acid (PA) that was accumulated and caused a sharp decrease in pH of microalgal culture medium, which inhibited both the growth of microalga and the biodegradation of DMP. A suggested second-order kinetic equation of organic pollutant biodegradation by microalgae (-dC/dt = kNr) fitted well with the experimental data. The increase of IC caused a decline in biodegradation rate constant for organic carbon (k) and an increase in growth (N) by supplying a favorite carbon source and mitigating the decrease of pH. As the net effect, the overall biodegradation rate of DMP was promoted as IC increased, which was dominated by the increase of microalgal growth.  相似文献   

2.
Ecotoxicity evaluation of selected sulfonamides   总被引:6,自引:0,他引:6  
Sulfonamides (SAs) are a group of antibiotic drugs widely used in veterinary medicine. The contamination of the environment by these pharmaceuticals has raised concern in recent years. However, knowledge of their (eco)toxicity is still very basic and is restricted to just a few of these substances. Even though their toxicological analysis has been thoroughly performed and ecotoxicological data are available in the literature, a systematic analysis of their ecotoxicological potential has yet to be carried out. To fill this gap, 12 different SAs were chosen for detailed analysis with the focus on different bacteria as well as non-target organisms (algae and plants). A flexible (eco)toxicological test battery was used, including enzymes (acetylcholinesterase and glutathione reductase), luminescent marine bacteria (Vibrio fischeri), soil bacteria (Arthrobacter globiformis), limnic unicellular green algae (Scenedesmus vacuolatus) and duckweed (Lemna minor), in order to take into account both the aquatic and terrestrial compartments of the environment, as well as different trophic levels. It was found that SAs are not only toxic towards green algae (EC50 = 1.54-32.25 mg L−1) but have even stronger adverse effect on duckweed (EC50 = 0.02-4.89 mg L−1) than atrazine - herbicide (EC50 = 2.59 mg L−1).  相似文献   

3.
The presence of bis(2-ethylhexyl) phthalate (DEHP) and its metabolites, i.e. 2-ethylhexanol, 2-ethylhexanal, and 2-ethylhexanoic acid in wastewater sludge (WWS) were investigated during aerobic digestion and Bacillus thuringiensis (Bt)-based fermentation of WWS. Ultrasonication and Fenton oxidation pre-treatment was applied to improve biodegradability of WWS and bioavailability of the target compounds for digestion and fermentation. DEHP and 2-ethylhexanoic acid were observed at higher concentration, meanwhile 2-ethylhexanol and 2-ethylhexanal were observed at lower concentration in WWS. After 20-day aerobic digestion, DEHP removal was 72%, 89%, and 85%, and 2-ethylhexanoic acid removal was 71%, 84%, 79%, respectively for raw, ultrasonicated, and Fenton-oxidized sludges. Bt was found to degrade DEHP, leading to DEHP removal of 21%, 40%, and 30%, respectively for raw, ultrasonicated, and Fenton-oxidized sludges in the fermentation. The results suggested that aerobic stabilization and Bt-based fermentation can remove the phthalates, and pre-treatment of WWS was also effective in improvement of DEHP biodegradation. Hence, Bt-based biopesticide production from WWS can be applied safely when taking into consideration the phthalate contaminants.  相似文献   

4.
Four series of dicephalic cationic surfactants, considered as new antielectrostatic agents have been investigated in order to establish their toxicity and biodegradability. Among them N,N-bis[3,3′-(dimethylamine)propyl]alkylamides, N,N-bis[3,3′-(dimethylamine)propyl]alkylamide dihydrochlorides, N,N-bis[3,3′-(trimethylammonio)propyl]alkylamide dibromides and N,N-bis[3,3′-(trimethylammonio)propyl]alkylamide dimethylsulphates with different hydrophobic chain length (n-C9H19 to n-C15H31) and type of counterion (chloride, bromide and methylsulfate) have been studied. The inhibitory effect against microorganisms has been examined using model gram-positive and gram-negative bacteria, and yeasts. None of the tested surfactants have shown antimicrobial activity against gram-negative bacteria (Escherichia coli, Pseudomonas putida) and yeasts (Saccharomyces cerevisiae, Rhodotorula glutinis) at a concentration below 1000 μg mL−1, however some of them were moderately active against gram-positive bacteria (Staphylococcus aureus, Bacillus subtilis). The Microtox® test was successfully applied to measure EC50 values of the studied dicephalic cationic surfactants. Their toxicity to Vibrio fischeri depended upon the alkanoyl chain length with the EC50 values in a range of 2.6-980 mg L−1. N,N-bis[3,3′-(dimethylamine)propyl]alkylamide dihydrochlorides 2a-b and N,N-bis[3,3′-(trimethylammonio)propyl]alkylamide dibromides 3a-b comprising n-decanoyl and n-dodecanoyl hydrophobic tails appeared to be the least toxic. Furthermore, the biodegradability under aerobic conditions of 2a-b, 3a-b was evaluated using OECD Method 301F. According to the obtained results 2a, 3a-3b can be considered as almost readily biodegradable and they are not expected to be persistent in the environment. Additionally, partial biodegradation was observed for 2b, indicating its possible biodegradation in wastewater treatment systems.  相似文献   

5.
Sorption is a fundamental process controlling the transformation, fate, degradation, and biological activity of hydrophobic organic contaminants in the environment. We investigated the kinetics, isotherms, and potential mechanisms for the sorption of two phthalic acid esters (PAEs), dibutyl phthalate (DBP) and dioctyl phthalate (DOP), on aged refuse. A two-compartment first-order model performed better than a one-compartment first-order model in describing the kinetic sorption of PAEs, with a fast sorption process dominating. Both the Freundlich and Dubinin–Astakhov (DA) models fit the sorption isotherms of DBP and DOP, with the DA model being of a better fit over the range of apparent equilibrium concentrations. The values of the fitting parameters (n, b, E) of the PAEs suggest nonlinear sorption characteristics. Higher predicted partition coefficient values and saturated sorption capacity existed in refuse containing larger quantities of organic matter. The sorption capacity of DOP was significantly higher than that of DBP. PAE sorption was dependent on liquid phase pH. Desorption hysteresis occurred in PAE desorption experiments, especially for the long-chain DOP. PAEs may therefore be a potential environmental risk in landfill.  相似文献   

6.
Diester phthalates are industrial chemicals used primarily as plasticizers to import flexibility to polyvinylchloride plastics. In this study, we examined the hydrolysis of di-n-butyl phthalate (DBP), butylbenzyl phthalate (BBzP) and di(2-ethylhexyl) phthalate (DEHP) in human liver microsomes. These diester phthalates were hydrolyzed to monoester phthalates (mono-n-butyl phthalate (MBP) from DBP, mono-n-butyl phthalate (MBP) and monobenzyl phthalate (MBzP) from BBzP, and mono(2-ethylhexyl) phthalate (MEHP)) by human liver microsomes. DBP, BBzP and DEHP hydrolysis showed sigmoidal kinetics in V-[S] plots, and the Hill coefficient (n) ranged 1.37-1.96. The S50, Vmax and CLmax values for DBP hydrolysis to MBP were 99.7 μM, 17.2 nmol min−1 mg−1 protein and 85.6 μL min−1 mg−1 protein, respectively. In BBzP hydrolysis, the values of S50 (71.7 μM), Vmax (13.0 nmol min−1 mg−1 protein) and CLmax (91.3 μL min−1 mg−1 protein) for MBzP formation were comparable to those of DBP hydrolysis. Although the S50 value for MBP formation was comparable to that of MBzP formation, the Vmax and CLmax values were markedly lower (<3%) than those for MBzP formation. The S50, Vmax and CLmax values for DEHP hydrolysis were 8.40 μM, 0.43 nmol min−1 mg−1 protein and 27.5 μL min−1 mg−1 protein, respectively. The S50 value was about 10% of DBP and BBzP hydrolysis, and the Vmax value was also markedly lower (<3%) than those for DBP hydrolysis and MBzP formation for BBzP hydrolysis. The ranking order of CLmax values for monoester phthalate formation in DBP, BBzP and DEHP hydrolysis was BBzP to MBzP ? DBP to MBP > DEHP to MEHP > BBzP to MBP. These findings suggest that the hydrolysis activities of diester phthalates by human liver microsomes depend on the chemical structure, and that the metabolism profile may relate to diester phthalate toxicities, such as hormone disruption and reproductive effects.  相似文献   

7.
In the present study, the toxic effects of 2,4-dinitrotoluene (2,4-DNT), 2,6-dinitrotoluene (2,6-DNT) and a selection of their respective metabolites were examined and compared to 2,4,6-trinitrotoluene (TNT) using the 15-min Microtox (Vibrio fischen) and 96-h freshwater green alga (Selenastrum capricomutum) growth inhibition tests. All of the compounds tested were less toxic than TNT. Using the Microtox assay, 2,6-DNT was more toxic than 2,4-DNT and the order of toxicity for 2,6-DNT and its metabolites was: 2,6-DNT > or = 2A-6NT > 2,6-DAT; whereas that for 2,4-DNT was: 4A-2NT > 2A-4NT > 2,4-DNT > 2,4-DAT. For the algal test, 2,4-DNT was more toxic than 2,6-DNT and the order of toxicity for 2,4-DNT and its metabolites was: 2,4-DNT > 2,4-DAT approximately equal to 4A-2NT = 2A-4NT. The order of toxicity for 2,6-DNT and its reduced metabolites using the algal test was very similar to the Microtox bioassay. These results demonstrate that the reduced metabolites of 2,6-DNT tested in this study were less toxic than that of the parent compound, but certain partially reduced metabolites of 2,4-DNT can be more toxic than the parent molecule. These data put into question the general hypothesis that reductive metabolism of nitro-aromatics is associated with a sequential detoxification process.  相似文献   

8.
Soil eco-toxicity testing was conducted in support of Canada’s Chemical Management Plan (CMP) to fill data gaps for organic chemicals known to primarily partition to soil, and of which the persistence and inherent toxicity are uncertain. Two compounds representative of specific classes of chemicals: non-chlorinated bisphenols containing an –OH group (4,4′-methylenebis(2,6-di-tert-butylphenol (Binox)) and xanthene dyes (2′,4′,5′,7′-tetrabromo-4,5,6,7-tetrachloro-3′,6′-dihydroxy-, disodium salt (Phloxine B), 2′,4′,5’,7′-tetrabromofluorescein (TBF), 4′,5′-dibromofluorescein (DBF), and 4,5,6,7-tetrachlorofluorescein (TCF)) were evaluated. The effect of these substances on plant growth (Elymus lanceolatus and Trifolium pratense) and soil invertebrate survival and reproduction (Folsomia candida and Eisenia andrei) were assessed using a field-collected sandy soil. Binox was persistent throughout testing (up to 63 d) with an average recovery of 77 ± 2.9% at test end. Binox was not toxic to plants (IC50s > 1076 mg kg?1) or E. andrei (IC50s > 2651 mg kg?1); however, a significant reduction in F. candida adult survival and reproduction (IC50 = 89 (44–149) mg kg?1) was evident. Phloxine B was also persistent throughout testing, with an average recovery of 82 ± 3.0% at test end. Phloxine B was significantly more toxic than Binox, with significant reductions in plant root growth (IC50s ? 11 mg kg?1) and invertebrate reproduction (IC50s ? 22 mg kg?1). DBF toxicity was not significantly different from that of Phloxine B for plant root growth (IC50s ? 30 mg kg?1), but was significantly less toxic for shoot growth (IC50s ? 1758 mg kg?1), and invertebrate adult survival (IC50s ? 2291 mg kg?1) and reproduction (IC50s ? 451 mg kg?1). A comparison between all four xanthene dyes was completed using F. candida, with the degree of toxicity in the order of Phloxine B ? TBF  DBF > TCF. The results from these studies will contribute to data gaps for poorly understood chemicals (and chemical groupings) under review for environmental risk assessments, and will aid in the validation of model predictions used to characterize the fate and effects of these substances in soil environments.  相似文献   

9.
Ecotoxicity of nanoparticles of CuO and ZnO in natural water   总被引:1,自引:0,他引:1  
The acute toxicity of CuO and ZnO nanoparticles in artificial freshwater (AFW) and in natural waters to crustaceans Daphnia magna and Thamnocephalus platyurus and protozoan Tetrahymena thermophila was compared. The L(E)C50 values of nanoCuO for both crustaceans in natural water ranged from 90 to 224 mg Cu/l and were about 10-fold lower than L(E)C50 values of bulk CuO. In all test media, the L(E)C50 values for both bulk and nanoZnO (1.1-16 mg Zn/l) were considerably lower than those of nanoCuO. The natural waters remarkably (up to 140-fold) decreased the toxicity of nanoCuO (but not that of nanoZnO) to crustaceans depending mainly on the concentration of dissolved organic carbon (DOC). The toxicity of both nanoCuO and nanoZnO was mostly due to the solubilised ions as determined by specific metal-sensing bacteria.  相似文献   

10.
Methyl tert-butyl ether (MTBE) is one of the main additives in gasoline. Its degradation is known to be difficult in natural environments. In this study, significant MTBE degradation is demonstrated at a contaminated site in Leuna (eastern Germany). Since the extent of the plume appeared to be constant over the last 5 years, an extended study was performed to elucidate the degradation processes. Special attention was paid to the production, accumulation and degradation of metabolites and by-products. Groundwater samples from 105 monitoring wells were used to measure 20 different substances. During the degradation process, several intermediates such as tert-butyl alcohol (TBA), tert-butyl formate, formate and lactate were produced. However, the potentially carcinogenic by-product methacrylate was not detected in several hundred samples. At the Leuna site, MTBE degradation occurred under microaerobic conditions. In contrast to hydrocarbons and BTEX, there was no evidence for anaerobic MTBE degradation. Among the degradation products, TBA was found to be a useful intermediate to identify MTBE degradation, at least under microaerobic conditions. TBA accumulation was strongly correlated to MTBE degradation according to the kinetic properties of both degradation processes. Since maximum degradation rates (v(max)) and k(m) values were higher for MTBE (v(max)=2.3 mg/l/d and k(m)=3.2 mg/l) than for TBA (v(max)=1.35 mg/l/d and k(m)=0.05 mg/l), TBA significantly accumulated as an intermediate by-product. The field results were supported by bench scale model aquifer experiments.  相似文献   

11.
Phytotoxicity and cytotoxicity of 2,4-diaminotoluene (2,4-D), 4,4'-methylenedianiline (4,4-D), and 1,6-hexanediamine (1,6-D) were investigated by observing the germination of young radish seeds and the viability of HeLa cells, respectively. 2,4-D showed the highest, 4,4-D intermediate, and 1,6-D lowest cytotoxicity. However, the phytotoxicity decreased in the order of 4,4-D > 2,4-D > 1,6-D. Contrary to the results previously reported, in the modified Sturm test the activated sludge degraded 2,4-D and 4,4-D as well as 1,6-D without any pre-acclimation. Ochrobacterium antropi was isolated for degradation of 2,4-D and 4,4-D and Pseudomonas citronellolis for 1,6-D degradation. Thielevia sp. was isolated as 2,4-D degrading fungus and Aspergillus sp. as 4,4-D and 1,6-D degrading fungus. The fungi degraded the diamines faster than the bacteria.  相似文献   

12.
Chang BV  Liao CS  Yuan SY 《Chemosphere》2005,58(11):1000-1607
We investigated anaerobic degradation rates for three phthalate esters (PAEs), diethyl phthalate (DEP), di-n-butyl phthalate (DBP), and di-(2-ethylhexyl) phthalate (DEHP), from river sediment in Taiwan. The respective anaerobic degradation rate constants for DEP, DBP, and DEHP were observed as 0.045, 0.074, and 0.027 1/day, with respective half-lives of 15.4, 9.4, and 25.7 days under optimal conditions of 30 °C and pH 7.0. Anaerobic degradation rates were enhanced by the addition of the surfactants brij 35 and triton N101 at a concentration of 1 critical micelle concentration (CMC), and by the addition of yeast extract. Degradation rates were inhibited by the addition of acetate, pyruvate, lactate, FeCl3, MnO2, NaCl, heavy metals, and nonylphenol. Our results indicate that methanogen, sulfate-reducing bacteria, and eubacteria are involved in the degradation of PAEs.  相似文献   

13.
Environmental Science and Pollution Research - The applicability of ionic liquids (ILs) has increased over the last years, and even new opportunities are becoming a reality, i.e. mixtures of pure...  相似文献   

14.
15.
Ren S 《Chemosphere》2003,53(9):1053-1065
In ecotoxicology, mechanism-based quantitative structure-activity relationships (QSARs) are usually developed with higher quality than QSARs without regard to toxicity mechanism. Correctly determining the mechanism of a compound, which is not always easy, is required to use mechanism-based QSARs for toxicity prediction. The mechanism determination step may introduce extra errors in addition to the intrinsic prediction errors of mechanism-based QSARs, thus compromising these QSARs' performance compared with QSARs regardless of mechanism. In this study, the mechanism identification-toxicity prediction (MI-TP) approach was compared with the direct toxicity prediction (DTP) approach using a data set containing phenol toxicity to Tetrahymena pyriformis. A statistical mechanism classification model for mechanism prediction, four mechanism-based QSARs and a single QSAR without discriminating between mechanisms were developed for toxicity prediction. Toxicity of phenols in an external data set was predicted following the MI-TP and DTP approaches. Results indicated that the mechanisms of several phenols in the external test set were incorrectly predicted which led to significant over- or under-estimation of their toxicity. Overall, the MI-TP approach did not yield more accurate toxicity prediction than the DTP approach.  相似文献   

16.
Lock K  Janssen CR 《Chemosphere》2002,46(2):197-200
Despite growing concern about the potential adverse effects of elevated nickel concentrations in the environment, only a few toxicity data are available for terrestrial invertebrates. Therefore, chronic toxicity of nickel was assessed for Eisenia fetida, Enchytraeus albidus and Folsomia candida, the three invertebrates for which standard test protocols are available. The 21 d EC50 for the cocoon production of E. fetida was 362 (241-508) mg Ni/kg dry wt. For the reproduction of E. albidus, a 42 d EC50 of 275 (217-346) mg Ni/kg dry wt was observed. The 28 d EC50 for the reproduction of F. candida was 476 (347-671) mg Ni/kg dry wt. The obtained toxicity data were very similar to those of related species reported in literature. Although the presented data can be considered as a step forward in the assessment of the potential risks of nickel in terrestrial environments, further research is needed to evaluate the influence of soil parameters on the toxicity of nickel and to quantify the effect of ageing on bioavailability.  相似文献   

17.
离子液体对三种农作物发芽和生长的毒性研究   总被引:5,自引:0,他引:5  
为了考察离子液体的生态毒性,研究了5种离子液体及其浓度变化对3种农作物发芽及生长状况的影响。结果表明:就种子发芽这一生态毒理指标而言,不同作物对离子液体毒性的敏感程度不同,其次序为黄瓜>玉米>白菜;在一定浓度下,离子液体对白菜、黄瓜和玉米均具有一定的毒害作用;对于所考察的5种离子液体,阴离子为卤素的[EMIM]Br和[BMIM]Cl对植物发芽和生长的抑制作用远大于阴离子为烷基硫酸酯和烷基磷酸酯的同类离子液体 [EMIM][ES]、[EMIM][DEP]和[MMIM][DMP]。这种毒性顺序可能与卤素离子对细胞膜较强的穿透能力和由于离子液体的稳定性所造成的阴阳“离子对”的共迁移有关。  相似文献   

18.
Environmental Science and Pollution Research - This work studies the effects of different bromide-based ionic liquids, with phosphonium and ammonium cations, towards several environmental...  相似文献   

19.
The aim of the work was to study the biodegradation process of biocomposites prepared from renewable resources and the ecotoxicological assessment of their biodegradation products. Biocomposites from modified starch reinforced with various cellulose fibers were prepared by the extrusion process. Biodegradation studies were carried out according to the ISO respirometic method. Ecotoxicity of biodegradation products was assessed by the luminescent bacteria test. It was found that biodegradation of biocomposites was above 60% within 24 days according to the results of respirometric test. Increase in the amount of natural fiber reinforcement, as well as smaller fiber size increased the biodegradability of biocomposites. On the basis of the preliminary results of the ecotoxicological test using luminescent bacteria it seems that the biodegradation products of the biocomposites studied are ecologically safe.  相似文献   

20.
Background N-methylcarbamate insecticides are widely used chemicals for crop protection. This study examines the hydrolytic and photolytic cleavage of benfuracarb, carbosulfan and carbofuran under natural conditions. Their toxicity and that of the corresponding main degradation products toward aquatic organisms were evaluated. Methods Suspensions of benfuracarb, carbosulfan and carbofuran in water were exposed to sunlight, with one set of dark controls, for 6 days, and analyzed by 1H-NMR and HPLC. Acute toxicity tests were performed on Brachionus calyciflorus, Daphnia magna, and Thamnocefalus platyurus. Chronic tests were performed on Pseudokirchneriella subcapitata, and Ceriodaphnia dubia. Results and Discussion Under sunlight irradiation, benfuracarb and carbosulfan gave off carbofuran and carbofuran-phenol, while only carbofuran was detected in the dark experiments. The latter was degraded to phenol by exposure to sunlight. Effects of pH, humic acid and KNO3 were evaluated by kinetics on dilute solutions in the dark and by UV irradiation, which evidenced the lability of the pesticide at pH 9. All three pesticides and phenol exhibited acute and higher chronic toxicity towards the aquatic organisms tested. Conclusion Investigation on the hydrolysis and photolysis of benfuracarb and carbosulfan under natural conditions provides evidence concerning the selective decay to carbofuran and/or phenol. Carbofuran is found to be more persistent and toxic. Recommendations and Outlook The decay of benfuracarb and carbosulfan to carbofuran and the relative stability of this latter pesticide account for many papers that report the detection of carbofuran in water, fruits and vegetables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号