首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A diesel fuel spill was simulated on a 12-m(2) plot of agricultural land, at a concentration of 1 Lm(-2) of soil. The natural attenuation of Volatile Aromatic Hydrocarbons (VAHs) was monitored at different soil depths over a period of 50 days. The natural attenuation of VAHs in the surface layer would be attributed to two processes, namely: volatilisation (mainly linked to the boiling point of each VAH, with t(1/2) from 2 to 71 min for benzene and p-isopropyltoluene, respectively); and dissipation (related to the boiling point as well as the analyte-soil matrix interaction, with t(1/2) from 2 to 169 h for benzene and p-isopropyltoluene, respectively). As expected, in the deeper layers, dissipation prevails over volatilisation. 50 days after the spill, only two VAHs were detected in the surface layer, at concentrations of 5-20 ngg(-1), which had disappeared after 80 days of the spill.  相似文献   

2.
A diesel fuel spill at a concentration of 1 L m(-2) soil was simulated on a 12 m(2) plot of agricultural land, and natural attenuation of aliphatic hydrocarbons was monitored over a period of 400 days following the spill after which the aliphatic hydrocarbon concentrations were found to be below the legal contamination threshold for soil. The main fraction of these compounds (95%) remained at the surface layer (0-10 cm). Shortly after the spill (viz. between days 0 and 18), evaporation was the main origin of the dramatic decrease in pollutant concentrations in the soil. Thereafter, soil microorganisms used aliphatic hydrocarbons as sources of carbon and energy, as confirmed by the degradation ratios found. Soil quality indicators, soil microbial biomass and dehydrogenase activity, regained their original levels about 200 days after the spill.  相似文献   

3.
C Taylor  T Viraraghavan 《Chemosphere》1999,39(10):1583-1593
A bench-scale investigation (soil pan testing) was conducted with the objective of studying degradation rates of diesel contaminated soil (2500 and 10,000 ppm by weight of total petroleum hydrocarbons (TPH) to dry weight of soil) under different treatment conditions over a 17 week testing period. The greatest degradation of the diesel contaminated soil was obtained with the addition of nutrients (Co = 10,000 ppm of TPH; k = 0.19 week-1). 'k' for soil not amended with nutrients was 0.07 week-1. The control cell (C0 = 2500 ppm TPH), with sodium azide (to suppress degradation) was compared with an experimental cell of 2500 ppm initial concentration of TPH without nutrient amendment. The control cell exhibited a relatively low uniform degradation (k = 0.08 week-1) of TPH over the duration of the experiment with reasonable first-order kinetic regression statistics.  相似文献   

4.
Song D  Katayama A 《Chemosphere》2005,59(3):305-314
A natural attenuation experiment was carried out using a lysimeter for 308 days after contaminating the subsoil with hydrocarbons (HCs) and the changes in the structures of microbial community in the hydrocarbon (HC) contaminated subsoil were monitored by quinone profile analysis. The residues of HCs remained for 217 days in the subsoil after the contamination. The amount of total quinones (TQ), an indicator of microbial biomass, significantly increased in the HC contaminated subsoil for 217 days, comparing with that of the background subsoil or the subsoil before the addition of HCs. The major quinone species and the quinone composition, indicators of community structure, were significantly different between the HC contaminated soil and the background soil for 217 days. The major increased quinine species in the HC contaminated soil were menaquinone-8(H4), menaquinone-9(H2) and ubiquinone-9, indicating the propagation of Gram-positive bacteria with high guanine and cytosine content and gamma-subclass of Proteobacteria and fungi. There was no significant difference in the diversity of the quinone species (DQ), an indicator of taxonomic diversity of microbial community, except for the decrease in DQ in the shallow subsoil after 35 days when a high concentration of HCs was detected. After 308 days when the HCs in the subsoil disappeared, TQ returned to the level of the background soil, and no significant difference in quinone composition were observed between the HC contaminated soil and the background soil. The results suggested that respiratory quinones are effective biomarkers for characterizing the temporal changes of microbial community in the HC contaminated subsoil.  相似文献   

5.
Chen CS  Rao PS  Delfino JJ 《Chemosphere》2005,60(11):39-1582
The cosolvent-induced dissolution of polynuclear aromatic hydrocarbons (PAHs) from contaminated soil caused by oxygenated fuel spills was studied. Oxygenated fuel induces a solvent flushing effect on the contaminated soil due to the high content of oxygenated compounds (i.e., methanol, ethanol, and methyl tert butyl ether (MTBE)). The miscible displacement techniques were applied to evaluate the increased potential for secondary contamination in an impacted site. Significant solubility enhancement of the 18 PAHs monitored during fuel spill simulation and cosolvent flushing is clearly evident when compared to normal water dissolution. The breakthrough concentration profile for each PAH constituent was integrated over the cumulative effluent volume (i.e., the zeroth moment) to determine the total PAH mass removed during the experiment. The removal efficiency of PAHs ranges from 46.6% to 99.9% in three oxygenated fuels (i.e., M85, E85, and oxygenated gasoline) during the fuel spill. Several factors including hydrophobicity of compounds, nonequilibrium dissolution due to nonuniform coal tar distribution, and heterogeneous media properties affect the oxygenated compound-induced dissolution process. This study provides a basis to predict the facilitated transport of hydrophobic organic compounds from subsurface environment due to the cosolvent effects of oxygenated fuels.  相似文献   

6.
Diesel fuels governed by U.S. regulations are based on the index of the total aromatic contents. Three diesel fuels, containing various fractions of light cycle oil (LCO) and various sulfur, total polyaromatic, and total aromatic contents, were used in a heavy-duty diesel engine (HDDE) under transient cycle test to assess the feasibility of using current indices in managing the emissions of polycyclic aromatic hydrocarbons (PAHs) from HDDE. The mean sulfur content in LCO is 20.8 times as much as that of premium diesel fuel (PDF). The mean total polyaromatic content in LCO is 28.7 times as much as that of PDF, and the mean total aromatic content in LCO is 2.53 times as much as that of PDF. The total polyaromatic hydrocarbon emission factors in the exhaust from the diesel engine, as determined using PDF L3.5 (3.5% LCO and 96.5% PDF), L7.5 (7.5% LCO and 92.5% PDF), and L15 (15% LCO and 85% PDF) were 14.3, 25.8, 44, and 101 mg L(-1), respectively. The total benzo(a)pyrene equivalent (BaPeq) emission factors in the exhaust from PDF, L3.5, L7.5, and L15 were 0.0402, 0.121, 0.219, and 0.548 mg L(-1), respectively. Results indicated that using L3.5 instead of PDF will result in an 80.4% and a 201% increase of emission for total PAHs and total BaPeq, respectively. The relationships between the total polyaromatic hydrocarbon emission factor and the two emission control indices, including fuel polyaromatic content and fuel aromatic content, suggest that both indices could be used feasibly to regulate total PAH emissions. These results strongly suggest that LCO used in the traveling diesel vehicles significantly influences PAH emissions.  相似文献   

7.
Samples of an Ah horizon from a Cambisol under oakwood vegetation were artificially contaminated with diesel (at doses of 20, 40, 80, 160 and 400 microl g(-1)) under laboratory conditions. The presence of the contaminant caused a decrease in the microbial biomass and in phosphomonoesterase, beta-glucosidase and particularly, urease activities. In contrast, the basal respiration and mineralization of nitrogen, specifically ammonification, both increased. The microorganisms that survived in the contaminated soil showed increased metabolic activity, as a result of their use of dead microorganisms as a substrate and of a lack of competition. Although the results indicate that the properties related to the degradative capacity of the soils varied differently in response to the contamination, the use of a biochemical quality index (including different biochemical properties), which was designed for estimating the degree of deterioration of the soil, revealed a clear decrease in the biochemical quality of the diesel-contaminated soils.  相似文献   

8.
A diesel fuel contaminated aquifer in Menziken, Switzerland was treated for 4.5 years by injecting aerated groundwater, supplemented with KNO3 and NH4H2PO4 to stimulate indigenous populations of petroleum hydrocarbon (PHC) degrading microorganisms. After dissolved PHC concentrations had stabilized at a low level, engineered in situ bioremediation was terminated. The main objective of this study was to evaluate the efficacy of intrinsic in situ bioremediation as a follow-up measure to remove PHC remaining in the aquifer after terminating engineered in situ bioremediation. In the first 7 months of intrinsic in situ bioremediation, redox conditions in the source area became more reducing as indicated by lower concentrations of SO4(2-) and higher concentrations of Fe(II) and CH4. In the core of the source area, strongly reducing conditions prevailed during the remaining study period (3 years) and dissolved PHC concentrations were higher than during engineered in situ bioremediation. This suggests that biodegradation in the core zone was limited by the availability of oxidants. In lateral zones of the source area, however, gradually more oxidized conditions were reestablished again, suggesting that PHC availability increasingly limited biodegradation. The total DIC production rate in the aquifer decreased within 2 years to about 25% of that during engineered in situ bioremediation and remained at that level. Stable carbon isotope analysis confirmed that the produced DIC mainly originated from PHC mineralization. The total rate of DIC and CH4 production in the source area was more than 300 times larger than the rate of PHC elution. This indicates that biodegradation coupled to consumption of naturally occurring oxidants was an important process for removal of PHC which remained in the aquifer after terminating engineered measures.  相似文献   

9.
We present an approach for characterizing in situ microbial degradation using the 13C/12C isotope fractionation of contaminants as an indicator of biodegradation. The 13C/12C isotope fractionation of aromatic hydrocarbons was studied in anoxic laboratory soil percolation columns with toluene or o-xylene as the sole carbon and electron source, and sulfate as electron acceptor. After approximately 2 months' of incubation, the soil microbial community degraded 32 mg toluene l(-1) and 44 mg o-xylene l(-1) to less than 0.05 mg l(-1), generating a stable concentration gradient in the column. The 13C/12C isotope ratio in the residual non-degraded fraction of toluene and o-xylene increased significantly, corresponding to isotope fractionation factors (alphaC) of 1.0015 and 1.0011, respectively. When the extent of biodegradation in the soil column was calculated based on the measured isotope ratios (R(t)) and an isotope fractionation factor (alphaC=1.0017) obtained from a sulfate-reducing batch culture the theoretical residual substrate concentrations (C(t)) matched the measured toluene concentrations in the column. This indicated that a calculation of biodegradation based on isotope fractionation could work in systems like soil columns. In a field study, a polluted, anoxic aquifer was analyzed for BTEX and PAH contaminants. These compounds were found to exhibit a significant concentration gradient along an 800-m groundwater flow path downstream of the source of contamination. A distinct increase in the carbon isotope ratio (delta13C) was observed for the residual non-degraded toluene (7.2 per thousand ), o-xylene (8.1 per thousand ) and naphthalene fractions (1.2 per thousand ). Based on the isotope values and the laboratory-derived isotope fractionation factors for toluene and o-xylene, the extent to which the residual substrate fraction in the monitoring wells had been degraded by microorganisms was calculated. The results revealed significant biodegradation along the groundwater flow path. In the wells at the end of the plume, the bioavailable toluene and o-xylene fractions had been almost completely reduced by in situ microbial degradation. Although indane and indene showed decreasing concentrations downstream of the groundwater flow path, suggesting microbial degradation, their carbon isotope ratios remained constant. As the physical properties of these compounds are similar to those of BTEX compounds, the constant isotope values of indane and indene indicated that microbial degradation did not lead to isotope fractionation of all aromatic hydrocarbons. In addition, physical interaction with the aquifer material during the groundwater passage did not significantly alter the carbon isotope composition of aromatic hydrocarbons.  相似文献   

10.
The sites contaminated with recalcitrant organic compounds, such as polycyclic aromatic hydrocarbons (PAHs) with multiple benzene rings, are colossal and ubiquitous environmental problems. They are relatively nonbiodegradable and mutagenic, and 16 of them are listed in the U.S. Environment Protection Agency priority pollutants. Thus, the efficient and emerging remediation technologies for removal of PAHs in contaminated sites have to be uncovered urgently. In this decade, the zero-valent iron (ZVI) particles have been used successfully in the laboratory, pilot, and field, such as degradation of chlorinated hydrocarbons and remediation of the other pollutants. Nevertheless, as far as we know, little research has investigated for soil remediation; this study used nanoscale ZVI particles to remove pyrene in the soil. The experimental variables were determined, including reaction time, iron particle size, and dosage. From the results, both the micro- and nanoscales of ZVI were capable of removing the target compound in soil, but the higher removal efficiencies were by nanoscale ZVI because of the massive specific surface area. The optimal operating conditions to attain the best removal efficiency of pyrene were obtained while adding nanoscale ZVI 0.1 g/g soil within 60 min and 150 rpm of mixing. Thus, nanoscale ZVI has proved to be a promising remedy for PAH-contaminated soil in this study, as well as an optimistically predictable application for additional pilot and field studies.  相似文献   

11.
The in situ bioremediation of aquifers contaminated with petroleum hydrocarbons is commonly based on the infiltration of groundwater supplemented with oxidants (e.g., O2, NO3) and nutrients (e.g., NH4+, PO43−). These additions stimulate the microbial activity in the aquifer and several field studies describing the resulting processes have been published. However, due to the heterogeneity of the subsurface and due to the limited number of observation wells usually available, these field data do not offer a sufficient spatial and temporal resolution. In this study, flow-through columns of 47-cm length equipped with 17 sampling ports were filled with homogeneously contaminated aquifer material from a diesel fuel contaminated in situ bioremediation site. The columns were operated over 96 days at 12°C with artificial groundwater supplemented with O2, NO3 and PO43−. Concentration profiles of O2, NO3, NO2, dissolved inorganic and organic carbon (DIC and DOC, respectively), protein, microbial cells and total residual hydrocarbons were measured. Within the first 12 cm, corresponding to a mean groundwater residence time of < 3.6 h, a steep O2 decrease from 4.6 to < 0.3 mg l−1, denitrification, a production of DIC and DOC, high microbial cell numbers and a high removal of hydrocarbons were observed. Within a distance of 24 to 40.5 cm from the infiltration, O2 was below 0.1 mg l−1 and a denitrifying activity was found. In the presence and in the absence of O2, n-alkanes were preferentially degraded compared to branched alkanes. The results demonstrate that: (1) infiltration of aerobic groundwater into columns filled with aquifer material contaminated with hydrocarbons leads to a rapid depletion of O2; (2) O2 and NO3 can serve as oxidants for the mineralization of hydrocarbons; and (3) the modelling of redox processes in aquifers has to consider denitrifying activity in presence of O2.  相似文献   

12.
A mixed population of soil hydrocarbon degrading bacteria was used to accelerate the biodegradation of a petrochemical waste. An aromatic hydrocarbon storage tank bottom was mixed with soil (10% w/w). After a month 43% of the hydrocarbons were degraded in uninoculated and in fertilized soil, while 65% were degraded in inoculated soil. Nutrient supplemented vermiculite seems to be a good possibility to produce effective hydrocarbon degrading inoculants.  相似文献   

13.
BACKGROUND AND OBJECTIVE: Indigenous soil microorganisms are used for the biodegradation of petroleum hydrocarbons in oily waste residues from the petroleum refining industry. The objective of this investigation was to determine the potential of indigenous strains of fungi in soil contaminated with petroleum hydrocarbons to biodegrade polycyclic aromatic hydrocarbons (PAH). MATERIALS AND METHODS: Twenty one fungal strains were isolated from a soil used for land-farming of oily waste residues from the petrochemical refining industry in Singapore and identified to genus level using laboratory culture and morphological techniques. Isolates were incubated in the presence of 30 mg/L of phenanthrene over a period of 28 days at 30 degrees C. The most effective strain was further evaluated to determine its ability to oxidise a wider range of PAH compounds of various molecular weight i.e acenaphthene, fluorene, fluoranthene, chrysene, benzo(a)pyrene and dibenz(ah)anthracene RESULTS AND DISCUSSION: After 28 days of incubation, 18 of the 21 fungal cultures were capable of oxidising over 50% of the phenanthrene present in culture medium, relative to abiotic controls. Fungal isolate, Penicillium sp. 06, was able to oxidise 89% of the phenanthrene present. This isolate could also oxidise more than 75% of the acenaphthene, fluorene and fluoranthene after 30 days of incubation. However, the oxidation of high molecular weight PAH i.e. chrysene, benzo(a)pyrene and dibenz(ah)anthracene by the Penicillium sp. 06 isolate was limited, where the extent of oxidation was inversely proportional to PAH molecular weight. CONCLUSIONS: Fungal isolate, Penicillium sp. 06, was effective at oxidising a range of PAH in petroleum contaminated soils, but higher molecular weight PAH were more recalcitrant. RECOMMENDATIONS AND OUTLOOK: There is potential for the re-application of this fungal strain to soil for bioremediation purposes.  相似文献   

14.
Evolution of trimethylbenzoic acids in the KC-135 aquifer at the former Wurtsmith Air Force Base (WAFB), Oscoda, MI was examined to determine the functionality of trimethylbenzoic acids as key metabolite signatures in the biogeochemical evolution of an aquifer contaminated with JP-4 fuel hydrocarbons. Changes in the composition of trimethylbenzoic acids and the distribution and concentration profiles exhibited by 2,4,6- and 2,3,5-trimethylbenzoic acids temporally and between multilevel wells reflect processes indicative of an actively evolving contaminant plume. The concentration levels of trimethylbenzoic acids were 3-10 orders higher than their tetramethylbenzene precursors, a condition attributed to slow metabolite turnover under sulfidogenic conditions. The observed degradation of tetramethylbenzenes into trimethylbenzoic acids obviates the use of these alkylbenzenes as non-labile tracers for other degradable aromatic hydrocarbons, but provides rare field evidence on the range of high molecular weight alkylbenzenes and isomeric assemblages amenable to anaerobic degradation in situ. The coupling of actual tetramethylbenzene loss with trimethylbenzoic acid production and the general decline in the concentrations of these compounds demonstrate the role of microbially mediated processes in the natural attenuation of hydrocarbons and may be a key indicator in the overall rate of hydrocarbon degradation and the biogeochemical evolution of the KC-135 aquifer.  相似文献   

15.
The potential of using ozone for the removal of phenanthrene from several different soils, both alone and in combination with biodegradation using a microbial inoculant (Pseudomonas alcaligenes PA-10), was examined. The greater the water content of the soil the less effective the ozone treatment, with air-dried soils showing the greatest removal of phenanthrene; while soils with higher levels of clay also reduced the effectiveness of the ozone treatments. However, at least a 50% reduction in phenanthrene levels was achieved in air-dried soil after an ozone treatment of 6 h at 20 ppm, with up to 85% removal of phenanthrene achieved in sandy soils. The biodegradation results indicate that P. alcaligenes PA-10 may be useful as an inoculant for the removal of PAHs from contaminated soils. Under the conditions used in our experiments, however, pre-ozonation did not enhance subsequent biodegradation of phenanthrene in the soils. Similar levels of phenanthrene removal occurred in both non-ozonated and ozonated Cruden Bay soil inoculated with P. alcaligenes PA-10. However, the biodegradation of phenanthrene in ozonated Boyndie soil was much slower. This may be due to the release of toxic products in this soil during ozonation.  相似文献   

16.
Polynuclear aromatic hydrocarbons (PAHs) constitute a group of priority pollutants which are present at high concentrations in the soils of many industrially contaminated sites. Criteria established for the removal or treatment or both of soils contaminated with PAHs vary widely within and between nations. The bioremediation of contaminated soils with in-situ, on-site, and bioreactor techniques is reviewed, together with the factors affecting PAH degradation. Current in-situ remediation techniques are considered ineffective for the removal of most PAHs from contaminated soil. On-site 'landforming' methods have been used successfully (and within a reasonable period of time) to degrade only those PAHs with three or fewer aromatic rings. Bioreactors have proved most effective for soil remediation, since conditions for enhanced degradation can be achieved most readily. However, bioreactors are still at the development stage, and further research is required to optimise their efficiency and economy for routine use. Degradation of the more recalcitrant high-molecular-weight PAHs is contaminated soil has not been particularly successful to date. Further research needs are identified to help develop bioremediation into a most cost-effective technology. The importance of full site assessments and treatability studies for successful application in the field is emphasised.  相似文献   

17.
Xie XM  Liao M  Yang J  Chai JJ  Fang S  Wang RH 《Chemosphere》2012,88(10):1190-1195
The effect of ryegrass (Lolium perenne L.) root-exudates concentration on pyrene degradation and the microbial ecological characteristics in the pyrene contaminated soil was investigated by simulating a gradually reducing concentration of root exudates with the distance away from root surface in the rhizosphere. Results showed that, after the root-exudates were added 15 d, the pyrene residue in contaminated soil responded nonlinearly in the soils with the same pyrene contaminated level as the added root-exudates concentration increased, which decreased first and increased latter with the increase of the added root-exudates concentration. The lowest pyrene concentration appeared when the root exudates concentration of 32.75 mg kg(-1) total organic carbon (TOC) was added. At the same time, changes of microbial biomass carbon (MBC, C(mic)) and microbial quotient (C(mic)/C(org)) were opposite to the trend of pyrene degradation as the added root-exudates concentration increased. Phospholipid fatty acid (PLFA) analysis revealed that bacteria was the dominating microbial community in pyrene contaminated soil, and the changing trends of pyrene degradation and bacteria number were the same. The changing trend of endoenzyme-dehydrogenase activity was in accordance with that of soil microbe, indicating which could reflect the quantitative characteristic of detoxification to pyrene by soil microbe. The changes in the soils microbial community and corresponding microbial biochemistry characteristics were the ecological mechanism influencing pyrene degradation with increasing concentration of the added root-exudates in the pyrene contaminated soil.  相似文献   

18.
In this study a column leaching method for investigation of hydrophobic organic contaminants (HOCs) leaching from soil was developed. The method set-up is based on a recycled flow of sterile water through a soil column with a sedimentation chamber mounted on top of the column, in connection with on-line filtration. The combination of a sedimentation chamber and an on-line filtration enables the measurement of leaching concentrations from contaminated materials consisting of very fine particle fractions. In addition, by using on-line solid phase extraction, minute amounts of leaching HOCs may be captured and quantified with high accuracy and reproducibility. The method was applied successfully on a contaminated aged soil sample and the leaching behavior of seven PAHs, with three to six aromatic rings, was monitored for more than 1600 h under saturated conditions. The tested PAHs were fluorene, phenanthrene, anthracene, fluoranthene, pyrene, benzo(a)pyrene and benzo(ghi)perylene. The method proved to be reliable and capable of providing data on leachable amounts of the PAHs under field-like conditions and over a longer period of time. The results indicated low availability of the studied contaminants since only a minor fraction (0.3%) of the initial amount of PAHs in the soil was removed during the experiment (liquid/solid-ratio of 700 l/kg). Thus PAHs in aged contaminated soil are not to be expected to be released to any great extent only by leaching with water.  相似文献   

19.

Purpose  

Spillage of petroleum hydrocarbons causes significant environmental pollution. Bioremediation is an effective process to remediate petroleum oil contaminant from the ecosystem. The aim of the present study was to reclaim a petroleum oil-contaminated soil which was unsuitable for the cultivation of crop plants by using petroleum oil hydrocarbon-degrading microbial consortium.  相似文献   

20.
Polycyclic aromatic hydrocarbons (PAHs) are a group of toxic, persistent, bioaccumulating organic compounds containing two or more fused aromatic rings. They are listed by the U.S. Environmental Protection Agency as priority pollutants because of their carcinogenicity and toxicity. Employing ozonation as a remediation technique, this work investigated the treatability of a sediment sample from a freshwater boat slip subjected to coal tar contamination over a long period. The contaminated sediment sample contained high levels of PAHs in the forms of naphthalene, phenanthrene, pyrene, and benzo[a]pyrene, among other byproducts present in the humic and solid phases of the sediment. The objectives of this work were to examine (1) the degradation of PAHs in the contaminated sediment as treated by ozonation in the slurry form, (2) the effects of ozonation upon the soil matrix and the biodegradability of the resultant PAH intermediates, and (3) the feasibility of a combined technique using O3 as a pretreatment followed by biological degradation. The sediment was made into 3% w/w soil slurries and ozonated in a 1.7-L semi-batch, well-stirred reactor equipped with pH control and a cold trap for the gaseous effluent. Samples were collected after different ozonation durations and tested for biochemical oxygen demand (BOD), chemical oxygen demand (COD), UV absorbance, and toxicity, along with quantitative and qualitative determinations of the parent and daughter intermediates using gas chromatography/flame ionization detection (GC/FID), GC/mass spectrometry (MS), and ion chromatography (IC) techniques. The GC/MS technique identified 16 compounds associated with the humic and solid phases of the sediment. Intermediates identified at different ozonation times suggested that the degradation of PAHs was initiated by an O3 attack resulting in ring cleavage, followed by the intermediates' oxidation reactions with O3 and the concomitant OH radical toward their mineralization. Results suggested that ozonation for 2 hr removed 50-100% of various PAHs in the solid and liquid phases (as well as the aqueous and gaseous media resulting from the treatment process) of the sediment sample and that organic and inorganic constituents of the sediment were also altered by ozonation. Measurements and comparisons of BOD, COD, UV absorbance, and toxicity of the samples further suggested that ozonation improved the bioavailability and biodegradability of the contaminants, despite the increased toxicity of the treatment effluent. An integrated chemical-biological system appeared to be feasible for treating recalcitrant compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号