首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In large-eddy simulations of atmospheric boundary layer turbulence, the lumped coefficient in the eddy-diffusion subgrid-scale (SGS) model is known to depend on scale for the case of inert scalars. This scale dependence is predominant near the surface. In this paper, a scale-dependent dynamic SGS model for the turbulent transport of reacting scalars is implemented in large-eddy simulations of a neutral boundary layer. Since the model coefficient is computed dynamically from the dynamics of the resolved scales, the simulations are free from any parameter tuning. A set of chemical cases representative of various turbulent reacting flow regimes is examined. The reactants are involved in a first-order reaction and are injected in the atmospheric boundary layer with a constant and uniform surface flux. Emphasis is placed on studying the combined effects of resolution and chemical regime on the performance of the SGS model. Simulations with the scale-dependent dynamic model yield the expected trends of the coefficients as function of resolution, position in the flow and chemical regime, leading to resolution-independent turbulent reactant fluxes.  相似文献   

2.
During sunny days with periods of low synoptic wind, buoyancy forces can play a critical role on the air flow, and thus on the dispersion of pollutants in the built urban environments. Earlier studies provide evidence that when a surface inside an urban street canyon is at a higher temperature than that of local ambient air, buoyancy forces can modify the mechanically-induced circulation within the canyons (i.e., gaps between buildings). The aspect ratio of the urban canyon is a critical factor in the manifestation of the buoyancy parameter. In this paper, computational fluid dynamics simulations are performed on urban street canyons with six different aspect ratios, focusing on the special case where the leeward wall is at a greater temperature than local ambient air. A non-dimensional measure of the influence of buoyancy is used to predict demarcations between the flow regimes. Simulations are performed under a range of buoyancy conditions, including beyond those of previous studies. Observations from a field experiment and a wind tunnel experiment are used to validate the results.  相似文献   

3.
Experimental investigation of bubbly flow and turbulence in hydraulic jumps   总被引:1,自引:1,他引:0  
Many environmental problems are linked to multiphase flows encompassing ecological issues, chemical processes and mixing or diffusion, with applications in different engineering fields. The transition from a supercritical flow to a subcritical motion constitutes a hydraulic jump. This flow regime is characterised by strong interactions between turbulence, free surface and air–water mixing. Although a hydraulic jump contributes to some dissipation of the flow kinetic energy, it is also associated with increases of turbulent shear stresses and the development of turbulent eddies with implications in terms of scour, erosion and sediment transport. Despite a number of experimental, theoretical and numerical studies, there is a lack of knowledge concerning the physical mechanisms involved in the diffusion and air–water mixing processes within hydraulic jumps, as well as on the interaction between the free-surface and turbulence. New experimental investigations were undertaken in hydraulic jumps with Froude numbers up to Fr = 8.3. Two-phase flow measurements were performed with phase-detection conductivity probes. Basic results related to the distributions of void fraction, bubble frequency and mean bubble chord length are presented. New developments are discussed for the interfacial bubble velocities and their fluctuations, characterizing the turbulence level and integral time scales of turbulence representing a “lifetime” of the longitudinal bubbly flow structures. The analyses show good agreement with previous studies in terms of the vertical profiles of void fraction, bubble frequency and mean bubble chord length. The dimensionless distributions of interfacial velocities compared favourably with wall-jet equations. Measurements showed high turbulence levels. Turbulence time scales were found to be dependent on the distance downstream of the toe as well as on the distance to the bottom showing the importance of the lower (channel bed) and upper (free surface) boundary conditions on the turbulence structure.  相似文献   

4.
Sustainable development requires changes in socio-technical systems and wider societal change – in beliefs, values and governance that co-evolve with technology changes. In this article we present a practical model for managing processes of co-evolution: transition management. Transition management is a multilevel model of governance which shapes processes of co-evolution using visions, transition experiments and cycles of learning and adaptation. Transition management helps societies to transform themselves in a gradual, reflexive way through guided processes of variation and selection, the outcomes of which are stepping stones for further change. It shows that societies can break free from existing practices and technologies, by engaging in co-evolutionary steering. This is illustrated by the Dutch waste management transition. Perhaps transition management constitutes the third way that policy scientists have been looking for all the time, combining the advantages of incrementalism (based on mutual adaptation) with the advantages of planning (based on long-term objectives).  相似文献   

5.
The atmospheric boundary layer adjustment at the abrupt transition from a canopy (forest) to a flat surface (land or water) is investigated in a wind tunnel experiment. Detailed measurements examining the effect of canopy turbulence on flow separation, reduced surface shear stress and wake recovery are compared to data for the classical case of a solid backward-facing step. Results provide new insights into the interpretation for flux estimation by eddy-covariance and flux gradient methods and for the assessment of surface boundary conditions in turbulence models of the atmospheric boundary layer in complex landscapes and over water bodies affected by canopy wakes. The wind tunnel results indicate that the wake of a forest canopy strongly affects surface momentum flux within a distance of 35–100 times the step or canopy height, and mean turbulence quantities require distances of at least 100 times the canopy height to adjust to the new surface. The near-surface mixing length in the wake exhibits characteristic length scales of canopy flows at the canopy edge, of the flow separation in the near wake and adjusts to surface layer scaling in the far wake. Components of the momentum budget are examined individually to determine the impact of the canopy wake. The results demonstrate why a constant flux layer does not form until far downwind in the wake. An empirical model for surface shear stress distribution from a forest canopy to a clearing or lake is proposed.  相似文献   

6.
Hydraulic jumps have complex flow structures, characterised by strong turbulence and large air contents. It is difficult to numerically predict the flows. It is necessary to bolster the existing computer models to emphasise the gas phase in hydraulic jumps, and avoid the pitfall of treating the phenomenon as a single-phase water flow. This paper aims to improve predictions of hydraulic jumps as bubbly two-phase flow. We allow for airflow above the free surface and air mass entrained across it. We use the Reynolds-averaged Navier–Stokes equations to describe fluid motion, the volume of fluid method to track the interface, and the k–ε model for turbulence closure. A shear layer is shown to form between the bottom jet flow and the upper recirculation flow. The key to success in predicting the jet flow lies in formulating appropriate bottom boundary conditions. The majority of entrained air bubbles are advected downstream through the shear layer. Predictions of the recirculation region’s length and air volume fraction within the layer are validated by available measurements. The predictions show a linear growth of the shear layer. There is strong turbulence at the impingement, and the bulk of the turbulence kinetic energy is advected to the recirculation region via the shear layer. The predicted bottom-shear-stress distribution, with a peak value upstream of the toe of the jump and a decaying trend downstream, is realistic. This paper reveals a significant transient bottom shear stress associated with temporal fluctuations of mainly flow velocity in the jump. The prediction method discussed is useful for modelling hydraulic jumps and advancing the understanding of the complex flow phenomenon.  相似文献   

7.
Numerical simulation of sand dune erosion   总被引:1,自引:0,他引:1  
Erosion of sand or other granular material is a subject of utmost importance in several fields of practical interest, including industrial processes or environmental issues. Resulting from intricate interaction between the incident flow field and localized body forces responsible for the granular material cohesion, erosion is a particularly complex phenomenon. The present work addresses this problem, proposing a numerical method to compute the time evolution of a sand dune subjected to aeolian erosion, along with the associated entrainment and deposition fluxes. Turbulent fluid flow is computed through a three-dimensional Navier-Stokes solver based on a generalized coordinate system. A Lagrangian approach is adopted for tracking the trajectories of particles entrained in the saltation regime, thus allowing prediction of the corresponding deposition locations. Different models for saltation fluxes are tested, along with several formulations for the creeping-to-saltation flux ratio, creeping threshold and creeping distance. Comparison with results from wind tunnel experiments is very encouraging, stressing the relative importance of creeping in the erosion process for the presently studied conditions.  相似文献   

8.
This paper analyzes the generation of hydroelectric power by the transfer of seawater to locations which are significantly below sea level (e.g., the Dead Sea in Israel and the Qatara depression in Egypt) combined with solar energy that via evaporation will perpetuate the hydroelectric power capacity. Two scenarios are depicted. The first focuses on optimal planning of the canal capacity and optimal use of its water to generate hydroelectric power while filling the basin to its steady-state level. The second includes the impact of solar pools as a new technology whose date of adoption is a random event. It is shown that the optimal flow of water through the canal depends on the relationship between optimal canal capacity and the rate of water evaporation in the basin. The optimal design of the canal can be considered a hybrid between depletion of a natural resouce (the height differences in filling up the basin) and use of a renewable resource (solar energy to evaporate the basin water). The optimal policy is shown to consist of sequential intervals, some of which may vanish under certain conditions: first, the operation of the canal at full capacity; then the gradual decrease of water flow at a rate equal to the elasticity of the marginal product of electricity generation times the sum of interest rate and the marginal evaporation rate; and, finally, the stabilization of the water flow at the rate of steady-state evaporation. The stochastic model with the introduction of solar pools technology treated as a random event is formulated as a two-stage maximization problem. It is shown that, in contrast to the scenario without solar pools, the canal may be operated underutilizing its capacity in the initial period. But even in this case, the quantity of water flowing through the canal is a nonincreasing monotonic function over time with a jump in the quantity of flow at the date the solar pools are introduced.  相似文献   

9.
An image-recognition-based diagnosis system of pipe defect types was established. 1043 practical pipe images were gathered by CCTV robot in a southern Chinese city. The overall accuracy of the system is 84% and the highest accuracy is 99.3%. The accuracy shows positive correlation to the number of training samples. Closed circuit television (CCTV) systems are widely used to inspect sewer pipe conditions. During the diagnosis process, the manual diagnosis of defects is time consuming, labor intensive and error prone. To assist inspectors in diagnosing sewer pipe defects on CCTV inspection images, this paper presents an image recognition algorithm that applies features extraction and machine learning approaches. An algorithm of image recognition techniques, including Hu invariant moment, texture features, lateral Fourier transform and Daubechies (DBn) wavelet transform, was used to describe the features of defects, and support vector machines were used to classify sewer pipe defects. According to the inspection results, seven defects were defined; the diagnostic system was applied to a sewer pipe system in a southern city of China, and 28,760 m of sewer pipes were inspected. The results revealed that the classification accuracies of the different defects ranged from 51.6% to 99.3%. The overall accuracy reached 84.1%. The diagnosing accuracy depended on the number of the training samples, and four fitting curves were applied to fit the data. According to this paper, the logarithmic fitting curve presents the highest coefficient of determination of 0.882, and more than 200 images need to be used for training samples to guarantee the accuracy higher than 85%.  相似文献   

10.
The effects of fluctuating salinity on the mortality of newly released nauplii of three species of barnacle, Elminius modestus (Darwin), Balanus balanoides (L) and B. hameri (Ascanius) have been measured. The larvae were exposed to three different types of salinity regime; in all cases, a regime which fluctuated gently between full-strength sea water and a reduced concentration was found to be least damaging. The contributions of the abruptness of salinity shock, and the degree of exposure to reduce salinity, are considered as factors influencing mortality. Survival depends upon the interaction of both these factors, but the abruptness of the shock which the barnacles receive is of major importance in determining their survival range.  相似文献   

11.
A tidal bore is a series of waves propagating upstream as the tidal flow turns to rising. It forms during the spring tide conditions when the tidal range exceeds 5–6 m and the flood tide is confined to a narrow funnelled estuary with low freshwater levels. A tidal bore is associated with a massive mixing of the estuarine waters that stirs the organic matter and creates some rich fishing grounds. Its occurrence is essential to many ecological processes and the survival of unique eco-systems. The tidal bore is also an integral part of the cultural heritage in many regions: the Qiantang River bore in China, the Severn River bore in UK, the Dordogne River in France. In this contribution, the environmental, ecological and cultural impacts of tidal bores are reviewed, explained and discussed.  相似文献   

12.
采用人工模拟降雨的试验方法,研究了辽宁浑河流域主要土地利用类型的土壤在地表径流和壤中流中所产生的氮、磷流失特征。结果表明,(1)地表径流和壤中流氮、磷流失特征差异显著,地表径流氮、磷输出浓度均表现为降雨初期较高而后逐渐趋于稳定的特征;壤中流氮、磷输出浓度在整个径流过程中保持相对稳定。(2)在整个降雨径流过程中,耕地与草地氮、磷流失均以地表径流为主,随壤中流流失的氮、磷占输出量的比例较小。(3)耕地与草地中地表径流和壤中流氮、磷流失差异表明,土壤的水分下渗滤减机制对氮、磷流失具有很大的削减作用,草地中对总磷的削减作用尤为显著,可达90%以上。  相似文献   

13.
In the present study, the well-known case of day 33 of the Wangara experiment is resimulated using the Weather Research and Forecasting (WRF) model in an idealized single-column mode to assess the performance of a frequently used planetary boundary layer (PBL) scheme, the Yonsei University PBL scheme. These results are compared with two large eddy simulations for the same case study imposing different surface fluxes: one using previous surface fluxes calculated for the Wangara experiment and a second one using output from the WRF model. Finally, an alternative set of eddy diffusivity equations was tested to represent the transition characteristics of a sunset period, which led to a gradual decrease of the eddy diffusivity, and replaces the instantaneous collapse of traditional diagnostics for eddy diffusivities. More appreciable changes were observed in air temperature and wind speed (up to 0.5 K, and 0.6 m s?1, respectively), whereas the changes in specific humidity were modest (up to 0.003 g kg?1). Although the representation of the convective decay in the standard parameterization did not show noticeable improvements in the simulation of state variables for the selected Wangara case study day, small changes in the eddy diffusivity over consecutive hours throughout the night can impact the simulation of distribution of trace gases in air quality models. So, this work points out the relevance of simulating the turbulent decay during sunset, which could help air quality forecast models to better represent the distribution of pollutants storage in the residual layer during the entire night.  相似文献   

14.
Laminarization of flow in a two-dimensional dense gas plume was experimentally investigated in this study. The plume was created by releasing CO2 through a ground-level line source into a simulated turbulent boundary layer over an aerodynamically rough surface in a meteorological wind tunnel. The bulk Richardson number (Ri*), based on negative plume buoyancy, plume thickness, and friction velocity, was varied over a wide range so that the effects of stable stratification on plume laminarization could be observed. A variety of ambient wind speeds as well as three different sizes of roughness arrays were used so that possible effects of roughness Reynolds number (Re*) on plume laminarization could also be identified. Both flow visualization methods and quantitative measurements of velocity and intermittency of turbulence were used to provide quantitative assessments of plume laminarization.Flow visualization provided an overall picture of how the plume was affected by the negative buoyancy. With increasing Ri*, both the plume depth and the vertical mixing were significantly suppressed, while upstream propagation of the plume from the source was enhanced. The most important feature of the flow revealed by visualization was the laminarization of flow in the lower part of the plume, which appeared to be closely related to both Ri* and Re*.Measurements within the simulated dense gas plumes revealed the influence of the stable stratification on mean velocity and turbulence intensity profiles. Both the mean velocity and turbulence intensity were significantly reduced near the surface; and these reductions systematically depended on Ri*. The roughness Reynolds number also had considerable influence on the mean flow and turbulence structure of the dense gas plumes.An intermittency analysis technique was developed and applied to the digitized instantaneous velocity signals. It not only confirmed the general flow picture within the dense plume indicated by the flow visualization, but also clearly demonstrated the changes of flow regime with variations in Ri* and Re*. Most importantly, based on this intermittency analysis, simple criteria for characterizing different flow regimes are formulated; these may be useful in predicting when plume laminarization might occur.  相似文献   

15.
Environmental Impact of Undular Tidal Bores in Tropical Rivers   总被引:3,自引:1,他引:3  
A tidal bore impacts significantly on the estuarine ecosystem, although little is known on the flow field, mixing and sediment motion beneath tidal bores. In the absence of detailed systematic field measurements, a quasi-steady flow analogy was applied to investigate undular tidal bores with inflow Froude numbers between 1.25 and 1.6. Experimental results indicated that rapid flow redistributions occur beneath the free-surface undulations, with significant variations in bed shear stress between wave crests and troughs. Dynamic similarity was used to predict detailed flow characteristics of undular tidal bores. The effects of periodic loading on river sediments, scour of river bed and flow mixing behind the bore are discussed. A better understanding of these processes will contribute to better management practices in tidal bore affected rivers, including the Styx and Daly rivers in tropical Australia.  相似文献   

16.
Experimental results on tracer gas diffusion within the near wake of a simplified model car (Ahmed model with a rear slant angle of 25°) are presented. Pollutant emission is simulated using heated air injected through a small pipe at one side of the model base. Fine cold wire thermometry is used to measure instantaneous temperature excess and variance of temperature gradient in the near wake. Measurements of the three mean velocity components were made using a laser Doppler anemometers system. Characteristics of the mean and fluctuating temperature fields, time-averaged flow streamlines and scalar dissipation measurements are presented and discussed. The local mixing time scale is determined from the measured mean dissipation rate of temperature variance. Its value shows that micromixing is not a limiting phenomenon for chemical reactions in the near wake.  相似文献   

17.
In this paper we propose a robust algorithm to evaluate solute transport in open-channel networks with transient storage under an unsteady flow regime. In the proposed approach, through the integration of junction equations into the model and solving them explicitly, the analysis of solute transport problems in open-channel networks is simplified significantly. Furthermore, when coupled with a transient hydrodynamic open-channel network model for flow simulation, the proposed model can be utilized in the solution of solute transport problems under unsteady flow regimes. In the proposed model, the governing equations are written in a conservative form and are solved using a fractional-step algorithm, which is based on a relaxation and central difference scheme. The proposed algorithm is robust and accurate even for advection dominant cases. A pure advection with discontinuities, a field application and solute transport in an open-channel network in an unsteady flow regime are included, to demonstrate the performance of the proposed algorithm.  相似文献   

18.
In open channel, canals and rivers, a rapid increase in flow depth will induce a positive surge, also called bore or compression wave. The positive surge is a translating hydraulic jump. Herein new experiments were conducted in a large-size rectangular channel to characterise the unsteady turbulent properties, including the coupling between free-surface and velocity fluctuations. Experiments were repeated 25 times and the data analyses yielded the instantaneous median and instantaneous fluctuations of free-surface elevation, velocities and turbulent Reynolds stresses. The passage of the surge front was associated with large free-surface fluctuations, comparable to those observed in stationary hydraulic jumps, coupled with large instantaneous velocity fluctuations. The bore propagation was associated with large turbulent Reynolds stresses and instantaneous shear stress fluctuations, during the passage of the surge. A broad range of shear stress levels was observed underneath the bore front, with the probability density of the tangential stresses distributed normally and the normal stresses distributed in a skewed single-mode fashion. Maxima in normal and tangential stresses were observed shortly after the passage of a breaking bore roller toe. The maximum Reynolds stresses occurred after the occurrence of the maximum free-surface fluctuations, and this time lag implied some interaction between the free-surface fluctuations and shear stress fluctuations beneath the surge front, and possibly some causal effect.  相似文献   

19.
A tidal bore may occur in a macro-tidal estuary when the tidal range exceeds 4.5–6 m and the estuary bathymetry amplifies the tidal wave. Its upstream propagation induces a strong mixing of the estuarine waters. The propagation of undular tidal bores was investigated herein to study the effect of bridge piers on the bore propagation and characteristics. Both the tidal bore profile and the turbulence generated by the bore were recorded. The free-surface undulation profiles exhibited a quasi-periodic shape, and the potential energy of the undulations represented up to 30% of the potential energy of the tidal bore. The presence of the channel constriction had a major impact on the free-surface properties. The undular tidal bore lost nearly one third of its potential energy per surface area as it propagated through the channel constriction. The detailed instantaneous velocity measurements showed a marked effect of the tidal bore passage suggesting the upstream advection of energetic events and vorticity “clouds” behind the bore front in both channel configurations: prismatic and with constriction. The turbulence patches were linked to some secondary motions and the proposed mechanisms were consistent with some field observations in the Daly River tidal bore. The findings emphasise the strong mixing induced by the tidal bore processes, and the impact of bridge structures on the phenomenon.  相似文献   

20.
The modelling of pollutant dispersion at the street scale in an urban environment requires the knowledge of turbulence generated by the traffic motion in streets. In this paper, a theoretical framework to estimate mechanical turbulence induced by traffic in street canyons at low wind speed conditions is established. The standard deviation of the velocity fluctuations is adopted as a measure of traffic-produced turbulence (TPT). Based on the balance between turbulent kinetic energy production and dissipation, three different parameterisations for TPT suitable for different traffic flow conditions are derived and discussed. These formulae rely on the calculations of constants that need to be estimated on the basis of experimental data. One such estimate has been made with the help of a wind tunnel data set corresponding to intermediate traffic densities, which is the most common regime, with interacting vehicle wakes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号