共查询到20条相似文献,搜索用时 15 毫秒
1.
Larsbo M Fenner K Stoob K Burkhardt M Abbaspour K Stamm C 《Journal of environmental quality》2008,37(3):788-797
To prevent residues of veterinary medicinal products (VMPs) from contaminating surface waters and ground water, an environmental impact assessment is required before a new product is allowed on the market. Physically based simulation models are advocated for the calculation of predicted environmental concentrations at higher tiers of the assessment process. However, the validation status of potentially useful models is poor for VMP transport. The objective of this study was to evaluate the dual-permeability model MACRO for simulation of transport of sulfonamide antibiotics in surface runoff and soil. Special focus was on effects of solute application in liquid manure, which may alter the hydraulic properties at the soil surface. To this end we used data from a microplot runoff experiment and a field experiment, both conducted on the same clay loam soil prone to preferential flow. Results showed that the model could accurately simulate concentrations of sulfadimidine and the nonreactive tracer bromide in runoff and in soil from the microplot experiments. The use of posterior parameter distributions from calibrations using the microplot data resulted in poor simulations for the field data of total sulfadimidine losses. The poor results may be due to surface runoff being instantly transferred off the field in the model, whereas in reality re-infiltration may occur. The effects of the manure application were reflected in smaller total and micropore hydraulic conductivities compared with the application in aqueous solution. These effects could easily be accounted for in regulatory modeling. 相似文献
2.
Nathan Wangusi Gregory Kiker Rafael Muñoz-Carpena Wesley Henson 《The Environmentalist》2013,33(3):440-456
Water managers face the daunting task of balancing limited water resources with over-subscribed water users among competing demands. They face the additional challenge of taking water planning decisions in an uncertain environment with limited and sometimes inaccurate observed and simulated hydrological data. Within South African watersheds, spatial parameterization data for hydrological models are now available at two different basin management resolutions (termed quaternary and quinary). Currently, water management decisions in the Crocodile River watershed are often made at a more coarse resolution, which may exclude crucial insights into the data. This research has the following aims (1) to explore whether model performance is improved by parameterization using a more detailed quinary-scale watershed data and (2) to explore whether quinary-scale models reduce uncertainty in allocation or restriction decisions to provide better informed water resources management and decision outcomes. This study used the Agricultural Catchments Research Unit (ACRU) agro-hydrological watershed model, to evaluate the effects of spatial discretization at the quaternary and quinary scales on watershed hydrological response and runoff within the Crocodile River basin. Model performance was evaluated using statistical comparisons of results using traditional goodness-of-fit measures such as the coefficient of efficiency (C eff), root mean square of the error and the coefficient of determination (R 2) to compare simulated monthly flows and observed flows in six subcatchments. Traditional interpretation of these goodness-of-fit measures may be inadequate as they can be subjectively interpreted and easily influenced by the number of data points, outliers and model bias. This research utilizes a recently released model evaluation program (FITEVAL) which presents probability distributions of R 2and C eff derived by bootstrapping, graphical representation of observed and simulated stream flows, incorporates statistical significance to detect the sufficiency of the R 2and C eff and determines the presence of outliers and bias. While analyses indicate that the ACRU model performs marginally better when parameterized and calibrated at the quinary scale, the measurements at both scales show significant variability in predictions for both high and low flows that are endemic to southern African hydrology. The improved evaluation methods also allow for the analysis of data collection errors at monitoring sites and help determine the effect of data quality on adaptive water planning management decisions. Given that many water resource challenges are complex adaptive systems, these expanded performance analysis tools help provide deeper insights into matching watershed decision metrics and model-derived predictions. 相似文献
3.
Drift from pesticide spray application can result in contamination of nontarget environments such as surface waters. Azinphos-methyl (AZI) and endosulfan (END) deposition in containers of water was studied in fruit orchards in the Western Cape, South Africa. Additionally, attention was given to the contamination in farm streams, as well as to the resulting contamination of the subsequent main channel (Lourens River) approx. 25 km downstream of the tributary stream inlets. Spray deposit decreased with increasing distance downwind and ranged from 4.7 mg m(-2) within the target area to 0.2 mg m(-2) at 15 m downwind (AZI). Measured in-stream concentrations of both pesticides compared well with theoretical values calculated from deposition data for the respective distances. Furthermore, they were in the range of values predicted by an exposure assessment based on 95th-percentile values for basic drift deposition (German Federal Biological Research Centre for Agriculture and Forestry [BBA] and USEPA). Pesticide deposition in the tributaries was followed by a measurable increase of contamination in the Lourens River. Mortality of midges (Chironomus spp.) exposed for 24 h to samples obtained from the AZI trials decreased with decreasing concentrations (estimated LC50 from field samples = 10 microg L(-1) AZI; lethal distance: LD50 = 13 m). Mortality in the tributary samples averaged 11% (0.5-1.7 microg L(-1) AZI), while no mortality was discernible in the Lourens River samples (0.041 microg L(-1)). The sublethal endpoint failure to form tubes from the glass beads provided was significantly increased at all sites in comparison with the control (analysis of variance [ANOVA], Fisher's protected least significant difference [PLSD], p < 0.01). 相似文献
4.
A long-term water quality monitoring program was established to evaluate the effects of agricultural management practices on water quality in the Little Vermilion River (LVR) watershed, IL. This watershed has intensive random and irregular subsurface drainage systems. The objective of this study was to assess the fate and transport of soluble phosphorus (soluble P) through subsurface drainage and surface runoff. Four sites (sites A, B, C, and E) that had subsurface and surface monitoring programs were selected for this study. Three of the four study sites had corn (Zea mays L.) and soybeans (Glycine max L.) planted in rotations and the other site had seed corn and soybeans. Subsurface drainage and surface runoff across all sites removed an average of 16.1 and 2.6% of rainfall, respectively. Annual flow-weighted soluble P concentrations fluctuated with the precipitation, while concentrations tended to increase with high precipitation coupled with high application rates. The long-term average flow-weighted soluble P concentrations in subsurface flow were 102, 99, 194, and 86 microg L(-1) for sites A, B, C, and E, respectively. In contrast, the long-term average flow-weighted soluble P concentrations in surface runoff were 270, 253, 534, and 572 microg L(-1) for sites As, Bs, Cs, and Es, respectively. These values were substantially greater than the critical values that promote eutrophication. Statistical analysis indicated that the effects of crop, discharge, and the interactions between site and discharge and crop and discharge on soluble P concentrations in subsurface flow were significant (alpha = 0.05). Soluble P mass loads in surface runoff responded to discharge more consistently than in the subsurface flow. Subsurface flow had substantially greater annual average soluble P mass loads than surface runoff due to greater flow volume. 相似文献
5.
Phosphorus transfer in surface runoff from intensive pasture systems at various scales: a review 总被引:2,自引:0,他引:2
Dougherty WJ Fleming NK Cox JW Chittleborough DJ 《Journal of environmental quality》2004,33(6):1973-1988
Phosphorus transfer in runoff from intensive pasture systems has been extensively researched at a range of scales. However, integration of data from the range of scales has been limited. This paper presents a conceptual model of P transfer that incorporates landscape effects and reviews the research relating to P transfer at a range of scales in light of this model. The contribution of inorganic P sources to P transfer is relatively well understood, but the contribution of organic P to P transfer is still relatively poorly defined. Phosphorus transfer has been studied at laboratory, profile, plot, field, and watershed scales. The majority of research investigating the processes of P transfer (as distinct from merely quantifying P transfer) has been undertaken at the plot scale. However, there is a growing need to integrate data gathered at a range of scales so that more effective strategies to reduce P transfer can be identified. This has been hindered by the lack of a clear conceptual framework to describe differences in the processes of P transfer at the various scales. The interaction of hydrological (transport) factors with P source factors, and their relationship to scale, require further examination. Runoff-generating areas are highly variable, both temporally and spatially. Improvement in the understanding and identification of these areas will contribute to increased effectiveness of strategies aimed at reducing P transfers in runoff. A thorough consideration of scale effects using the conceptual model of P transfer outlined in this paper will facilitate the development of improved strategies for reducing P losses in runoff. 相似文献
6.
The occurrence of metabolites of many commonly used herbicides in streams has not been studied extensively in tile-drained watersheds. We collected water samples throughout the Upper Embarras River watershed [92% corn, Zea mays L., and soybean, Glycine max (L.) Merr.] in east-central Illinois from March 1999 through September 2000 to study the occurrence of atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine), metolachlor 12-chloro-N-(2-ethyl-6-methylphenyl)-N-(methoxy-1-methylethyl) acetamide], alachlor [2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl) acetamide], acetochlor [2-chloro-N-(ethoxymethyl)-N-(2-ethyl-6-methylphenyl) acetamide], and their metabolites. River water samples were collected from three subwatersheds of varying tile density (2.8-5.3 km tile km(-2)) and from the outlet (United States Geological Survey [USGS] gage site). Near-record-low totals for stream flow occurred during the study, and nearly all flow was from tiles. Concentrations of atrazine at the USGS gage site peaked at 15 and 17 microg L(-1) in 1999 and 2000, respectively, and metolachlor at 2.7 and 3.2 microg L(-1); this was during the first significant flow event following herbicide applications. Metabolites of the chloroacetanilide herbicides were detected more often than the parent compounds (evaluated during May to July each year, when tiles were flowing), with metolachlor ethanesulfonic acid [2-[(2-ethyl-6-methylphenyl)(2-methoxy-1-methylethyl)amino]-2-oxoethanesulfonic acid] detected most often (> 90% from all sites), and metolachlor oxanilic acid [2-[(2-ethyl-6-methylphenyl)(2-methoxy-1-methylethyl)amino]-2-oxoacetic acid] second (40-100% of samples at the four sites). When summed, the median concentration of the three chloroacetanilide parent compounds (acetochlor, alachlor, and metolachlor) at the USGS gage site was 3.4 microg L(-1), whereas it was 4.3 microg L(-1) for the six metabolites. These data confirm the importance of studying chloroacetanilide metabolites, along with parent compounds, in tile-drained watersheds. 相似文献
7.
The sorption and desorption behavior of hexavalent chromium and chlorinated ethenes in a sandy ground water aquifer with a low reduction capacity was evaluated by performing a variety of analyses and experiments at the laboratory (batch and column studies) and field (in situ injection-withdrawal experiment) scales. The partitioning coefficients determined from the field and laboratory experiments are generally similar. Both sets of experiments yielded relatively low partition coefficients for chromium and chlorinated ethenes. The column studies and injection-withdrawal experiment indicate that chromium has the potential to leach from aquifer sediments and act as a secondary source of contamination. However, the magnitude of the secondary source effect is not significant due to low concentrations of leachable contamination. The chromium sorption isotherm data were also simulated using the triple layer surface complexation model (TLM). The isotherm data were modeled using the TLM, illustrating the applicability of geochemical modeling for sorption of chromium to these sediments under variable pE-pH conditions. 相似文献
8.
A multimedia environmental fate model was developed to study the temporal dynamics and spatial distribution of a chemical pollutant at watershed scale. The theoretical considerations and implementation of the model were described in the accompanying paper (Part I). This paper presents the result of a test simulation on the transport of trichloroethylene (TCE) in the Connecticut River Basin. The simulation results were reported as time series of concentrations and inter-media transport fluxes in the compartments of atmosphere, plant, soil, surface water, and sediment. Predicted concentrations from the test simulation were compared with published field data or predictions by validated models. The temporal trends in TCE predictions were evaluated by comparing the simulation results with monthly TCE concentrations in various environmental compartments and monthly fluxes of inter-media transport processes. Results indicated that the simulation results were in reasonable agreement with reported data in the literature. The results also revealed that the mass transport of TCE from the atmosphere compartment to soil and surface water was a major route of TCE dispersion in the environment. 相似文献
9.
Waters derived from remote 'wilderness' locations have been assumed to be largely free of bacterial contamination and thus such, near-pristine, protected catchments, unused for agriculture, have been first in the multiple line of protection (pristine catchment-long storage-treatment-disinfection) employed by the water industry. This assumption is challenged by a bacterial survey of the waters derived from the New Cairngorm National Park, Scotland. Over 480 spot samples were taken for 59 sites between March 2001 and October 2002 during nine field campaigns each of three to five days duration. Over 75% of samples tested positive for Escherichia coli (E. coli) and 85% for total coliforms. Concentrations displayed both temporal and spatial patterns. Largest values occurred over the summer months and particularly at weekends at sites frequented by visitors, either for 'wild' camping or day visits, or where water was drawn from the river for drinking. Overall the spatial and temporal variations in bacterial concentrations suggest a relationship with visitor numbers and in particular wild camping. The implications of the results for drinking water quality and visitors health are discussed along with possible management options for the area in terms of improving the disposal of human waste. 相似文献
10.
A geo-referenced environmental fate model was developed for analyzing unsteady-state dispersion and distribution of chemicals in multimedia environmental systems. Chemical transport processes were formulated in seven environmental compartments of air, canopy, surface soil, root-zone soil, vadose-zone soil, surface water, and sediment. The model assumed that the compartments were completely mixed and chemical equilibrium was established instantaneously between the sub-compartments within each compartment. A fugacity approach was utilized to formulate the mechanisms of diffusion, advection, physical interfacial transport, and transformation reactions. The governing equations of chemical mass balances in the environmental compartments were solved simultaneously to reflect the interactions between the compartments. A geographic information system (GIS) database and geospatial analysis were integrated into the chemical transport simulation to provide spatially explicit estimations of model parameters at watershed scale. Temporal variations of the environmental properties and source emissions were also considered in the parameter estimations. The outputs of the model included time-dependent chemical concentrations in each compartment and its sub-compartments, and inter-media mass fluxes between adjacent compartments at daily time steps. 相似文献
11.
Modeling atmospheric nitrogen deposition and transport in the Chesapeake Bay watershed 总被引:3,自引:0,他引:3
Atmospheric deposition of nitrate nitrogen and ammonium nitrogen has been identified as a major factor in the decline of water quality in the Chesapeake Bay. Reports have indicated that atmospheric deposition may account for 25 to 80% of the total nitrogen load entering the bay. However, uncertainties exist regarding the accuracy of the atmospheric deposition inputs, nitrogen retention coefficients, and in-stream nutrient uptake rates used in these studies. This project was designed to reassess the potential inputs of atmospheric nitrogen deposition to the bay through the use of a high-resolution wet deposition model, improved wet and dry deposition and nutrient retention estimates, existing soils and land use data, and geographic information systems software. Model results indicate that the methods used in previous studies may overestimate the contribution of atmospheric nitrate and ammonium deposition to the Chesapeake Bay watershed (CBW). Wet and dry atmospheric nitrate and ammonium nitrogen deposition estimates to the CBW ranged from 52.7 to 141.9 and 41.9 to 60.1 million kg/yr, respectively, between 1984 and 1996. Dry and total atmospheric deposition loads to the watershed are substantially less than previous estimates. Estimates of the percent contribution of atmospherically deposited nitrogen to the Chesapeake Bay represent between 20 and 32% of the total nitrate and ammonium nitrogen load to the watershed from all nitrogen sources. While these estimates are lower than many other published estimates, regression analysis of model parameters, nitrogen retention coefficients, output, and measured in-stream nitrogen loads indicate that the calculated nitrogen loads may still be too high. 相似文献
12.
Urban expansion is a major driving force altering local and regional hydrology and increasing non-point source (NPS) pollution. To explore these environmental consequences of urbanization, land use change was forecast, and long-term runoff and NPS pollution were assessed in the Muskegon River watershed, located on the eastern coast of Lake Michigan. A land use change model, LTM, and a web-based environmental impact model, L-THIA, were used in this study. The outcomes indicated the watershed would likely be subjected to impacts from urbanization on runoff and some types of NPS pollution. Urbanization will slightly or considerably increase runoff volume, depending on the development rate, slightly increase nutrient losses in runoff, but significantly increase losses of oil and grease and certain heavy metals in runoff. The spatial variation of urbanization and its impact were also evaluated at the subwatershed scale and showed subwatersheds along the coast of the lake and close to cities would have runoff and nitrogen impact. The results of this study have significant implications for urban planning and decision making in an effort to protect and remediate water and habitat quality of Muskegon Lake, which is one of Lake Michigan's Areas of Concern (AOC), and the techniques described here can be used in other areas. 相似文献
13.
There is a necessity for improved physical understanding of solute transport processes in heterogeneous soil systems. In situ nondestructive techniques like time domain reflectometry (TDR) and fiber optic miniprobes (FOMPs) permit the collection of unique measurements of solute transport processes in soils for the purposes of model development and validation. This study examined the application of TDR and FOMPs to measure solute transport at various points laterally and at two depths in a heterogeneous clay-loam soil. A miscible displacement experiment was performed at a constant irrigation flux to examine the applicability of these probes to field soils. In their first application to a field soil, the FOMPs were successfully calibrated and performed well in measuring solute breakthrough curves. Two flow regimes were identified in the soil profile, the first where lateral spreading of the solute occurred in the surface horizon, followed by convergence into preferential flow pathways in the second transport zone. The measured transport response was heterogeneous with at least two identifiable vertical flow phases. It was demonstrated using transfer function modeling and data from a corresponding laboratory study that the FOMPs were measuring the slower phase, while the TDR probes captured a composite of the fast and slow phases. The combination of these two techniques may be a means to separate solute transport phases in heterogeneous media and relate laboratory column results to field studies. 相似文献
14.
Gentry RW McCarthy J Layton A McKay LD Williams D Koirala SR Sayler GS 《Journal of environmental quality》2006,35(6):2244-2249
This study analyzed the occurrence of Escherichia coli in a mixed land-use watershed with human, cattle, and wildlife fecal inputs located in a karstic geologic region using synoptic monitoring (samples taken throughout the watershed system) during base-flow conditions. The objective of the study was to evaluate the occurrence of E. coli during base-flow conditions for several months at seven different main channel and nine different tributary sampling sites in the Stock Creek watershed, a 49.3-km(2) basin located in Knoxville, TN. Escherichia coli densities were measured using the Colilert (Defined Substrate Technology) method. The instantaneous loads for E. coli were determined from measured flow rates and E. coli densities, with the highest loading rates observed in the late fall. The study indicated a strong correlation between E. coli load rate (colony-forming units [CFU]/d), 7-d antecedent precipitation, and turbidity. Water quality data, however, also exhibited a spatial dependency; for example, the E. coli load rate was better correlated with turbidity in the slower draining basin tailwater sampling sites than in the faster draining upstream headwater sampling sites. In the headwater sites, the E. coli load rate was better correlated with 7-d antecedent precipitation than turbidity. 相似文献
15.
O'Donnell TK 《Environmental management》2012,49(1):267-284
Continued public support for U.S. taxpayer funded programs aimed at reducing agricultural pollutants depends on clear demonstrations
of water quality improvements. The objective of this research was to determine if implementation of agricultural best management
practices (BMPs) in the Goodwater Creek Experimental Watershed (GCEW) resulted in changes to atrazine and nitrate (NO3–N) loads during storm events. An additional objective was to estimate future monitoring periods necessary to detect a 5,
10, 20, and 25% reduction in atrazine and NO3–N event load. The GCEW is a 73 km2 watershed located in northcentral Missouri, USA. Linear regressions and Akaike Information Criteria were used to determine
if reductions in atrazine and NO3–N event loads occurred as BMPs were implemented. No effects due to any BMP type were indicated for the period of record.
Further investigation of event sampling from the long-term GCEW monitoring program indicated errors in atrazine load calculations
may be possible due to pre-existing minimum threshold levels used to trigger autosampling and sample compositing. Variation
of event loads was better explained by linear regressions for NO3–N than for atrazine. Decommissioning of upstream monitoring stations during the study period represented a missed opportunity
to further explain variation of event loads at the watershed outlet. Atrazine requires approximately twice the monitoring
period relative to NO3–N to detect future reductions in event load. Appropriate matching of pollutant transport mechanisms with autosampling protocols
remains a critical information need when setting up or adapting watershed monitoring networks aimed at detecting watershed-scale
BMP effects. 相似文献
16.
17.
Farenhorst A Papiernik SK Saiyed I Messing P Stephens KD Schumacher JA Lobb DA Li S Lindstrom MJ Schumacher TE 《Journal of environmental quality》2008,37(3):1201-1208
The sorption of 2,4-D and glyphosate herbicides in soil was quantified for 287 surface soils (0-15 cm) collected in a 10 x 10 m grid across a heavily eroded, undulating, calcareous prairie landscape. Other variables that were determined included soil carbonate content, soil pH, soil organic carbon content (SOC), soil texture, soil loss or gain by tillage and water erosion, and selected terrain attributes and landform segments. The 2,4-D sorption coefficient (Kd) was significantly associated with soil carbonate content (-0.66; P < 0.001), soil pH (-0.63; P < 0.001), and SOC (0.47; P < 0.001). Upper slopes were strongly eroded and thus had a significantly greater soil carbonate content and less SOC compared with lower slopes that were in soil accumulation zones. The 2,4-D Kd was almost twice as small in upper slopes than in lower slopes. The 2,4-D Kd was also significantly associated with nine terrain attributes, particularly with compounded topographic index (0.59; P < 0.001), gradient (-0.48; P < 0.001), mean curvature (-0.43; P < 0.001), and plan curvature (-0.42 P < 0.001). Regression equations were generated to estimate herbicide sorption in soils. The predicted power of these equations increased for 2,4-D when selected terrain attributes were combined with soil properties. In contrast, the variation of glyphosate sorption across the field was much less dependent on our measured soil properties and calculated terrain attributes. We conclude that the integration of terrain attributes or landform segments in pesticide fate modeling is more advantageous for herbicides such as 2,4-D, whose sorption to soil is weak and influenced by subtle changes in soil properties, than for herbicides such as glyphosate that are strongly bound to soil regardless of soil properties. 相似文献
18.
Dual-permeability models have been developed to account for the significant effects of macropore flow on contaminant transport, but their use is hampered by difficulties in estimating the additional parameters required. Therefore, our objective was to evaluate data requirements for parameter identification for predictive modeling with the dual-permeability model MACRO. Two different approaches were compared: sequential uncertainty fitting (SUFI) and generalized likelihood uncertainty estimation (GLUE). We investigated six parameters controlling macropore flow and pesticide sorption and degradation, applying MACRO to a comprehensive field data set of bromide andbentazone [3-isopropyl-1H-2,1,3-benzothiadiazin-4(3H)-one-2,2dioxide] transport in a structured soil. The GLUE analyses of parameter conditioning for different combinations of observations showed that both resident and flux concentrations were needed to obtain highly conditioned and unbiased parameters and that observations of tracer transport generally improved the conditioning of macropore flow parameters. The GLUE "behavioral" parameter sets covered wider parameter ranges than the SUFI posterior uncertainty domains. Nevertheless, estimation uncertainty ranges defined by the 5th and 95th percentiles were similar and many simulations randomly sampled from the SUFI posterior uncertainty domains had negative model efficiencies (minimum of -3.2). This is because parameter correlations are neglected in SUFI and the posterior uncertainty domains were not always determined correctly. For the same reasons, uncertainty ranges for predictions of bentazone losses through drainflow for good agricultural practice in southern Sweden were 27% larger for SUFI compared with GLUE. Although SUFI proved to be an efficient parameter estimation tool, GLUE seems better suited as a method of uncertainty estimation for predictions. 相似文献
19.
Index models to evaluate the risk of phosphorus and nitrogen loss at catchment scales 总被引:1,自引:0,他引:1
This paper investigates index models as a tool to estimate the risk of N and P source strengths and loss at the catchment scale. The index models assist managers in improving the focus of remediation actions that reduce nutrient delivery to waterbodies. N and P source risk factors (e.g. soil nutrient concentrations) and transport risk factors (e.g. distance-to-streams) are used to determine the overall risk of nutrient loss for a case study in the Tuross River catchment of coastal southeast Australia. In the development of the N index model for Tuross, particulate N was considered important based on the observed event water quality data. In contrast to previous N index models, erosion and contributing distance were therefore included in the Tuross River catchment N index. Event-based water quality monitoring, and soil information, or in data-poor catchments conceptual understanding, are essential to represent catchment-scale processes. The techniques have high applicability in other catchments, and are complementary to other modelling techniques such as process-based semi-distributed modelling. Index models generally provide much more detailed spatial resolution than fully- or semi-distributed conceptual modelling approaches. Semi-distributed models can be used to quantify nutrient loads and provide overall direction to set the broad focus of management. Index models can then be used to refine on-the-ground investigations and investment priorities. In this way semi-distributed models can be combined with index models to provide a set of powerful tools to influence management decisions and outcomes. 相似文献
20.
Nitrate nitrogen in surface waters as influenced by climatic conditions and agricultural practices 总被引:5,自引:0,他引:5
Subsurface tile drainage from row-crop agricultural production systems has been identified as a major source of nitrate entering surface waters in the Mississippi River basin. Noncontrollable factors such as precipitation and mineralization of soil organic matter have a tremendous effect on drainage losses, nitrate concentrations, and nitrate loadings in subsurface drainage water. Cropping system and nutrient management inputs are controllable factors that have a varying influence on nitrate losses. Row crops leak substantially greater amounts of nitrate compared with perennial crops; however, satisfactory economic return with many perennials is an obstacle at present. Improving N management by applying the correct rate of N at the optimum time and giving proper credits to previous legume crops and animal manure applications will also lead to reduced nitrate losses. Nitrate losses have been shown to be minimally affected by tillage systems compared with N management practices. Scientists and policymakers must understand these factors as they develop educational materials and environmental guidelines for reducing nitrate losses to surface waters. 相似文献