首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Selenium (Se), boron (B), and salinity contamination of agricultural drainage water is potentially hazardous for water reuse strategies in central California. To demonstrate the feasibility of using plants to extract Se from drainage water, Se accumulation was determined in canola (Brassica napus L.) and broccoli (Brassica oleracea L.) irrigated with drainage effluent in the San Joaquin Valley, California. In the 2-yr field study, both crops were irrigated with a typical drainage water containing Se (150 microg L(-1)), B (5 mg L(-1)), and a sulfate dominated salinity (EC of 7 dS m(-1)). Total dry matter yields were at least 11 Mg ha(-1) for both canola and broccoli, and plant tissue Se concentrations did not exceed 7 mg kg(-1) DM for either crop. Based on the amount of soluble Se applied to crops with drainage water and the estimated amount of soluble Se remaining in soil to a depth of 90 cm at harvest, both canola and broccoli accumulated at least 40% of the estimated soluble Se lost from the soil for both years. Applied Se not accounted for in plant tissue or as soluble Se in the soil was presumably lost by biological volatilization. This study suggests that irrigating two high value crops such as canola and broccoli with Se-laden effluent helps manage Se-laden effluent requiring treatment, and also produces economically viable Se-enriched crops. Future research should focus on managing residual salt and B in the soil for sustaining long time water reuse strategies.  相似文献   

2.
To explore the agronomic potential of an Australian coal fly ash, we conducted two glasshouse experiments in which we measured chlorophyll fluorescence, CO2 assimilation (A), transpiration, stomatal conductance, biomass accumulation, seed yield, and elemental uptake for canola (Brassica napus) grown on soil amended with an alkaline fly ash. In Experiment 1, application of up to 25 Mg/ha of fly ash increased A and plant weight early in the season before flowering and seed yield by up to 21%. However, at larger rates of ash application A, plant growth, chlorophyll concentration, and yield were all reduced. Increases in early vigor and seed yield were associated with enhanced uptake of phosphorus (P) by the plants treated with fly ash. Fly ash application did not influence accumulation of B, Cu, Mo, or Zn in the stems at any stage of plant growth or in the seed at harvest, except Mo concentration, which was elevated in the seed. Accumulation of these elements was mostly in the leaves, where concentrations of Cu and Mo increased with any amount of ash applied while that of B occurred only with ash applied at 625 Mg/ha. In Experiment 2, fly ash applied at 500 Mg/ha and mixed into the whole 30 cm soil core was detrimental to growth and yield of canola, compared with restricting mixing to 5 or 15 cm depth. In contrast, application of ash at 250 Mg/ha with increasing depth of mixing increased A and seed yield. We concluded that fly ash applied at not more than 25 Mg/ha and mixed into the top 10 to 15 cm of soil is sufficient to obtain yield benefits.  相似文献   

3.
The herbicides 2,4-D (2,4-dichlorophenoxyacetic acid) and triallate [S-2,3,3-trichloroallyl di-isopropyl(thiocarbamate)] are extensively used to control broadleaf and wild oat (respectively) weed infestations in Canadian cereal crops. In 1990, for example, more than 3.8 million kg of 2,4-D and 2.7 million kg of triallate were applied in the three prairie provinces (Alberta, Saskatchewan, and Manitoba). Maximum air concentrations of these two herbicides during the summers of 1989 and 1990 near Regina, Saskatchewan, were 3.90 ng m(-3) (2,4-D) and 60.04 ng m(-3) (triallate). Concentrations of these two herbicides were also measured in bulk atmospheric deposition (wet plus dry) and in farm pond water and associated surface film. Maximum measured levels of 2,4-D were 3550 ng m(-2) d(-1) (bulk deposition), 332 ng m(-2) (surface film), and 290 ng L(-1) (pond water). Maximum levels of triallate were 2300 ng m(-2) d(-1) (bulk deposition), 212 ng m(-2) (surface film), and 500 ng L(-1) (pond water). The highest quantities of the herbicides tended to be found during or immediately after the time of regional application. The movement of the herbicides in the environment will be discussed in relation to the four matrices studied.  相似文献   

4.
The Choptank River watershed, located on the Delmarva Peninsula of the Chesapeake Bay, is dominated by agricultural land use, which makes it vulnerable to runoff and atmospheric deposition of pesticides. Agricultural and wildlife areas are in close proximity and off-site losses of pesticides may contribute to toxic effects on sensitive species of plants and animals. High-volume air samples (n = 31) and event-based rain samples (n = 71) were collected from a single location in the watershed representing regional background conditions. Surface water samples were collected from eight stations in the tidal portion of the river on five occasions during 2000. Chlorothalonil, metolachlor, atrazine, simazine, endosulfan, and chlorpyrifos were frequently detected in the air and rain, with maximal concentrations during the period when local or regional crops were planted. The wet deposition load to the watershed was estimated at 150 +/- 16, 61 +/- 7, and 51 +/- 6 kg yr(-1) for chlorothalonil, metolachlor, and atrazine, respectively. The high wet deposition load compared with the estimated annual usage for chlorothalonil (13%) and endosulfan (14-90%) suggests an atmospheric source from outside the watershed. Net air-water gas exchange fluxes for metolachlor varied from -44 +/- 19 to 9.3 +/- 4.1 ng m(-2) d(-1) with negative values indicating net deposition. Wet deposition accounted for 3 to 20% of the total metolachlor mass in the Choptank River and was a more important source to the river than gas exchange. Estimates of herbicide flux presented here are probably a low estimate and actual rates may be significantly higher in areas closer to pesticide application.  相似文献   

5.
Atmospheric deposition of nitrogenous compounds to ombrotrophic peatlands (i.e., those that have peat layers higher than their surroundings and receive nutrients and minerals exclusively by precipitation) has the potential to significantly alter ecosystem functioning. This study utilized the acetylene inhibition technique to estimate the relative importance of denitrification in nitrogen removal from a primarily ombrotrophic peatland, in an attempt to estimate the threat of increased nitrogen loadings to these areas. Estimates of mean rates of denitrification ranged from -2.76 to 84.0 ng N(2)O-N cm(-3) h(-1) (equivalent to -150 to 4800 microg N(2)O-N m(-2) h(-1)) using an ex situ core technique and from -8.30 to 5.98 microg N(2)O-N m(-2) h(-1) using an in situ chamber technique. Core rates may have been elevated over natural field levels due to effects of disturbance on substrate availability, and chamber rates may have been low due to diffusional constraints on acetylene and N(2)O. Net nitrification was also measured in an attempt to evaluate this process as a source of nitrate for denitrifiers. The low rates of net nitrification measured, in combination with the low rates of in situ denitrification and the very low amounts of free nitrate measured in this peatland, suggests that inorganic N turnover in this wetland is low. Results showed that nitrate was a limiting factor for denitrification in this peatland, with mean rates from nitrate-amended cores ranging from 13.1 to 260 ng N(2)O-N cm(-3) h(-1), and it is expected that increases in nitrogen loadings will increase denitrification rates in this ecosystem.  相似文献   

6.
Maize (Zea mays L.) production in the smallholder farming areas of Zimbabwe is based on both organic and mineral nutrient sources. A study was conducted to determine the effect of composted cattle manure, mineral N fertilizer, and their combinations on NO3 concentrations in leachate leaving the root zone and to establish N fertilization rates that minimize leaching. Maize was grown for three seasons (1996-1997, 1997-1998, and 1998-1999) in field lysimeters repacked with a coarse-grained sandy soil (Typic Kandiustalf). Leachate volumes ranged from 480 to 509 mm yr(-1) (1395 mm rainfall) in 1996-1997, 296 to 335 mm yr(-1) (840 mm rainfall) in 1997-1998, and 606 to 635 mm yr(-1) (1387 mm rainfall) in 1998-1999. Mineral N fertilizer, especially the high rate (120 kg N ha(-1)), and manure plus mineral N fertilizer combinations resulted in high NO3 leachate concentrations (up to 34 mg N L(-1)) and NO3 losses (up to 56 kg N ha(-1) yr(-1)) in 1996-1997, which represent both environmental and economic concerns. Although the leaching losses were relatively small in the other seasons, they are still of great significance in African smallholder farming where fertilizer is unaffordable for most farmers. Nitrate leaching from sole manure treatments was relatively low (average of less than 20 kg N ha(-1) yr(-1)), whereas the crop uptake efficiency of mineral N fertilizer was enhanced by up to 26% when manure and mineral N fertilizer were applied in combination. The low manure (12.5 Mg ha(-1)) plus 60 kg N ha(-1) fertilizer treatment was best in terms of maintaining dry matter yield and minimizing N leaching losses.  相似文献   

7.
Trace gas fluxes exhibit extensive spatial and temporal variability that is dependent on a number of factors, including meteorology, ambient concentration, and emission source size. Previous studies have found that agricultural fertilization contributes to higher fluxes of certain gases. The magnitude of trace gas fluxes over unfertilized crops is still uncertain. In the present study, deposition of ammonia (NH), nitric acid (HNO), and sulfur dioxide (SO) was measured over unfertilized soybean using the flux-gradient technique. The eddy diffusivity was estimated from eddy covariance measurements of temperature fluxes, resulting in K of 0.64 ± 0.30 m s. Flux means and standard deviations were -0.14 ± 0.13, -0.22 ± 0.19, and -0.38 ± 0.54 μg m s for NH, HNO, and SO, respectively. Low concentrations of NH and HNO increased the relative uncertainties in the deposition velocities estimated from measured fluxes. This contributed to dissimilarities between deposition velocities estimated from the resistance analogy and deposition velocities estimated from fluxes. However, wet canopy conditions during the study may have led to an underestimation of deposition by the resistance analogy because the resistance method does not accurately describe the enhanced deposition rates that occur after dew formation. Quantification of vegetation characteristics, such as leaf wetness and apoplast chemistry, would be beneficial in future studies to more accurately determine stomatal resistance and its influence on fluxes.  相似文献   

8.
Limited information exists on the effect of long-term application of beef cattle (Bos taurus) manure on soil hydrological properties in the Great Plains region of North America. A site on a clay loam soil (Typic Haploboroll) was used to examine the effect of manure addition on selected soil hydrological properties in 1997 and 1998. The manure was annually applied in the fall for 24 yr at one, two, and three times the recommended rates (in 1973) under dryland (0, 30, 60, and 90 Mg ha(-1) wet basis) and irrigation (0, 60, 120, and 180 Mg ha(-1)). Manure significantly (P < or = 0.05) increased soil water retention (0-5 and 10-15 cm) by 5 to 48% compared with the control at most potentials between 0 and -1500 kPa. Field soil water content (0-5 and 10-15 cm) was increased by 10 to 22% in the summers of 1997 and 1998. Manure increased ponded infiltration by more than 200% at 90 Mg ha(-1) under dryland (1998) and at rates > or = 120 Mg ha(-1) under irrigation (1997). Field-saturated hydraulic conductivity (Kfs) of surface soil (1-cm depth) was significantly increased by 76 to 128% under dryland (1998) and irrigation (1997), as were number of pores > 1120 microm in diameter (37-128% increase). In contrast, manure rate had little or no effect on unsaturated hydraulic conductivity [K(psi)] values (-0.3, -0.5, -0.7, and -1.0 kPa) in 1997 and 1998. Overall, soil hydrological parameters generally had a neutral or positive response to 24 yr of annual manure addition.  相似文献   

9.
Rice (Oryza sativa L.) plants were cultivated in an experimental field and separated at harvest into different components, including polished rice, rice bran, hull, straw, and root. The contents of iodine in these components and the soil were determined by inductively coupled plasma-mass spectrometry and radiochemical neutron activation analysis, respectively. Iodine content varied by more than three orders of magnitude among the plant components. Mean concentration of iodine in the entire plants was 20 mg kg(-1) dry weight, and the concentration of iodine in the surface soil (0-20 cm depth) was 48 mg kg(-1). The highest concentration of iodine (53 mg kg(-1) dry weight) was measured in root and the lowest concentration (0.034 mg kg(-1) dry weight) in polished rice. While the edible component (polished rice) accounted for 32% of the total dry weight, it contained only 0.055% of iodine found in the entire rice plants. Atmospheric gaseous iodine (5.9 ng m(-3)) was estimated to contribute <0.2% of the total iodine content in the biomass of rice plants; therefore nearly all of the iodine in the rice plants was a result of the uptake of iodine from the soil. The content of iodine in the aboveground part of rice plants was 16 mg kg(-1) dry weight and the percentage of iodine transferred per cropping from the soil into the aboveground biomass corresponded to 0.27% (20 mg m(-2)) of the upper soil layer content.  相似文献   

10.
Methyl tertiary butyl ether (MTBE) was measured in air samples collected at hourly intervals near Blodgett Forest Research Station on the western slope of the Sierra Nevada, California, in July 1997, October 1998, and June through September 1999. Mixing ratios ranged from below the detection limit (< approximately 0.01 ppbv) to 0.5 ppbv, but were generally less than 0.3 ppbv. At these mixing ratios partitioning of MTBE into surface waters would lead to MTBE concentrations of less than 0.2 microg L(-1). As expected, MTBE mixing ratios were highly correlated with other anthropogenically emitted hydrocarbons. Based on the observed diurnal cycle of MTBE and its ratio to 2-methyl-butane (isopentane), we estimated the average regional daytime oxidant concentration to be (9 to 13) x 10(6) OH radicals per cubic centimeter, consistent with our earlier estimates for this region. Furthermore, MTBE ratios to toluene, another ubiquitous anthropogenic hydrocarbon, were generally consistent with regional transport and dilution, as well as atmospheric oxidation. Exceptions, pertaining to MTBE mixing ratios below or close to the detection limit, were associated with the influence of marine air masses that did not experience anthropogenic hydrocarbon input from California. With all these constraints in place, evidence for an additional atmospheric loss process, such as nonreversible deposition of MTBE, could not be established, and we conclude that any deposition is slow compared with removal from the atmosphere by the OH radical.  相似文献   

11.
Drift from pesticide spray application can result in contamination of nontarget environments such as surface waters. Azinphos-methyl (AZI) and endosulfan (END) deposition in containers of water was studied in fruit orchards in the Western Cape, South Africa. Additionally, attention was given to the contamination in farm streams, as well as to the resulting contamination of the subsequent main channel (Lourens River) approx. 25 km downstream of the tributary stream inlets. Spray deposit decreased with increasing distance downwind and ranged from 4.7 mg m(-2) within the target area to 0.2 mg m(-2) at 15 m downwind (AZI). Measured in-stream concentrations of both pesticides compared well with theoretical values calculated from deposition data for the respective distances. Furthermore, they were in the range of values predicted by an exposure assessment based on 95th-percentile values for basic drift deposition (German Federal Biological Research Centre for Agriculture and Forestry [BBA] and USEPA). Pesticide deposition in the tributaries was followed by a measurable increase of contamination in the Lourens River. Mortality of midges (Chironomus spp.) exposed for 24 h to samples obtained from the AZI trials decreased with decreasing concentrations (estimated LC50 from field samples = 10 microg L(-1) AZI; lethal distance: LD50 = 13 m). Mortality in the tributary samples averaged 11% (0.5-1.7 microg L(-1) AZI), while no mortality was discernible in the Lourens River samples (0.041 microg L(-1)). The sublethal endpoint failure to form tubes from the glass beads provided was significantly increased at all sites in comparison with the control (analysis of variance [ANOVA], Fisher's protected least significant difference [PLSD], p < 0.01).  相似文献   

12.
Herbicides are the most commonly used group of agricultural pesticides on the Canadian Prairies and, in 1990, more than 20000 Mg of herbicides were applied in the provinces of Alberta, Saskatchewan, and Manitoba. The present paper reports on environmental concentrations of five herbicides currently used in the prairie region. The herbicides bromoxynil [3,5-dibromo-4-hydroxy-benzonitrile], dicamba [3,6-dichloro-o-anisic acid], diclofop [(RS)-2-[4-(2,4-dichlorophenoxy)-phenoxy]propanoic acid], MCPA [(4-chloro-2-methylphenoxy)acetic acid], and trifluralin [alpha,alpha,alpha-trifluoro-2,6-dinitro-N,N-isopropyl-p-toluidine] were measured in the atmosphere, bulk atmospheric deposits, surface film, and dugout (pond) water at two sites near Regina, Saskatchewan, during 1989 and 1990. All five herbicides were detected in air and surface film and all but trifluralin were detected in the bulk atmospheric deposits and dugout water. Trifluralin was most frequently detected in air (79% of samples) whereas bromoxynil was present in maximum concentration (4.2 ng m(-3)). MCPA was present in maximum levels in bulk atmospheric (wet plus dry) deposits (2350 ng m(-2) d(-1)), surface film (390 ng m(-2)), and dugout water (330 ng L(-1)), whereas dicamba was most frequently detected in surface film (47%) and dugout water (97%). The highest quantities of the herbicides tended to be present during or immediately after the time of regional application.  相似文献   

13.
Nitrate (NO3-) pollution of surface and subsurface waters has become a major problem in agricultural ecosystems. Field trials were conducted from 1996 to 1998 at St-Emmanuel, Quebec, Canada, to investigate the combined effects of water table management (WTM) and nitrogen (N) fertilization on soil NO3- level, denitrification rate, and corn (Zea mays L.) grain yield. Treatments consisted of a combination of two water table treatments: free drainage (FD) with open drains at a 1.0-m depth from the soil surface and subirrigation (SI) with a design water table of 0.6 m below the soil surface, and two N fertilizer (ammonium nitrate) rates: 120 kg N ha(-1) (N120) and 200 kg N ha(-1) (N200). Compared with FD, SI reduced NO3(-)-N concentrations in the soil profile by 37% in spring 1997 and 2% in spring 1998; and by 45% in fall 1997 and 19% in fall 1998 (1 mg NO3(-)-N L(-1) equals approximately 4.43 mg NO3- L(-1)). The higher rate of N fertilization resulted in greater levels of NO3(-)-N in the soil solution. Denitrification rates were higher in SI than in FD plots, but were unaffected by N rate. The N200 rate produced higher yields than N120 in 1996 and 1997, but not 1998. Corn yields in SI plots were 7% higher than FD plots in 1996 and 3% higher in 1997, but 25% lower in 1998 because the SI system was unable to drain the unusually heavy June rains, resulting in waterlogging. These findings suggest that SI can be used as an economical means of reducing NO3- pollution without compromising crop yields during normal growing seasons.  相似文献   

14.
An upward trend in soluble reactive phosphorus (SRP) concentrations in Northern Ireland rivers leading to increased eutrophication has been reported for the last two decades. To identify if a similar trend could be observed in land drainage waters SRP and other P fractions were measured weekly from 1989 to 1997 in land drainage from a 9-ha grassland catchment in Northern Ireland that had a mean P surplus applied of 23.4 kg P ha(-1) yr(-1). Regressions of annual median concentrations of P fractions in land drainage waters against time for 1989 through to 1997 showed significant increases of SRP and soluble unreactive phosphorus (SUP) of 2.4 and 1.2 microg P L(-1) yr(-1), respectively. However, the annual flow-weighted concentrations and loads of all P fractions did not show significant increases with time. During the period 1998-2000 a change of management was introduced when only maintenance dressings of P were applied to the catchment according to Ministry of Agriculture, Fisheries and Food guidelines. This resulted in significant reductions in SRP concentrations in 2000 compared with 1997.  相似文献   

15.
Predicting nitrate leaching under potato crops using transfer functions   总被引:1,自引:0,他引:1  
Nitrate leaching is a major issue in many cultivated soils. Models that predict the major processes involved at the field scale could be used to test and improve management practices. This study aims to evaluate a simple transfer function approach to predict nitrate leaching in sandy soils. A convective lognormal transfer (CLT) function is convoluted with functional equations simulating N mineralization, plant N uptake, N fertilizer dissolution, and nitrification at the soil surface to predict solute concentrations under potato (Solanum tuberosum L.) and barley (Hordeum vulgare L.) fields as a function of drainage water. Using this approach, nitrate flux concentrations measured in drainable lysimeters (1-m soil depth) were reasonably predicted from 29 Apr. 1996 to 3 Dec. 1996. With average application rates of 16.9 g m(-2) of N fertilizer in potato crops, mean nitrate-leaching losses measured under potato were 8.5 g N m(-2). Tuber N uptake averaged 9.7 g N m(-2) and soil mineral N at start (spring) and end (fall) of N mass balance averaged 1.7 and 4.5 g N m(-2), respectively. Soil N mineralization was estimated by difference (4.3 g N m(-2) on average) and was small compared with N fertilization. Small nitrate flux concentrations at the beginning of the cropping season (May) resulted mainly from initial soil nitrate concentrations. Measured and predicted nitrate flux concentrations significantly increased at mid-season (July-August) following important drainage events coupled with complete dissolution and nitrification of N fertilizers, and declining N uptake by potato plants. Decreases in nitrate concentrations before the end of year (November-December) underlined the predominant effect of N fertilizers applied for the most part at planting acting as a pulse input of solute.  相似文献   

16.
This study estimated the potential effects of pesticide drift on terrestrial ecosystems outside target areas, for the Dutch situation. A series of field trials was conducted to estimate the effects of drift on different species groups at different distances from a treated plot for different categories of pesticide: herbicides, fungicides and insecticides. Measurements of the pesticide drift deposition resulting from standard agricultural practice were used to model deposition outside the treated area. These data were then combined with national statistics on cropland and pesticide use to assess the ecological effects of pesticide drift for the Netherlands as a whole. Three scenarios were considered: the recent past (1998), the present (2005) and an optimised scenario based on 'best available practice' (2010). In the recent past the impact of herbicide drift on sensitive life stages non-target vascular plants is estimated to have exceeded the 50% effect level on 59% of adjacent linear landscape elements such as ditch banks and hedgerows. For the impact of insecticides and fungicides on non-target insects and fungi this 50% effect figure was 29% and 28% of linear elements, respectively. In the present situation, with (narrow) unsprayed buffer zones and other measures in place, these percentages are down to 41% for herbicides, 21% for insecticides and 14% for fungicides. In the optimised scenario, with a greater buffer width of 2.25m for potatoes (compared to 1.50m in 2005) and 1m for other crops (compared to 0.25 and 0.5m in 2005) and 'best available practice', these percentages can be cut to zero. In natural areas located within farming regions the 10% effect level can be reduced from 31% of such areas (1998) to 0% under conditions of 'best available practice'.  相似文献   

17.
Air pollution has become one of the main environmental concerns in China since the 1980s due to China's rapid economic growth and resultant pollution. However, it is difficult to directly evaluate the anthropogenic contribution to air pollution in China. The 2008 Olympic Games in Beijing provided a unique opportunity for testing the contribution of anthropogenic pollution because of the clean-up controls on air quality in Beijing enforced over the period of the Games. In this case study, we monitored the concentrations of major air pollutants before, during, and after the Olympics at a suburban site in Beijing. Atmospheric concentrations of PM10, PM2.5, NH3, NO2, SO2, and the particulate ions NH4+, NO3-, SO4(2-) Ca2+, Mg2+, and K+ all decreased during the Olympic period because of strict emission controls, compared with the same period from 2005 to 2007. For example, the average PM10 concentration (61 microg m(-3)) during the Olympics was only 37% of that (166 microg m(-3)) in the same month (August) from 2005 to 2007. However, just 1 mo and 1 yr after the Games had ended, mean concentrations of these pollutants had increased significantly again. This rapid "recovery' of air pollutant concentrations after the Olympics suggests that China needs to implement long-lasting decreases in its air pollution in Beijing and other major cities.  相似文献   

18.
From 1974 to 1984, 543 Mg ha(-1) of biosolids were applied to portions of a land-reclamation site in Fulton County, IL. Soil organic C increased to 5.1% then decreased significantly (p < 0.01) to 3.8% following cessation of biosolids applications (1985-1997). Metal concentrations in amended soils (1995-1997) were not significantly different (p > 0.05) (Ni and Zn) or were significantly lower (p < 0.05) (6.4% for Cd and 8.4% for Cu) than concentrations from 1985-1987. For the same biosolids-amended fields, metal concentrations in corn (Zea mays L.) either remained the same (p > 0.05, grain Cu and Zn) or decreased (p < 0.05, grain Cd and Ni, leaf Cd, Cu, Ni, Zn) for plants grown in 1995-1997 compared with plants grown immediately following termination of biosolids applications (1985-1987). Biosolids application increased (p < 0.05) Cd and Zn concentrations in grain compared with unamended fields (0.01 to 0.10 mg kg(-1) for Cd and 23 to 28 mg kg(-1) for Zn) but had no effect (p > 0.05) on grain Ni concentrations. Biosolids reduced (p < 0.05) Cu concentration in grain compared with grain from unamended fields (1.9 to 1.5 mg kg(-1)). Biosolids increased (p < 0.05) Cd, Ni, and Zn concentrations in leaves compared with unamended fields (0.3 to 5.6 mg kg(-1) for Cd, 0.2 to 0.5 mg kg(-1) for Ni, and 32 to 87 mg kg(-1) for Zn), but had no significant effect (p > 0.05) on leaf Cu concentrations. Based on results from this field study, USEPA's Part 503 risk model overpredicted transfer of these metals from biosolids-amended soil to corn.  相似文献   

19.
This paper describes the results of an export coefficient modeling approach to predict total phosphorus (TP) loading in the Frome catchment, Dorset, UK from point and diffuse sources on a seasonal (monthly) basis in 1998 and on an annual basis for 1990-1998. The model predicted an annual TP load of 25 605 kg yr(-1), compared with an observed (measured) value of 23400 kg yr(-1). Monthly loads calculated using the export coefficient model agreed well with monthly observed values except in months of variable discharge, when observed values were low, probably due to infrequent, and therefore unrepresentative, sampling. Comparison between filterable reactive phosphorus (FRP) and TP concentrations observed in the period 1990-1997 showed that trends in FRP could be estimated from trends in TP. A sensitivity analysis (varying individual export coefficients by +/-10%) showed that sewage treatment works (STWs) (3.5%), tilled land (2.7%), meadow-verge-seminatural (1.0%), and mown and grazed turf (0.6%) had the most significant effect (percent difference from base contribution) on model prediction. The model was also used to estimate the effect of phosphorus stripping at STWs in order to comply with a pending change in the European Union wastewater directive. Theoretical reduction of TP from the largest STW in the catchment gave a predicted reduction in TP loading of 2174 kg yr(-1). This illustrates the value of this seasonal export coefficient model as a practical management tool.  相似文献   

20.
Determining long-term (decadal) deep drainage rate using multiple tracers   总被引:1,自引:0,他引:1  
The deep drainage rate is a critical hydrological parameter in understanding contamination mechanisms of soil and groundwater. Little research has been conducted on the temporal variations in deep drainage rate during the last century. The objective of this study was to determine the long-term deep drainage rate on a cultivated loamy soil in the Canadian Prairies. Three tracers were used: KCl applied in 1971, fallout tritium in 1963, and NO3* released during the initial cultivation of the field (1923). Two soil cores to a depth of 3.6 m were taken along a flat portion of the field, and soil Cl(-), 3H, and NO3* concentrations were measured as a function of depth. An additional four cores were taken for soil water content measurements between 2000 and 2003. Distinct peaks in the depth distribution of these three tracers were located at 1.27 m for Cl(-), 1.31 m for 3H, and 1.52 m for NO3*, 32, 40, and 80 yr after the application of Cl(-), 3H, and NO3*, respectively. The average deep drainage rates, calculated as the product of the estimated tracer velocity and volumetric soil water content below the active root zone, were 2.0 mm yr(-1) from the Cl(-) tracer, 2.2 mm yr(-1) from 3H, and 2.5 mm yr(-1) from the NO3* tracer. Therefore, there was little temporal variability in the groundwater recharge over the eight decades that the field has been cultivated. The recharge rates are less than 1% of the mean annual precipitation (333 mm).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号