首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Because organic sorption in soil may never reach equilibrium, a thin-disc flow nonequilibrium method may be helpful in understanding herbicide-soil interactions. This research was conducted to (i) determine the influence of incubation time on imazaquin [2-(4,5-dihydro-4-methyl-4-(1-methylethyl)-5-oxo-1H-imidazol-2-yl)-3-quinolinecarboxylic acid] desorption from soil, (ii) examine the influence of solution flow velocities on desorption, and (iii) elucidate the most appropriate kinetic model to describe imazaquin leaching. Soil at 7.5% moisture w/w was treated with imazaquin and incubated for 24, 72, and 168 h. Treated soil was sealed in an in-line filter apparatus and rinsed with 5.0 mM CaCl2 at 0.33, 0.67, or 1.0 mL min(-1). Effluent was collected as 1.0-mL fractions for a total of 50 mL. Flow was stopped for 24 h. When flow resumed, fractions were collected for an additional 15 mL. After the initial desorption, 79% of the imazaquin incubated for 24 h was leached. Increasing incubation time beyond 24 h reduced imazaquin leaching. After both desorption events, 13% of the initially applied imazaquin remained in the soil incubated for 168 h, compared with 7% with soil incubated for 24 h. Elovich and Freundlich kinetics accounted for 98% of the variance observed in the imazaquin desorption curves. First-order and diffusion kinetics accounted for 91% of the variance. Incubating soil for 72 h before desorption reduced the rate of imazaquin desorption by approximately 12%, compared with the 24-h incubation treatment. Imazaquin desorption was not affected by wash solution flow rate. These data suggest that the kinetics of desorption in prolonged desorption events are limited by transport phenomena (i.e., particle and film diffusion).  相似文献   

2.
Nonlinear isotherm behavior has been reported for the sorption of hydrophobic organic compounds (HOCs) in soil organic matter (SOM), but the exact mechanisms are unknown. Our objective was to provide insight into the sorption mechanism of HOCs in SOM by studying the sorption-desorption processes of naphthalene in a mineral soil, its humic fractions, and lignin. Additionally, humin and lignin were used for studying the effects of temperature and cosolvent on HOC sorption. All isotherms were nonlinear. The humin and lignin isotherms became more linear at elevated temperatures and with the addition of methanol indicating a condensed to expanded structural phase transition. Isotherm nonlinearity and hysteresis increased in the following order: soil humic acid (HA) < soil < soil humin. Of the samples, aliphatic-rich humin exhibited the largest degree of nonlinearity and had the highest sorption capacity for naphthalene. High nonlinearity and hysteresis in humin were most likely caused by its condensed structure. A novel aliphatic, amorphous condensed conformation is proposed. This conformation can account for both high sorption capacities and increased nonlinearity observed for aliphatic-rich samples and can explain many sorption disparities discussed in the literature. This study clearly illustrates the importance of both aliphatic and aromatic moieties for HOC sorption in SOM.  相似文献   

3.
Sorption and desorption kinetics are essential components for modeling the movement and retention of applied agricultural chemicals in soils and the fraction of chemicals susceptible to runoff. In this study, we investigated the retention characteristics of sugarcane (Saccharum spp. hybrid) mulch residue for atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) based on studies of sorption-desorption kinetics. A sorption kinetic batch method was used to quantify retention of the mulch residue for a wide range of atrazine concentrations and reaction times. Desorption was performed following 504 h of sorption using successive dilutions, followed by methanol extraction. Atrazine retention by the mulch residue was well described using a linear model where the partitioning coefficient (K(d)) increased with reaction time from 10.40 to 23.4 cm3 g(-1) after 2 and 504 h, respectively. Values for mulch residue K(d) were an order of magnitude higher than those found for Commerce silt loam (fine-silty, mixed, superactive, nonacid, thermic Fluvaquentic Endoaquepts) where the sugarcane crop was grown. A kinetic multireaction model was successful in describing sorption behavior with reaction time. The model was equally successful in describing observed hysteretic atrazine behavior during desorption for all input concentrations. The model was concentration independent where one set of model parameters, which was derived from all batch results, was valid for the entire atrazine concentration range. Average atrazine recovery following six successive desorption steps were 63.67 +/- 4.38% of the amount adsorbed. Moreover, a hysteresis coefficient based on the difference in the area between sorption and desorption isotherms was capable of quantifying hysteresis of desorption isotherms.  相似文献   

4.
The sorption and desorption of cadmium and zinc on zeolite 4A, zeolite 13X and bentonite has been studied using batch sorption studies. Parameters such as equilibrium time, effect of pH and sorbent dose were studied. The sorbents exhibited good sorption potential for cadmium and zinc with a peak value at pH 6.0 and 6.5, respectively. The sorption followed the Freundlich sorption model. More than 70% sorption occurred within 20 min and equilibrium was attained at around 90 min for the three sorbents. The metals sorption by zeolite 4A was higher than that by zeolite 13X and bentonite. The desorption studies were carried out using NaCl solution and the effect of NaCl concentration on desorption was also studied. Maximum desorption of 76% for cadmium and 80% for zinc occurred with 10% NaCl.  相似文献   

5.
Avermectins are widely used to treat livestock for parasite infections. Ivermectin, which belongs to the group of avermectins, is particularly hazardous to the environment, especially to crustaceans and to soil-dwelling organisms. Sorption is one of the key factors controlling transport and bioavailability. Therefore, batch studies have been conducted to characterize the sorption and desorption behavior of ivermectin in three European soils (Madrid, York, and artificial soil). The solid-water distribution coefficient (K(d)) for ivermectin sorption to the tested soils were between 57 and 396 L kg(-1) (determined at 0.1 microg g(-1)), while the organic carbon-normalized sorption coefficients (K(oc)) ranged from 4.00 x 10(3) to 2.58 x 10(4) L kg(-1). The Freundlich sorption coefficient (K(F)) was 396 (after 48 h) for the artificial soil over a concentration range of 0.1 to 50 microg g(-1), with regression constants indicating a concentration-dependent sorption. The obtained data and data in the literature are inconclusive with regard to whether hydrophobic partitioning or more specific interactions are involved in sorption of avermectins. For abamectin, hydrophobic partitioning seems to be one of the dominant types of binding, while hydrophobicity is less important for ivermectin, which is probably due to the lower lipophilicity of the molecule. Furthermore, the presence of cations such as Ca(2+) leads to decreasing sorption. Thus, it is presumed that ivermectin binds to soil by formation of complexes with immobile, inorganic soil matter. In contrast to abamectin, hysteresis could be excluded for ivermectin in the studied soils for the evaluation of sorption and desorption. The sorption mechanism is highly dependent on physicochemical properties of the avermectin.  相似文献   

6.
Polyacrylamide (PAM) treatment of irrigation water is a growing conservation technology in irrigated agriculture in recent years. There is a concern regarding the environmental impact of PAM after its application. The effects of anionic PAM on the sorption characteristics of four widely used herbicides (metolachlor, atrazine, 2,4-D, and picloram) on two natural soils were assessed in batch equilibrium experiments. Results showed that PAM treatment kinetically reduced the sorption rate of all herbicides, possibly due to the slower diffusion of herbicide molecules into interior sorption sites of soil particles that were covered and/or cemented together by PAM. The equilibrium sorption and desorption amounts of nonionic herbicides (metolachlor and atrazine) were essentially unaffected by anionic PAM, even under a high PAM application rate, while the sorption amounts of anionic herbicides (2,4-D and picloram) were slightly decreased and their desorption amounts increased little. The impact mechanisms of PAM were related to the molecular characteristics of PAM and herbicides. The negative effects of PAM on the sorption of anionic herbicides are possibly caused by the enhancement of electrostatic repulsion by presorbed anionic PAM and competition for sorption sites. However, steric hindrance of the large PAM molecule weakens its influence on herbicide sorption on interior sorption sites of soil particles, which probably leads to the small interference on herbicide sorption, even under high application rates.  相似文献   

7.
Mobility of dissolved organic matter (DOM) strongly affects the export of nitrogen (N) and phosphorus (P) from soils to surface waters. To study the sorption and mobility of dissolved organic C and P (DOC, DOP) in soil, the pH-dependent sorption of DOM to samples from Ap, EB, and Bt horizons from a Danish agricultural Humic Hapludult was investigated and a kinetic model applicable in field-scale models tested. Sorption experiments of 1 to 72 h duration were conducted at two pH levels (pH 5.0 and 7.0) and six initial DOC concentrations (0-4.7 mmol L(-1)). Most sorption/desorption occurred during the first few hours. Dissolved organic carbon and DOP sorption decreased strongly with increased pH and desorption dominated at pH 7, especially for DOC. Due to fractionation during DOM sorption/desorption at DOC concentrations up to 2 mmol L(-1), the solution fraction of DOM was enriched in P indicating preferred leaching of DOP. The kinetics of sorption was expressed as a function of how far the solution DOC or DOP concentrations deviate from "equilibrium." The model was able to simulate the kinetics of DOC and DOP sorption/desorption at all concentrations investigated and at both pH levels making it useful for incorporation in field-scale models for quantifying DOC and DOP dynamics.  相似文献   

8.
Interactions of carbamazepine in soil: effects of dissolved organic matter   总被引:2,自引:0,他引:2  
Pharmaceutical compounds (PCs) and dissolved organic matter (DOM) are co-introduced into soils by irrigation with reclaimed wastewater. We targeted carbamazepine (CBZ) as a model compound to study the tertiary interactions between relatively polar PCs, DOM, and soil. Sorption-desorption behavior of CBZ was studied with bulk clay soil and the corresponding clay size fraction in the following systems: (i) without DOM, (ii) co-introduced with DOM, and (iii) pre-adsorption of DOM before CBZ introduction. Sorption of the DOM to both sorbents was irreversible and exhibited pronounced sorption-desorption hysteresis. Carbamazepine exhibited higher sorption affinity and nonlinearity, and a higher degree of desorption hysteresis with the bulk soil than the corresponding clay size fraction. This was probably due to specific interactions with polar soil organic matter fractions that are more common in the bulk soil. Co-introduction of CBZ and DOM to the soil did not significantly affect the sorption behavior of CBZ; however, following pre-adsorption of DOM by the bulk soil, an increase in sorption affinity and decrease in sorption linearity were observed. In this latter treatment, desorption hysteresis of CBZ was significantly increased for both sorbents. We hypothesize that this was due to either strong chemical interactions of CBZ with the adsorbed DOM or physical encapsulation of CBZ in DOM-clay complexes. Based on this study, we suggest that DOM facilitates stronger interactions of polar PCs with the solid surface. This mechanism can reduce PC desorption ability in soils.  相似文献   

9.
Flow through artificial macropores may occur as a water film along the macropore walls (film flow) or as moving water segments separated by air bubbles (pulse flow). To investigate the effect of macropore flow pattern (i.e., film and pulse flow) on the interaction of solutes with macropore walls, we studied orthophosphate (P) transport and sorption in artificial macropores. The experimental setup consisted of a column (height = 20 cm, diameter = 20 cm) homogenously packed with glass beads and fitted at outflow with a vertical artificial macropore placed below the column. The artificial macropore consisted of ceramic tubes (3 or 8 mm i.d.; 31.5 cm long) coated on the inside with iron oxide serving as phosphate sorbents. An orthophosphate solution containing 0.04 mg P L(-1) was applied at a rate of 9 to 12 mm h(-1) to the column, eventually causing macropore flow. In the 8-mm-i.d. tubes only film flow occurred. Pulse flow was dominating in the 3-mm-i.d. tubes. Generally, the flow patterns were reproducible and seldom did pulse flow replaced film flow or vice versa. During film flow, a significantly larger decrease in macropore P concentration per tube was observed relative to that with pulse flow events. However, pulse and film flow lead to almost the same amounts of P sorbed per unit surface area when exposed to the same solute P concentration. Comparison with P sorption capacity experiments indicated that the sorption rate, rather than the sorption capacity, controls the amount of sorbed P during macropore flow in the studied system.  相似文献   

10.
This study examines the effect of soil organic matter heterogeneity on equilibrium sorption and desorption of phenanthrene, naphthalene, 1,3,5-trichlorobenzene (1,3,5-TCB), and 1,2-dichlorobenzene (1,2-DCB) by soils and sediments. Two estuary sediments, a Pahokee peat (PP; Euic, hyperthermic Lithic Haplosaprist), and two subsamples (base- and acid-treated peat [TP] and acid-treated peat [FP]) of the peat were used as the sorbents. The contents of black carbon particles were quantified with a chemical extraction method. Petrographical examinations revealed the presence of the condensed soil and sediment organic matter (SOM) in Pahokee peat. The Freundlich isotherm model in two different forms was used to fit both sorption and desorption data. The results show that the sorption and desorption isotherms are generally nonlinear and that the apparent sorption-desorption hysteresis is present for phenanthrene and TCB. Detailed analysis of sorption data for the tested sorbent-sorbate systems indicates that black carbon is probably responsible for sorption isotherm nonlinearity for the two sediments, whereas the humic substances and kerogen may play the dominant role in nonlinear sorption by the peat. This investigation suggests that the microporosity of SOM is important for the hydrophobic organic contaminant (HOC) sorption capacity on the peat.  相似文献   

11.
Removal of uranium(VI) from contaminated sediments by surfactants   总被引:1,自引:0,他引:1  
Uranium(VI) sorption onto a soil collected at the Melton Branch Watershed (Oak Ridge National Laboratory, TN) is strongly influenced by the pH of the soil solution and, to a lesser extent, by the presence of calcium, suggesting specific chemical interactions between U(VI) and the soil matrix. Batch experiments designed to evaluate factors controlling desorption indicate that two anionic surfactants, AOK and T77, at concentrations ranging from 60 to 200 mM, are most suitable for U(VI) removal from acidic soils such as the Oak Ridge sediment. These surfactants are very efficient solubilizing agents at low uranium concentrations: ca. 100% U(VI) removal for [U(VI)]o,sorbed = 10(-6) mol kg-1. At greater uranium concentrations (e.g., [U(VI)]o,sorbed = ca. 10(-5) mol kg-1), the desorption efficiency of the surfactant solutions increases with an increase in surfactant concentration and reaches a plateau of 75 to 80% of the U(VI) initially sorbed. The most probable mechanisms responsible for U(VI) desorption include cation exchange in the electric double layer surrounding the micelles and, to a lesser extent, dissolution of the soil matrix. Limitations associated with the surfactant treatment include loss of surfactants onto the soil (sorption) and greater affinity between U(VI) and the soil matrix at large soil to liquid ratios. Parallel experiments with H2SO4 and carbonate-bicarbonate (CB) solutions indicate that these more conventional methods suffer from strong matrix dissolution with the acid and reduced desorption efficiency with CB due to the buffering capacity of the acidic soil.  相似文献   

12.
赵劼  张诚 《四川环境》2012,(1):28-33
采用单变量法研究了人工沸石对Cr3+的最佳吸附粒径、最佳吸附反应条件和吸附动力学。结果表明,在Cr3+初始浓度为20mg/L、沸石投放量为10g/L时,最佳粒径为80目;在Cr3+初始浓度为50mg/L、沸石投放量为10g/L时,最佳振荡时间为70min;Cr3+浓度在20~70mg/L范围内时,人工沸石饱和吸附量随Cr3+的初始浓度增加而增加,二者近似于指数关系;人工沸石吸附Cr3+的过程主要为化学吸附,受表面扩散和颗粒内扩散过程控制。脱附实验表明洗脱性价比最佳的洗脱剂(NaCl)浓度为10g/L,洗脱微振荡-静置沉降最佳时间分布为:微振荡10min,静置沉降50min,洗脱两次后吸附效率下降25%~30%。  相似文献   

13.
Burning of crop residues is a common agricultural practice that incorporates the resulting particulate matter (ash) of high adsorptivity into soils. To investigate the effect of ash on the biodegradation of pesticides in soils, we measured the sorption, desorption, and biodegradation of benzonitrile in a silt loam in the presence and absence of an ash resulting from burning of wheat (Triticum aestivum L.) residue. Biodegradation experiments were conducted by inoculating sorbent slurries with a pure culture of benzonitrile-degrading bacteria (Nocardia sp.). Both liquid- and sorbed-phase benzonitrile concentrations were quantified over time. The ash was approximately 2000 times more effective per unit mass than the soil in sorbing benzonitrile. Amendment of the soil with 1% ash (by weight) resulted in a 10-fold increase in sorption. Sorption of benzonitrile by the ash significantly decreased the solution-phase concentration in the slurries of ash and ash-amended soil. Desorption of benzonitrile from the ash required approximately 60 min to complete, whereas approximately 20 min were required for desorption from the soil. Benzonitrile in the extracts of various sorbents and soil slurry was completely degraded within 500 min. However, the degradation was substantially reduced in the presence of the ash. At 2000 min, only 20% of benzonitrile in ash slurry and only 44% in ash-amended soil slurry were degraded. An acclimation period of approximately 100 min was observed in extracts and slurries containing the ash. Substantial reduction in the biodegradation of benzonitrile in the presence of wheat ash was apparently due to sorption of benzonitrile by the ash, slow desorption from the ash, and the increased acclimation period. Our results suggest that the presence of crop-residue-derived ash may increase the persistence of pesticides in agricultural soils.  相似文献   

14.
Polymer application to soil is a growing practice to improve soil physical properties and reduce soil erosion. Polymer addition can potentially influence herbicide and pesticide sorption in soil. The one-point distribution coefficient Kd values of two herbicides in the absence and presence of each of 10 polymers (7 polyacrylamides and 3 polysaccharides) were determined by the batch equilibrium method. The results showed that nonionic napropamide [2-(alpha-naphthoxy)-N,N-diethyl propionamide] sorption was essentially unaffected by the presence of any of the polymers. The influence of polymers on anionic picloram (4-amino-3,5,6-trichloropicolinic acid) sorption depends on the charge characteristics of polymers and salt concentrations in the solution. Electrostatic interaction and competition for sorption sites are two primary underlying mechanisms for the polymer influence. At low salt concentration, the increased picloram sorption in the presence of both cationic and anionic polymers was attributed to different electrostatic interactions and polymer partitioning between soil and solution phases. At high salt levels, the presence of polymers had either no influence or a slightly negative influence on the picloram sorption, which was attributed to competition for sorption sites. In field conditions, it is more likely that polymers have no or a slightly negative influence on herbicide sorption due to the presence of salts.  相似文献   

15.
Batch sorption and column breakthrough studies were conducted to investigate the potential of layered double hydroxides (LDHs) to remove bacteriophage MS2 from contaminated waters. All four of the LDHs evaluated in this study had very high retention capacities for MS2. Sorption results showed that MS2 could be completely removed from 5.2 x 10(2) plaque-forming units (pfu)/mL solution by Mg-Al LDH 2 (i.e., 2:1 Mg to Al ratio LDH), with the highest sorption capacity observed in this study of 1.51 x 10(10) pfu/g. Attachment of MS2 to LDHs was a rapid process and reached quasi-equilibrium after a 1-h reaction time. Within the pH range studied (pH 4-9), Mg-Al LDH 2 showed high sorption potential for MS2 at all pH values but sorption decreased slightly with increasing solution pH. Background solution anions influenced virus sorption, with SO4(2-) and HPO4(2-) decreasing sorption significantly whereas the presence of NO3- had little effect on the attachment of MS2 to Mg-Al LDH 2. The addition of another virus (phiX174) only caused a slight decrease in the retention of MS2 by Mg-Al LDH 2, suggesting that there was insignificant competitive sorption between MS2 and phiX174 on LDH surfaces. Results from column experiments indicate that there was no MS2 breakthrough from columns packed with Mg-Al LDH 2-coated sand, suggesting complete MS2 retention at the virus concentration tested. The high mass recovery by beef extract solution revealed that the removal of viruses by the LDH was due to sorption of MS2 to LDH surfaces, rather than inactivation.  相似文献   

16.
Nonequilibrium sorption plays an active role in the transport of organic contaminants in soil. We applied a two-stage, one-rate model (2S1R) and a new, nonlinear variant (2S1RN) of this model to examine the effects of wastewater irrigation on the sorption kinetics of atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine) in soil. The models were applied to previously published sorption-desorption data sets, which showed pronounced deviations between sorption curves and desorption curves (sorption-desorption hysteresis). Moreover, the slopes of the desorption curves decreased with decreasing concentration. Different treatments had been used, and two experimental time steps (2 and 14 d) were used. Treatments considered were lipid removal, fulvic and humic acid removal, and untreated soil. The 2S1R model was unable to reproduce the observed type of hysteresis, but the 2S1RN model, which assumes that the sorption-desorption process follows a power function relationship, was able to reproduce the observed type of hysteresis. Visually, applying the new model improved the model fits in all test cases. Statistically, as tested by an extra sum of squares analysis, the new model performed significantly better in 50% of all test cases. According to an example simulation, the choice of the sorption model has a considerable impact on the prediction of atrazine transport in soil.  相似文献   

17.
Mesotrione is a carotenoid biosynthesis-inhibiting herbicide labeled for pre-emergence and postemergence weed control in corn production. Understanding the factors that influence the dissipation of mesotrione in soil and in the plant-available water (PAW) is important for the environmental fate assessment and optimal weed management practices. The present research investigated the role of soil properties and microbial activities on the interrelated sorption and degradation processes of mesotrione in four soils by direct measurements of PAW. We found that mesotrione bound to the soils time dependently, with approximately 14 d to reach equilibrium. The 24-h batch-slurry equilibrium experiments provided the sorption partition coefficient ranging from 0.26 to 3.53 L kg(-1), depending on soil organic carbon and pH. The dissipation of mesotrione in the soil-bound phase was primarily attributed to desorption to the PAW. Degradation in the PAW was rapid and primarily dependent on microbial actions, with half-degradation time (DT(50)) <3 d in all four soils tested. The rapid degradation in the PAW became rate limited by sorption as more available molecules were depleted in the soil pore water, resulting in a more slowed overall process for the total soil-water system (DT(50) <26 d). The dissipation of mesotrione in the PAW was due to microbial metabolism and time-dependent sorption to the soils. A coupled kinetics model calibrated with the data from the laboratory centrifugation technique provided an effective approach to investigate the interrelated processes of sorption and degradation in realistic soil moisture conditions.  相似文献   

18.
Land application of wastewater in the northern-tier United States during winter months has been suggested as a means to reduce cost of building storage lagoons. A study was initiated in 1996 to assess land application of potato-processing wastewater on a 120-ha field at Park Rapids, MN. One objective of this study was to evaluate the effects of soil P levels and temperature on P leaching in soil columns. In this paper, we report the P sorption, desorption, and leaching characteristics of a high-P (>200 mg kg(-1)) and a low-P (<25 mg kg(-1)) surface soil from the wastewater irrigation site. The leaching experiment was done with wastewater at 4 +/- 2 or 10 +/- 2 degrees C. The high-P soil resulted in an equilibrium P concentration of 8.0 mg L(-1) compared with 0.14 mg L(-1) for the low-P soil. When low-P wastewater was applied to the high-P soil, the soil acted as a P source, and the total phosphorus (TP) concentration in the leachate was 3.5 times higher than the input TP concentration (C0). When high-P wastewater was applied to the high-P soil, the soil acted as a P sink retarding the TP concentration in the leachate by 80%. Phosphorus desorption was higher at 10 degrees C compared with 4 degrees C. The results showed that depending on P levels of the soil and the wastewater, reduction or increase in leachate P will occur below the surface soil. However, further mobility of this P under field conditions will depend on the volume and rate of percolating water as well as the sorption-desorption characteristics of the subsoil.  相似文献   

19.
含油污泥薄层干燥特性及动力学模型分析   总被引:2,自引:0,他引:2  
采用薄层干燥方式进行含油污泥热干燥的研究,引入薄层干燥模型对含油污泥干燥过程进行模拟,结果表明,Midilli模型比其他模型更适合含油污泥的薄层干燥分析。应用Fick扩散模型,得到80~140℃条件下含油污泥干燥的有效扩散系数变化范围为1.08×10-10~4.22×10-10 m2/s,其值随着温度升高而增大。根据Arrhenius经验公式建立温度与扩散系数的关系,得到含油污泥干燥时水分扩散的活化能为27.26kJ/mol。  相似文献   

20.
In the present work, the leaves of Azadirachta indica (locally known as the Neem tree) in the form of a powder were investigated as a biosorbent of dyes taking aqueous Congo Red solution as a model system. The sorbent was made from mature Neem leaves and was investigated in a batch reactor under variable system parameters such as concentration of the aqueous dye solution, agitation time, adsorbent amount, pH, and temperature. An amount of 0.6 g of the Neem leaf powder (NLP) per litre could remove 52.0-99.0% of the dye from an aqueous solution of concentration 2.87 x 10(-2) mmol l(-1) with the agitation time increasing from 60 to 300 min. The interactions were tested with respect to both pseudo first-order and second-order reaction kinetics; the latter was found to be more suitable. Considerable intra-particle diffusion was found to occur simultaneously. The sorption process was in conformity with Langmuir and Freundlich isotherms yielding values of the adsorption coefficients in the following ranges: Freundlich n: 0.12-0.19, Kf: 0.1039-0.2648 L g(-1); Langmuir qm: 41.24-128.26 g kg(-1), b: 443.3-1898.0 l mmol(-1), which supported favourable adsorption. The Langmuir monolayer capacity (qm) was high and the values of the coefficient b indicated the equilibrium, dye + NLP = dye...NLP being shifted overwhelmingly towards adsorption. Thermodynamically, the sorption process was exothermic with an average heat of adsorption of -12.75 kJ mol(-1). The spontaneity of the sorption process was also confirmed by the favourable values of Gibbs energy (mean values: -1.09 to -1.81 kJ mol(-1)) and entropy of adsorption (range: -18.97 to -56.32 J mol(-1)K(-1)). The results point to the effectiveness of the Neem leaf powder as a biosorbent for removing dyes like Congo Red from water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号