共查询到20条相似文献,搜索用时 15 毫秒
1.
Chemical immobilization of lead, zinc, and cadmium in smelter-contaminated soils using biosolids and rock phosphate 总被引:8,自引:0,他引:8
Chemical immobilization, an in situ remediation method where inexpensive chemicals are used to reduce contaminant solubility in contaminated soil, has gained attention. We investigated the effectiveness of lime-stabilized biosolid (LSB), N-Viro Soil (NV), rock phosphate (RP), and anaerobic biosolid (AB) to reduce extractability and plant and gastrointestinal (GI) bioavailability in three Cd-, Pb-, and Zn-contaminated soils from smelter sites. Treated (100 g kg(-1) soil) and control soils were incubated at 27 degrees C and -0.033 MPa (0.33 bar) water content for 90 d. The effect of soil treatment on metal extractability was evaluated by sequential extraction, on phytoavailability by a lettuce bioassay (Lactuca sativa L.), on human GI availability of Pb from soil ingestion by the Physiologically Based Extraction Test. The largest reductions in metal extractability and phytoavailability were from alkaline organic treatments (LSB and NV). Phytotoxic Zn [1188 mg Zn kg(-1) extracted with 0.5 M Ca(NO3)2] in Blackwell soil (disturbed soil) was reduced by LSB, NV, and RP to 166, 25, and 784 mg Zn kg(-1), respectively. Rock phosphate was the only treatment that reduced GI-available Pb in both gastric and intestinal solutions, 23 and 92%, respectively. Alkaline organic treatments (LSB, NV) decreases Cd transmission through the food chain pathway, whereas rock phosphate decreases risk from exposure to Pb via the soil ingestion pathway. Alkaline organic treatments can reduce human exposure to Cd and Pb by reducing Zn phytotoxicity and revegetation of contaminated sites. 相似文献
2.
Ganjegunte GK Vance GF Gregory RW Urynowicz MA Surdam RC 《Journal of environmental quality》2011,40(1):57-66
Management of saline-sodic water from the coalbed natural gas (CBNG) industry in the Powder River Basin (PRB) of Wyoming and Montana is a major environmental challenge. Clinoptilolie zeolites mined in Nevada, California, and New Mexico were evaluated for their potential to remove sodium (Na+) from CBNG waters. Based on the exchangeable cation composition, naturally occurring calcium (Ca2+)-rich zeolites from New Mexico were selected for further evaluation. Batch adsorption experiments were conducted to evaluate the potential of the Ca(2+)-rich natural clinoptilolites to remove Na+ from saline-sodic CBNG waters. Batch adsorption experiments indicated that Na+ adsorption capacity ofclinoptilolite ranged from 4.3 (4 x 6 mesh) to 7.98 g kg(-1) (14 x 40 mesh). Among the different adsorption isotherms investigated, the Freundlich Model fitted the data best for smaller-sized (6 x 8, 6 x 14, and 14 x 40 mesh) zeolites. Passing the CBNG water through Ca(2+)-rich zeolite columns reduced the salt content (electrical conductivity [EC]) by 72% with a concurrent reduction in sodium adsorption 10 mmol 1/2 L(-1/2). Zeolite technology appears to be an effective water treatment alternative to industrial membrane treatment for removing Na+ from poor-quality CBNG waters. 相似文献
3.
Excavation of sulfidic materials during construction has resulted in acid rock drainage (ARD) problems throughout Virginia. The most extensive documented uncontrolled disturbance at a single location is Stafford Regional Airport (SRAP) in Stafford, Virginia. Beginning in 1998, over 150 ha of sulfidic Coastal Plain sediments were disturbed, including steeply sloping cut surfaces and spoils placed into fills. Acid sulfate soils developed, and ARD generated on-site degraded metal and concrete structures and heavily damaged water quality with effects noted over 1 km downstream. The site was not recognized as sulfidic until 2001 when surface soil sampling revealed pH values ranging from 1.9 to 5.3 and peroxide potential acidity (PPA) values ranging from 1 to 42 Mg CaCO(3) per 1000 Mg material. In February 2002 a water quality program was established in and around the site to monitor baseline pH, EC, NO(3)-N, NH(4)-N, PO(4)-P, Fe, Al, Mn, and SO(4)-S, and initial pH values as low as 2.9 were noted in on-site receiving streams. In the spring and fall of 2002, the site was treated with variable rates of lime-stabilized biosolids, straw-mulch, and acid- and salt-tolerant legumes and grasses. By October 2002, the site was fully revegetated (> or = 90% living cover) with the exception of a few highly acidic outcrops and seepage areas. Surface soil sampling in 2003, 2004, and 2006 revealed pH values typically > 6.0. Water quality responded quickly to treatment, although short-term NH(4)(+) release occurred. Despite heavy loadings, no significant surface water P losses were observed. 相似文献
4.
A four-step novel sequential extraction procedure (SEP) was developed to assess Hg fractionation and mobility in three highly contaminated soils from chlor-alkali plants (CAPs). The SEP was validated using a certified reference material (CRM) and pure Hg compounds. Total, volatile, and methyl Hg concentrations were also determined using single extractions. Mercury was separated into four fractions defined as water-soluble (F1), exchangeable (F2) (0.5 M NH4Ac-EDTA and 1 M CaCl2 were tested), organic (F3) (successive extractions with 0.2 M NaOH and CH3COOH 4% [v/v]), and residual (F4) (HNO3 + H2SO4 + HClO4). The soil characterization revealed extremely contaminated (295 +/- 18 to 11 500 +/- 500 mg Hg kg(-1)) coarse-grained sandy soils having an alkaline pH (7.9-9.1), high chloride concentrations (5-35 mg kg(-1)), and very low organic carbon content (0.00-18.2 g kg(-1)). Methyl Hg concentrations were low (0.2-19.3 microg kg(-1)) in all soils. Sequential extractions indicated that the majority of the Hg was associated with the residual fraction (F4). In Soils 1 and 3, however, high percentages (88-98%) of the total Hg were present as volatile Hg. Therefore, in these two soils, a high proportion of volatile Hg was present in the residual fraction. The nonresidual fraction (F1 + F2 + F3) was most abundant in Soil 1 (14-42%), suggesting a higher availability of Hg in this soil. The developed and validated SEP was reproducible and efficient for highly contaminated samples. Recovery ranged between 93 and 98% for the CRM and 70 and 130% for the CAP-contaminated soils. 相似文献
5.
McDowell RW Condron LM Mahieu N Brookes PC Poulton PR Sharpley AN 《Journal of environmental quality》2002,31(2):450-456
In many intensive agroecosystems continued inputs of phosphorus (P) over many years can significantly increase soil P concentrations and the risk of P loss to surface waters. For this study we used solid-state 31P nuclear magnetic resonance (NMR) spectroscopy, high-power decoupling with magic angle spinning (HPDec-MAS) NMR, and cross polarization with magic angle spinning (CP-MAS) NMR to determine the chemical nature of potentially mobile P associated with aluminum (Al) and calcium (Ca) in selected arable soils. Three soils with a range of bicarbonate-extractable Olsen P concentrations (40-102 mg P kg(-1)) were obtained from a long-term field experiment on continuous root crops at Rothamsted, UK, established in 1843 (sampled 1958). This soil has a threshold or change point at 59 mg Olsen P kg(-1), above which potentially mobile P (as determined by extraction with water or 0.01 M CaCl2) increases much more per unit increase in Olsen P than below this point. Results showed that CaCl2 and water preferentially extracted Al-P and Ca-P forms, respectively, from the soils. Comparison among the different soils also indicated that potentially mobile P above the threshold was largely present as a combination of soluble and loosely adsorbed (protonated-cross polarized) P forms largely associated with Ca, such as monetite (CaHPO4) and dicalcium phosphate dihydrate (CaHPO4-2H2O), and some Al-associated P as wavellite. The findings of this study demonstrate that solid-state NMR has the potential to provide accurate information on the chemical nature of soil P species and their potential mobility. 相似文献
6.
Destruction of polychlorinated biphenyls (PCBs) in contaminated soils and wastes using circulating fluidized bed combustion (CFBC) technology was studied using a pilot plant and simulated waste material. The results show that the technology is effective and particularly promising for treatment of PCB-containing materials like the toxic sludge from a large contaminated site. Destruction of the toxics in the gas phase appears to be very fast, and over 99.9999% destruction and removal efficiency can be achieved in the temperature range 875-880 degrees C. Heat transfer in the fluidized bed also appears adequate. Toxic residues in treated soil can be reduced to very low levels. Rate-controlling factors of the decontamination process are analyzed, and key issues for determination of the process conditions are discussed. 相似文献
7.
Identification of river water quality using the fuzzy synthetic evaluation approach. 总被引:36,自引:0,他引:36
Proper identification of water quality conditions in a river system based on limited observations is an essential task for meeting the goals of environmental management. Various classification methods have been used for estimating the changing status and usability of surface water in river basins. However, a discrepancy frequently arises from the lack of a clear distinction between each water utilisation mode, the uncertainty in the quality criteria employed and the vagueness or fuzziness embedded in the decision-making output values. Owing to inherent imprecision, difficulties always exist in some conventional methodologies when describing integrated water quality conditions with respect to various chemical constituents, biological aspects, nutrients, and aesthetic qualities. This paper presents a comparative study using three fuzzy synthetic evaluation techniques to assess water quality conditions in comparison to the outputs generated by conventional procedures such as the Water Quality Index (WQI). Based on a set of data collected at seven sampling stations, a case study for the Tseng-Wen River system in Taiwan was used to demonstrate their application potential. The findings clearly indicate that the techniques may successfully harmonise inherent discrepancies and interpret complex conditions. A further, newly developed fuzzy synthetic evaluation approach described in this paper might also be useful for verifying water quality conditions for the Total Maximum Daily Load (TMDL) program and be helpful for constructing an effective water quality management strategy. 相似文献
8.
The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants 总被引:8,自引:0,他引:8
A.J.M. Baker S.P. McGrath C.M.D. Sidoli R.D. Reeves 《Resources, Conservation and Recycling》1994,11(1-4)
The decontamination of soils and wastes polluted with heavy metals presents one of the most intractable problems for soil clean-up. Present technology relies upon metal extraction or immobilization processes, both of which are expensive and which remove all biological activity in the soil during decontamination. They may only be appropriate for small areas of valuable redevelopment land. In this paper the use of metal-accumulating plants is explored for the removal of metals from superficially-contaminated soils such as those resulting from the long-term application to land of metal-contaminated sewage sludges. Green remediation employs plants native to metalliferous soils with a capacity to bioaccumulate metals such as zinc and nickel to concentrations greater than 2% in the aerial plant dry matter (hyperaccumulators). Growing such plants under intensive crop conditions and harvesting the dry matter is proposed as a possible method of metal removal and for ‘polishing’ contaminated agricultural soils down to metal concentrations below statutory limits. Not only are the biological activity and physical structure of soils maintained but the technique is potentially cheap, visually unobtrusive and offers the possibility of biorecovery of metals. The limitations of the process are reviewed and the future requirements for the development of efficient phytoremediators are outlined. 相似文献
9.
Beauchemin S Hesterberg D Chou J Beauchemin M Simard RR Sayers DE 《Journal of environmental quality》2003,32(5):1809-1819
Knowledge of phosphorus (P) species in P-rich soils is useful for assessing P mobility and potential transfer to ground water and surface waters. Soil P was studied using synchrotron X-ray absorption near-edge structure (XANES) spectroscopy (a nondestructive chemical-speciation technique) and sequential chemical fractionation. The objective was to determine the chemical speciation of P in long-term-fertilized, P-rich soils differing in pH, clay, and organic matter contents. Samples of three slightly acidic (pH 5.5-6.2) and two slightly alkaline (pH 7.4-7.6) soils were collected from A or B horizons in two distinct agrosystems in the province of Québec, Canada. The soils contained between 800 and 2100 mg total P kg(-1). Distinct XANES features for Ca-phosphate mineral standards and for standards of adsorbed phosphate made it possible to differentiate these forms of P in the soil samples. The XANES results indicated that phosphate adsorbed on Fe- or Al-oxide minerals was present in all soils, with a higher proportion in acidic than in slightly alkaline samples. Calcium phosphate also occurred in all soils, regardless of pH. In agreement with chemical fractionation results, XANES data showed that Ca-phosphates were the dominant P forms in one acidic (pH 5.5) and in the two slightly alkaline (pH 7.4-7.6) soil samples. X-ray absorption near-edge structure spectroscopy directly identified certain forms of soil P, while chemical fractionation provided indirect supporting data and gave insights on additional forms of P such as organic pools that were not accounted for by the XANES analyses. 相似文献
10.
Denitrification in suburban lawn soils 总被引:1,自引:0,他引:1
Raciti SM Burgin AJ Groffman PM Lewis DN Fahey TJ 《Journal of environmental quality》2011,40(6):1932-1940
There is great uncertainty about the fate of nitrogen (N) added to urban and suburban lawns. We used direct flux and in situ chamber methods to measure N and NO fluxes from lawns instrumented with soil O sensors. We hypothesized that soil O, moisture, and available NO were the most important controls on denitrification and that N and NO fluxes would be high following fertilizer addition and precipitation events. While our results support these hypotheses, the thresholds of soil O, moisture, and NO availability required to see significant N fluxes were greater than expected. Denitrification rates were high in saturated, fertilized soils, but low under all other conditions. Annual denitrification was calculated to be 14.0 ± 3.6 kg N ha yr, with 5% of the growing season accounting for >80% of the annual activity. Denitrification is thus an important means of removing reactive N in residential landscapes, but varies markedly in space, time, and with factors that affect soil saturation (texture, structure, compaction) and NO availability (fertilization). Rates of in situ NO flux were low; however, when recently fertilized soils saturated with water were incubated in the laboratory, we saw extraordinarily high rates of NO production for the first few hours of incubation, followed by rapid NO consumption later in the experiment. These findings indicate a lag time between accelerated NO production and counterbalancing increases in NO consumption; thus, we cannot yet conclude that lawns are an insignificant source of NO in our study area. 相似文献
11.
Three promising phytoextracting perennial weed species [ L. (ox-eye daisy), L. (curly dock), and L. (Canada goldenrod)] were planted in monoculture plots at two polychlorinated biphenyl (PCB)-contaminated sites in southern Ontario and followed over 2 yr to investigate the effects of plant age, contaminant characteristics, and species-specific properties on PCB uptake and accumulation patterns in plant tissues. Results from this study indicate that, for each of these weed species, shoot contaminant concentrations and total biomass are dependent on plant age and life cycle (vegetative and reproductive stages), which affects the total amount of PCBs phytoextracted on a per-plant basis. Even at suboptimal planting densities of 3 to 5 plants m, all three weed species extracted a greater quantity of PCBs per unit area (4800-10,000 μg m) than the known PCB-accumulator L. ssp (cv Howden pumpkins) (1500-2100 μg m) at one of the two sites. Calculated PCB extractions based on theoretical optimal planting densities were significantly higher at both sites and illustrate the potential of these weeds for site remediation. This study also demonstrates that plants may accumulate PCBs along the stem length in a similar manner as plants. 相似文献
12.
Wright CR Amrani M Akbar MA Heaney DJ Vanderwel DS 《Journal of environmental quality》2006,35(3):806-814
Phosphorus losses from agricultural land can cause accelerated eutrophication of surface water bodies. This study evaluated the use of soil test phosphorus (STP) levels to predict dissolved inorganic phosphorus (DIP) concentrations in runoff water from agricultural soils using laboratory rainfall simulation. The objectives of this study were to determine (i) to what extent STP concentrations can be used as a basis to predict P losses from Alberta soils and (ii) how extended rainfall simulation run times affected DIP losses. Soil samples collected from a total of 38 field sites, widely scattered throughout the southern half of Alberta, were subjected to rainfall simulation in the laboratory. The STP concentrations were determined using Miller-Axley, Norwest, Kelowna, Modified Kelowna Mehlich-III, and distilled water extraction methods. Each rainfall simulation event lasted for at least 90 min. Runoff samples were collected in time series for the duration of each simulation, during two distinct runoff intervals: (i) for the first 30 min of continuous runoff (T30) and (ii) for 40 min during runoff equilibrium (Teq). For all the STP extractants and both runoff intervals, the relationship with DIP-flow-weighted mean concentration (FWMC) was linear and highly significant with r2 values ranging from 0.74 to 0.96. However, the slopes of the resulting regression lines were, on average, 1.85 times greater for the T30 runoff interval over those computed for the Teq interval. Thus experimental methodology greatly influenced regression parameters, suggesting that more work was needed to verify these relationships under natural conditions. In addition, with many of the r2 values greater than 0.90 there would be little, if any, benefit derived by including soil properties in regression analysis. 相似文献
13.
Phosphorus speciation in manure-amended alkaline soils 总被引:2,自引:0,他引:2
Two common manure storage practices are stockpiles and lagoons. The manure from stockpiles is applied to soils in solid form, while lagoon manure is applied as a liquid. Soil amendment with manure in any form introduces a significant amount of phosphorus (P) that exists in both organic and inorganic forms. However, little is known about P speciation in manure stored under different conditions, or the subsequent forms when applied to soils. We used solution (31)P nuclear magnetic resonance (NMR) spectroscopy and conventional P fractionation and speciation methods to investigate P forms in dairy manure and liquid lagoon manure, and to study how long-term amendment with these manures influenced surface and subsurface soil P speciation. Our results show that the P forms in solid and lagoon manure are similar. About 30% of the total P was organic, mostly as orthophosphate monoesters. On a dry weight basis, total P was much higher in the solid manure. In the manure-amended soils the total P concentrations of the surface soils were similar, regardless of manure type. Total P in the subsurface soil was greater in the lagoon-manure-amended soil than the solid-manure-amended subsurface soil. However, the fraction of organic P was greater in the subsurface of the solid-manure-amended soil. The NMR results indicate that the majority of organic P in the soils is phytic acid, which is enriched in the surface soils compared with the subsurface soils. These results provide insight into P speciation and dynamics in manure-amended soils that will further increase our understanding on how best to manage manure disposal on soils. 相似文献
14.
This study was conducted to evaluate the relationships among total suspended solids (TSS) and particulate phosphorus (PP) in runoff and selected soil properties. Nine Louisiana soils were subjected to simulated rainfall events, and runoff collected and analyzed for various parameters. A highly significant relationship existed between runoff TSS and runoff turbidity. Both runoff TSS and turbidity were also significantly related to runoff PP, which on average accounted for more than 98% of total P (TP) in the runoff. Runoff TSS was closely and positively related to soil clay content in an exponential fashion (y=0.10e0.01x, R2=0.91, P<0.001) while it was inversely related to soil electrical conductivity (EC) (y=0.02 x(-3.95), R2=0.70, P<0.01). A newly-devised laboratory test, termed "soil suspension turbidity" (SST) which measures turbidity in a 1:200 soil/water suspension, exhibited highly significant linear relationships with runoff TSS (y=0.06x-4.38, R2=0.82, P<0.001) and PP (y=0.04x+2.68, R2=0.85, P<0.001). In addition, SST alone yielded similar R2 value to that of combining soil clay content and EC in a multiple regression, suggesting that SST was able to account for the integrated effect of clay content and electrolytic background on runoff TSS. The SST test could be used for assessment and management of sediment and particulate nutrient losses in surface runoff. 相似文献
15.
Transformation of diphenylarsinic acid in agricultural soils 总被引:1,自引:0,他引:1
We investigated the transformation and fate of diphenylarsinic acid (DPAA) during incubation in two types of soils (Entisol and Andisol) under aerobic and anaerobic conditions. Under anaerobic conditions only, DPAA was transformed into methyldiphenylarsine oxide by methylation. Under both aerobic and anaerobic conditions, DPAA was degraded to phenylarsonic acid by dephenylation, and phenylarsonic acid was subsequently methylated to form methylphenylarsinic acid and dimethylphenylarsine oxide. The degradation of DPAA in the Andisol was less extensive than in the Entisol. In autoclaved soil under anaerobic conditions, DPAA underwent little degradation during the 24-wk incubation. In unautoclaved soils, the concentration of DPAA in soil clearly decreased after 24 wk of incubation, indicating that DPAA degradation was driven by microbial activity. 相似文献
16.
Perchlorate (ClO4-) contamination of ground water and surface water is a widespread problem, particularly in the western United States. This study examined the effect of biodegradation on perchlorate fate and transport in soils. Solute transport experiments were conducted on two surface soils. Pulses of solution containing perchlorate and Br- were applied to saturated soil columns at steady state water flow. Perchlorate behaved like a nonreactive tracer in Columbia loam (coarse-loamy, mixed, superactive, nonacid, thermic Oxyaquic Xerofluvent) but was degraded in Yolo loam (fine-silty, mixed, superactive, nonacid, thermic Mollic Xerofluvent). Batch experiments demonstrated that perchlorate removal from solution in Yolo loam was caused by biodegradation. Other batch experiments with Yolo loam surface and subsurface soils, Columbia loam surface soil, and dredge tailings demonstrated that perchlorate biodegradation required anaerobic conditions, an adequate carbon source, and an active perchlorate-degrading microbial population. The sequential reduction of perchlorate and NO3- by an indigenous soil microbial community in Yolo loam batch systems was also studied. Nitrate reduction occurred much sooner than perchlorate reduction in soils that had not been previously exposed to perchlorate, but NO3- and perchlorate were simultaneously reduced in soils previously exposed to perchlorate. The results of this study have implications for in situ remediation schemes and for agricultural soils that have been contaminated by perchlorate-tainted irrigation water. 相似文献
17.
Geochemical parameters influencing tungsten mobility in soils 总被引:2,自引:0,他引:2
Bednar AJ Jones WT Boyd RE Ringelberg DB Larson SL 《Journal of environmental quality》2008,37(1):229-233
The biogeochemistry of tungsten and its effects on mobility have recently gained attention due to the existence of human cancer clusters, such as in Fallon, NV. Tungsten exists in many environmental matrices as the soluble and mobile tungstate anion. However, tungsten can polymerize with itself and other anions, creating poly- and heteropoly-tungstates with variable geochemical and toxicological properties. In the present work, geochemical parameters are determined for tungstate species in a model soil that describe the potential for tungsten mobility. Soluble tungsten leached from a metallic tungsten-spiked soil after six to twelve months aging reached an equilibrium concentration >150 mg/L within 4 h of extraction with deionized water. Partition coefficients determined for various tungstate and polytungstate compounds in the model soil suggest a dynamic system in which speciation changes over time affect tungsten geochemical behavior. Partition coefficients for tungstate and some poly-species have been observed to increase by a factor of 3 to 6 over a four month period, indicating decreased mobility with soil aging. 相似文献
18.
Coussy S Benzaazoua M Blanc D Moszkowicz P Bussière B 《Journal of environmental management》2012,93(1):10-21
Mine tailings coming from the exploitation of sulphide and/or gold deposits can contain significant amounts of arsenic (As), highly soluble in conditions of weathering. Open mine voids backfilling techniques are now widely practiced by modern mining companies to manage the tailings. The most common one is called cemented paste backfill (CPB), and consists of tailings mixed with low amounts of hydraulic binders (3-5%) and a high proportion of water (typically 25%). The CPB is transported through a pipe network, to be placed in the mine openings. CPB provides storage benefits and underground support during mining operations. Moreover, this technique could also enhance contaminant stabilization, by fixing the contaminants in the binder matrix. CPB composites artificially spiked with As were synthesized in laboratory, using two types of hydraulic binders: a Portland cement, and a mix of fly ash and Portland cement. After curing duration of 66 days, the CPB samples were subjected to several leaching tests in various experimental conditions in order to better understand and then predict the As geochemical behaviour within CPBs. The assessment of the As release indicates that this element is better stabilized in Portland cement-based matrices rather than fly ash-based matrices. The As mobility differs in these two matrices, mainly because of the different As-bearing minerals formed during hydration processes. However, the total As depletion does not exceed 5% at the end of the most aggressive leaching test, indicating that As is well immobilized in the two types of CPB. 相似文献
19.
To formulate successful phytostabilization strategies in a shooting range soil, understanding how heavy metals are immobilized at the molecular level in the rhizosphere soil is critical. Lead (Pb) speciation and solubility in rhizosphere soils of five different plant species were investigated using extended X-ray absorption fine structure (EXAFS) spectroscopy and chemical extraction. The EXAFS analysis indicated that Pb occurred as PbCO (37%), Pb sorbed to organic matter (Pb-org: 15%), and Pb sorbed to pedogenic birnessite and/or ferrihydrite (Pb-ox: 36%) in the bulk soil. Comparison of the EXAFS spectra between bulk and rhizosphere soils demonstrated notable differences in fine structure, indicating that Pb species had been modified by rhizosphere processes. The estimated proportion of PbCO (25%) in the buckwheat soil was smaller than the other rhizosphere soils (35-39%). The addition of P significantly reduced Pb solubility in the bulk and rhizosphere soil except in the rhizosphere of buckwheat, for which the Pb solubility was 10-fold greater than in the other P-amended soils. This larger solubility in the buckwheat rhizosphere could not be explained by the total Pb speciation in the soil but was presumably related to the acidifying effect of buckwheat, resulting in a decrease of the soil pH by 0.4 units. The reduced Pb solubility by P amendment resulted from the transformation of preexisting PbCO (37%) into Pb(PO)Cl (26-32%) in the bulk and rhizosphere soils. In the P-amended rhizosphere soils, Pb-org species were no longer detected, and the Pb-ox pool increased (51-57%). The present study demonstrated that rhizosphere processes modify Pb solubility and speciation in P-amended soils and that some plant species, like buckwheat, may impair the efficiency of Pb immobilization by P amendments. 相似文献
20.
Targeting the sources of phosphorus (P) and transport pathways of drainage from agricultural land will assist in the reduction of P loading to surface waters. Our research investigated the vertical movement of P from dairy manure and broiler litter through four Atlantic Coastal Plain soils. A randomized split-plot design with two main-plot tillage treatments (no tillage [NT] and chisel tillage [CH]) and five manure P rate split-plot treatments was used at each location. The split-plot P rates were 0, 100, 200, 300, and 400 kg P ha(-1) yr(-1). Four consecutive years of manure application began at all sites 5 yr before sampling. Soils were sampled to a depth of 150 cm from each split plot in seven depth increments and analyzed for soil test phosphorus (STP), water-extractable soil phosphorus (WSP), and degree of phosphorus saturation (DPS). The DPS of the 0- to 15-cm depths confirmed that at the 100 kg P ha(-1) yr(-1) application rate, all sites exceeded the threshold for P saturation (30%). At depths greater than 30 cm, DPS was typically below the 30% saturation threshold. The DPS change points ranged from 25 to 34% for the 0- to 90-cm depths. Our research concluded that the risk of P leaching through the matrix of the Atlantic Coastal Plain soils studied was not high; however, P leaching via macropore bypass may contribute to P loss from these soils. 相似文献