首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Near-channel hill-country wetlands draining steep pastoral land in New Zealand exhibit high levels of fecal contamination at a range of flows. This contamination is attributed to both the transport of bacteria into a wetland from the surrounding catchment and the direct excretion of fecal material onto wetlands by grazing cattle. E. coli concentrations observed at low to moderate flow at 20 sites varied between 0.5 x 10(1) and 2 x 10(4) most probable number (MPN) 100 mL(-1). High flow concentrations measured at two wetlands ranged up to 6 x 10(6) MPN 100 mL(-1) and yielded storm period bacterial loads of between 1 x 10(6) and 3 x 10(10) MPN per event. Given the disproportionately large fraction of surface and subsurface flow from the catchment that passes through the wetlands, these yields represent a large proportion of the total loss of bacteria from steep grazed hillsides, across a range of storm events. Cattle are attracted to the smaller, shallower wetlands for grazing in both summer and winter. Excluding stock from shallow wetlands may therefore yield improvements in bacterial water quality, although accurately quantifying this improvement is difficult without long-term studies. Cattle are not attracted to larger, deeper wetlands, presumably for fear of entrapment, and fencing them is unlikely to realize significant improvements in bacterial water quality. A statistical model incorporating solar radiation and flow explains 87% of the variance in E. coli concentrations across five monitored rainfall events. A positive correlation was found between solar radiation and E. coli concentration. The study was conducted in winter when clear, sunny days are relatively cold. Solar radiation on these days appears to be too weak to promote die-off but the colder temperatures aid survival.  相似文献   

2.
We developed logistic regression models from data on biotic and abiotic variables for 172 sites on Banks Peninsula, New Zealand, to predict the probability of occurrence of two diadromous fish, banded kokopu (Galaxias fasciatus) and koaro (G. brevipinnis). Banded kokopu occurrence was positively associated with small streams and low-intensity land uses (e.g., sheep grazing or forested), whereas intensive land uses (e.g., mixed sheep and cattle farming) and lack of riparian forest cover impacted negatively on occurrence at sampled sites. Also, if forests were positioned predominantly in lowland areas, banded kokopu occurrence declined with increasing distance to stream mouth. Koaro occurrence was positively influenced by catchment forest cover, high stream altitudes, and areas of no farming activity or mixed land uses. Intensive land uses, distance to stream mouth, and presence of banded kokopu negatively influenced koaro occupancy of stream reaches. Banded kokopu and koaro presence was predicted in 86.0% and 83.7% agreement, respectively, with field observations. We used the models to quantify the amount of stream reaches that would be of good, moderate, and poor quality, based on the probability of occurrences of the fish being greater than 0.75, between 0.75 and 0.5, or less than 0.5, respectively. Hindcasting using historical data on vegetation cover undertaken for one catchment, Pigeon Bay, showed they would have occupied most of the waterway before anthropogenic modification. We also modeled potential future scenarios to project potential fish distribution.  相似文献   

3.
The relatively scarcity of flat or moderately sloping land in Central Appalachia make reclaimed surface mined lands attractive for agricultural uses. A reclaimed surface coal mine in southern West Virginia was placed under grazing management during the 1984 and 1985 growing seasons. Discharge was collected from summer-grazed watersheds of about 2.8 ha and 8.9 ha and analyzed, by the membrane-filtration method, for fecal coliforms (FC). Prior to grazing, in 1984, FC counts were < 20/100 ml. During the grazing season, FC ranged from <0/100 ml to> 1000/100 ml in 1984 and from 0/100 ml to > 2500/100 ml in 1985. FC counts remained high during warm periods for several months after grazing ceased. It was concluded that the bacteriological quality of receiving streams was impacted by grazing the reclaimed area and recommended standards for point sources were often exceeded; however, the FC counts did not appear to be any greater than what would have been expected from grazed, undisturbed areas. Reclaimed surface mine areas in Appalachia have the potential to be a valuable “flat land” resource and grazing appears to be an alternative post mine land use that affects bacteriological water quality in a similar manner as “natural” pastures. However, good management practices may be necessary to avoid bacterial contamination of adjacent bodies of water.  相似文献   

4.
Because the large rivers of the Seine watershed have a low microbiological water quality, the main sources of fecal contamination were investigated in the present study. The inputs of the point (wastewater treatment plants (WWTPs) effluents) and non-point sources (surface runoff and soil leaching) of fecal bacteria were quantified for Escherichia coli and intestinal enteroccoci used as bacterial indicators. In order to assess the contamination through non-point sources, fecal indicators abundance was estimated in samples collected in small streams located in rural areas upstream from all point sources; these small rivers were characterized by the land use of their watershed. Bacterial indicator numbers were also measured in effluents of WWTPs, some using classical treatment (settling followed by activated sludge process) and some using an additional disinfection stage (UV irradiation). These data were used to estimate the respective importance of each type of source at the scale of the whole Seine river watershed taking into account the land use and the population density. It shows the predominant importance of the point sources of fecal indicator bacteria at the scale of the whole watershed. In a scenario in which activated sludge treatment would be complemented with UV in all WWTPs located in this watershed, the non-point sources of fecal indicator bacteria would be dominant.  相似文献   

5.
ABSTRACT: Surface water impairment by fecal coliform bacteria is a water quality issue of national scope and importance. In Virginia, more than 400 stream and river segments are on the Commonwealth's 2002 303(d) list because of fecal coliform impairment. Total maximum daily loads (TMDLs) will be developed for most of these listed streams and rivers. Information regarding the major fecal coliform sources that impair surface water quality would enhance the development of effective watershed models and improve TMDLs. Bacterial source tracking (BST) is a recently developed technology for identifying the sources of fecal coliform bacteria and it may be helpful in generating improved TMDLs. Bacterial source tracking was performed, watershed models were developed, and TMDLs were prepared for three streams (Accotink Creek, Christians Creek, and Blacks Run) on Virginia's 303(d) list of impaired waters. Quality assurance of the BST work suggests that these data adequately describe the bacteria sources that are impairing these streams. Initial comparison of simulated bacterial sources with the observed BST data indicated that the fecal coliform sources were represented inaccurately in the initial model simulation. Revised model simulations (based on BST data) appeared to provide a better representation of the sources of fecal coliform bacteria in these three streams. The coupled approach of incorporating BST data into the fecal coliform transport model appears to reduce model uncertainty and should result in an improved TMDL.  相似文献   

6.
ABSTRACT: The impact on water quality by agricultural activity in karst terrain is an important consideration for resource management within the Appalachian Region. Karst areas comprise about 18 percent of the Region's land area. An estimated one-third of the Region's farms, cattle, and agricultural market value are on karst terrain. The purpose of this study was to compare fecal bacteria densities in karst groundwater impacted by two primary agricultural land uses in central Appalachia. Fecal bacteria densities were measured in cave streams draining two primary land management areas. The first area was pasture serving a beef cow-calf operation. The second area was a dairy. Neither area had best management practices in place for controlling animal wastes. Median fecal coliform and fecal streptococcus densities were highest in cave streams draining the dairy. Median fecal coliform densities in the dairy-impacted stream were greater than 4,000 CFU/100 ml and the median fecal coliform densities in the pasture-impacted streams were less than 10 CFU/100 ml. Median fecal streptococcus densities in the same streams were greater than 2,000 CFU/100 ml and 32 CFU/100 nil, respectively. A second dairy, with best management practices for control of animal and milkhouse waste, did not appear to be contributing significant amounts of fecal bacteria to the karst aquifer. It was concluded that agriculture was affecting bacterial densities in the karst aquifer. New management practices specifically designed to protect karst groundwater resources may be one way to protect the groundwater resource.  相似文献   

7.
This paper presents an analysis of the occurrence and uncertainty of source-specific Bacteroides and Escherichia coli in a stream in a mixed land-use watershed with human, cattle, and wildlife fecal inputs located in a karstic geologic region during baseflow conditions. The objectives of the study were to evaluate the occurrence, hydrologic significance, and source of fecal mass in the stream using assays for total Bacteroides (AllBac) and bovine-specific Bacteroides (BoBac), and then to compare these measurements with E. coli densities and loads. Samples were collected during baseflow conditions over several months at seven different main channel sites in the Stock Creek watershed, a 49.3 km2 basin located in Knoxville, TN (USA). We determined instantaneous loads for total fecal loads, bovine fecal loads, and E. coli from measured flow rates and the representative Bacteroides fecal masses and/or E. coli densities. The study indicated a strong correlation between total fecal load (kg d(-1)), bovine fecal load (kg d(-1)), E. coli load rate (CFU d(-1)), 7-d antecedent precipitation, and turbidity. The various datasets were used to establish parameter correlations and spatial dependencies throughout the watershed. The data analysis demonstrated two prevalent patterns throughout the watershed: (i) a runoff-dominated transport and occurrence; and (ii) potential groundwater-dominated transport and occurrence.  相似文献   

8.
This paper reviews suspended sediment sources and transport in small forest streams in the Pacific Northwest region of North America, particularly in relation to riparian management. Mass movements, reading and yarding practices, and burning can increase the supply of suspended sediment. Sediment yields recovered to pre‐harvest levels within one to six years in several paired catchment studies. However, delayed mass movements related to roads and harvesting may produce elevated suspended sediment yield one or more decades after logging. There is mixed evidence for the role of streamside tree throw in riparian buffers in supplying sediment to streams. Harvesting within the riparian zone may not increase suspended sediment yield if near stream soils are not disturbed. Key knowledge gaps relate to the relative roles of increased transport capacity versus sediment supply, the dynamics of fine sediment penetration into bed sediments, and the effects of forest harvesting on suspended sediment at different scales. Future research should involve nested catchments to examine suspended sediment response to forest practices at multiple spatial scales, in combination with process‐based field studies.  相似文献   

9.
Few studies have comprehensively measured the effect on water quality of catchment rehabilitation measures in comparison with baseline conditions. Here we have analyzed water clarity and nutrient concentrations and loads for a 13-year period in a headwater catchment within the western Waikato region, New Zealand. For the first 6 years, the entire catchment was used for hill-country cattle and sheep grazing. An integrated catchment management plan was implemented whereby cattle were excluded from riparian areas, the most degraded land was planted in Pinus radiata, channel banks were planted with poplar trees and the beef cattle enterprise was modified. The removal of cattle from riparian areas without additional riparian planting had a positive and rapid effect on stream water clarity. In contrast, the water clarity decreased in those sub-catchments where livestock was excluded but riparian areas were planted with trees and shrubs. We attribute the decrease in water clarity to a reduction in groundcover vegetation that armors stream banks against preparatory erosion processes. Increases in concentrations of forms of P and N were recorded. These increases were attributed to: (i) the reduction of instream nutrient uptake by macrophytes and periphyton due to increased riparian shading; (ii) uncontrolled growth of a nitrogen fixing weed (gorse) in some parts of the catchment, and (iii) the reduction in the nutrient attenuation capacity of seepage wetlands due to the decrease in their areal coverage in response to afforestation. Our findings highlight the complex nature of the water quality response to catchment rehabilitation measures.  相似文献   

10.
Given known limitations of current microbial source-tracking (MST) tools, emphasis on small, simple study areas may enhance interpretations of fecal contamination sources in streams. In this study, three MST tools-Escherichia coli repetitive element polymerase chain reaction (rep-PCR), coliphage typing, and Bacteroidales 16S rDNA host-associated markers-were evaluated in a selected reach of Plum Creek in south-central Nebraska. Water-quality samples were collected from six sites. One reach was selected for MST evaluation based on observed patterns of E. coli contamination. Despite high E. coli concentrations, coliphages were detected only once among water samples, precluding their use as a MST tool in this setting. Rep-PCR classification of E. coli isolates from both water and sediment samples supported the hypothesis that cattle and wildlife were dominant sources of fecal contamination, with minor contributions by horses and humans. Conversely, neither ruminant nor human sources were detected by Bacteroidales markers in most water samples. In bed sediment, ruminant- and human-associated Bacteroidales markers were detected throughout the interval from 0 to 0.3 m, with detections independent of E. coli concentrations in the sediment. Although results by E. coli-based and Bacteroidales-based MST methods led to similar interpretations, detection of Bacteroidales markers in sediment more commonly than in water indicates that different tools to track fecal contamination (in this case, tools based on Bacteroidales DNA and E. coli isolates) may have varying relevance to the more specific goal of tracking the sources of E. coli in watersheds. This is the first report of simultaneous, toolbox approach application of a library-based and marker-based MST analyses to flowing surface water.  相似文献   

11.
ABSTRACT: Throughout the United States, land managers are becoming increasingly aware of the importance of small streams for a wide range of resource benefits. Where channel morphology is modified or structural features are added, stream dynamics and energy dissipation need to be considered. Unit stream power, defined here as the time-rate loss of potential energy per unit mass of water, can be reduced by adding stream obstructions, increasing channel sinuosity, or increasing flow resistance with large roughness elements such as woody root systems, logs, boulders, or bedrock. Notable morphological features of small streams are pools, riffles, bed material, and channel banks. Pools, which vary in size, shape, and causative factors, are important rearing habitat for fish. Riffles represent storage locations for bed material and are generally utilized for spawning. The particle sizes and distributions of bed material influence channel characteristics, bedload transport, food supplies for fish, spawning conditions, cover, and rearing habitat. Riparian vegetation helps stabilize channel banks and contributes in various ways to fish productivity. Understanding each stream feature individually and in relation to all others is essential for proper stream management. Although engineered structures for modifying habitat may alter stream characteristics, channel morphology must ultimately be matched to the hydraulic, geologic, and (especially) vegetative constraints of a particular location.  相似文献   

12.
ABSTRACT: We compared the recovery from abusive grazing of aquatic habitat due to different range management on two geomorphically similar rangeland streams in northwest Nevada. Managers excluded livestock from the Mahogany Creek watershed from 1976 to 1990 while allowing rotation of rest grazing on its tributary Summer Camp Creek. Bank stability, defined as the lack of apparent bank erosion or deposition, improved through the study period on both streams, but periodic grazing and flooding decreased stability more on Summer Camp Creek than flooding alone on Mahogany Creek. Pool quantity and quality on each stream decreased because of coarse woody debris removal and sediment deposition during a drought. Fine stream bottom sediments decreased five years after the removal of livestock, but sedimentation increased during low flows in both streams below road crossings. Tree cover increased 35 percent at both streams. Thus, recovery of stability and cover and decreased sedimentation are compatible with rotation of rest grazing on Summer Camp Creek. Width/depth ratio and gravel/cobble percent did not change because they are inherently stable in this stream type. Management activities such as coarse woody debris removal limited pool recover and road crossings increased sedimentation.  相似文献   

13.
ABSTRACT: Karst terrane provides a linkage between surface water and ground water regimes by means of caves, sinkholes and swallets, and sinking streams, and facilitates the inter‐watershed transfer of water and contaminants through these subsurface systems. The goal of this study was to develop procedures to identify the sources of degradation of a creek situated in a complex karst‐water system. The study approach consisted of using dye tracing technique to determine subsurface flow paths through the karst system, a water‐sampling network to identify and characterize pollution sources within the surface watershed and subsurface flow regime, and evaluation of analytical data for several water quality parameters. The results of this study provide an interesting perspective of water and contaminant movement in karst‐water systems and pinpoint the sources of stream contamination for a case study site in southwest Virginia where two springs supply water to a contaminated freshwater stream.  相似文献   

14.
Drive point peizometers were installed at the stream–riparian interface in a small urbanizing southern Ontario catchment to measure the effect of buffers (presence/ absence) and land use (urban/agricultural) on the movement of NO? 3-N in shallow groundwater from the riparian area to the stream. Mean NO? 3-N concentrations ranged from 1.0 to 1.3 mg L?1 with maximum values of 9.4 mg L?1. Holding land use constant, there was no significant difference (p>0.05) in NO? 33-N concentration between buffered and unbuffered sites. Nitrate-N levels were not significantly different (p>0.05) as a function of land use. The lack of difference between sites as a function of buffer absence/presence and land use is probably due to the placement of some peizometers in low conductivity materials that limited groundwater flow from the riparian zone to the stream. Subsurface factors controlling the hydraulic gradient are important in defining buffer effectiveness and buffer zones should not be used indiscrim inately as a management tool in urban and agricultural landscapes to control nitrate-N loading in shallow groundwater to streams without detailed knowledge of the hydrogeo logic environment.  相似文献   

15.
Nutrient inputs generally are increased by human-induced land use changes and can lead to eutrophication and impairment of surface waters. Understanding the scale at which land use influences nutrient loading is necessary for the development of management practices and policies that improve water quality. The authors assessed the relationships between land use and stream nutrients in a prairie watershed dominated by intermittent stream flow in the first-order higher elevation reaches. Total nitrogen, nitrate, and phosphorus concentrations were greater in tributaries occupying the lower portions of the watershed, closely mirroring the increased density of row crop agriculture from headwaters to lower-elevation alluvial areas. Land cover classified at three spatial scales in each sub-basin above sampling sites (riparian in the entire catchment, catchment land cover, and riparian across the 2 km upstream) was highly correlated with variation in both total nitrogen (r2 = 53%, 52%, and 49%, respectively) and nitrate (r2 = 69%, 65%, and 56%, respectively) concentrations among sites. However, phosphorus concentrations were not significantly associated with riparian or catchment land cover classes at any spatial scale. Separating land use from riparian cover in the entire watershed was difficult, but riparian cover was most closely correlated with in-stream nutrient concentrations. By controlling for land cover, a significant correlation of riparian cover for the 2 km above the sampling site with in-stream nutrient concentrations could be established. Surprisingly, land use in the entire watershed, including small intermittent streams, had a large influence on average downstream water quality although the headwater streams were not flowing for a substantial portion of the year. This suggests that nutrient criteria may not be met only by managing permanently flowing streams.  相似文献   

16.
A wastewater model was applied to the Potomac River watershed to provide (i) a means to identify streams with a high likelihood of carrying elevated effluent-derived contaminants and (ii) risk assessments to aquatic life and drinking water. The model linked effluent discharges along stream networks, accumulated wastewater, and predicted contaminant loads of municipal wastewater constituents while accounting for instream dilution and attenuation. Simulations using 2016 data suggested that nearly 30% (8281 km) of streams were wastewater impacted. Low- to medium-order streams had the largest range of accumulated wastewater (ACCWW%) values. ACCWW% exceeded a 1% threshold at >39% of drinking-water intakes (varied by temporal condition). Risk assessments of municipal wastewater-contaminant mixtures indicated that 22% (1479 km) of streams impacted by municipal wastewater (5.5% of all reaches modeled) may pose high risk to aquatic organisms under mean-annual conditions, with fish more susceptible to chronic-exposure effects relative to other taxa. Risk varied temporally and by stream order, with the greatest risk occurring in the summer in small streams. These findings suggest that wastewater may be an important factor contributing to environmental degradation in the Potomac River watershed.  相似文献   

17.
Abstract: The two main rivers of southeast Texas: Guadalupe and San Antonio have shown high temporal increase in bacteria concentration during the last decade. The SPAtially Referenced Regression On Watershed (SPARROW) attributes model, developed by the U.S. Geological Survey (USGS), has been applied to predict the fluxes and concentrations of contaminants in unmonitored streams and to identify the sources of these contaminants. This model identifies every reach as a basic network unit to distribute the sources, delivery, and attenuation factors. The model is data intensive and implements nonlinear regression to solve the parsimonious relations for describing various watershed processes. This study explored watershed and hydrological characteristics (land uses, precipitation, human and animal population, point sources, areal hydraulic load and drainage density, etc.) as the probable sources and delivery mechanisms of waterborne pathogens and their indicator (Escherichia coli [E. coli]) in the Guadalupe and San Antonio River basins. The effect of using various statistical indices for model selection on the final model’s ability to explain the various E. coli sources and transport processes was also analyzed.  相似文献   

18.
The SPARROW (SPAtially Referenced Regression on Watershed attributes) model was used to simulate annual phosphorus loads and concentrations in unmonitored stream reaches in California, U.S., and portions of Nevada and Oregon. The model was calibrated using de‐trended streamflow and phosphorus concentration data at 80 locations. The model explained 91% of the variability in loads and 51% of the variability in yields for a base year of 2002. Point sources, geological background, and cultivated land were significant sources. Variables used to explain delivery of phosphorus from land to water were precipitation and soil clay content. Aquatic loss of phosphorus was significant in streams of all sizes, with the greatest decay predicted in small‐ and intermediate‐sized streams. Geological sources, including volcanic rocks and shales, were the principal control on concentrations and loads in many regions. Some localized formations such as the Monterey shale of southern California are important sources of phosphorus and may contribute to elevated stream concentrations. Many of the larger point source facilities were located in downstream areas, near the ocean, and do not affect inland streams except for a few locations. Large areas of cultivated land result in phosphorus load increases, but do not necessarily increase the loads above those of geological background in some cases because of local hydrology, which limits the potential of phosphorus transport from land to streams.  相似文献   

19.
Reducing pesticide loads in surface waters implies identifying the pathways responsible for the pollution. The current study documents the pesticide contamination of the river Zwester Ohm, a 4917-ha catchment in Germany with 41% of the land used for crop production. Discharges and concentrations of 19 pesticides were measured continuously at three locations for 15 mo. The load detected at the outlet of the catchment amounted to 9048 g a.i. The losses represent 0.22% of the pesticides applied by the farmers. The contamination showed a seasonal pattern following the pesticide application times. The wastewater treatment plant system (WWTPS) in the catchment (two wastewater treatment plants [WWTP], 14 combined sewer overflows (CSO), four CSO tanks) emits during dry weather periods purified sewage and during storm events sewage mixed with stormwater runoff into the river. The contribution by the WWTPS to the pesticide load was defined as point-source pollution (PSP). The load was dominated by PSP with at least 77% of the total pollution. No significant interdependencies between intrinsic properties of the pesticides, hydrometeorological factors, and the loads occurring in the stream could be found. Therefore, it is not possible to predict PSP for other catchments based on the results from this study. Whereas 65% of the total load entered the river via the WWTP, a portion of 12% was attributed to the CSO. The study points out that the influence of CSO on PSP should be taken into account in future catchment studies in areas with comparable agricultural structure.  相似文献   

20.
Twelve morphological features from research on alluvial streams are compared in four narrow, low-gradient wetland streams located in different geographic regions (Connecticut, Indiana, and Wisconsin, USA). All four reaches differed in morphological characteristics in five of the features compared (consistent bend width, bend cross-sectional shape, riffle width compared to pool width, greatest width directly downstream of riffles, and thalweg location), while three reaches differed in two comparisons (mean radius of curvature to width ratio and axial wavelength to width ratio). The remaining five features compared had at least one reach where different characteristics existed. This indicates the possibility of varying morphology for streams traversing wetland areas further supporting the concept that the unique qualities of wetland environments might also influence the controls on fluvial dynamics and the development of streams. If certain morphological features found in streams traversing wetland areas differ from current fluvial principles, then these varying features should be incorporated into future wetland stream design and creation projects. The results warrant further research on other streams traversing wetlands to determine if streams in these environments contain unique morphology and further investigation of the impact of low-energy fluvial processes on morphological development. Possible explanations for the morphology deviations in the study streams and some suggestions for stream design in wetland areas based upon the results and field observations are also presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号