首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Bedrock groundwaters in Geumsan County, Korea, were surveyed to investigate the distribution and geochemical behaviors of arsenic and fluoride, mobilized through geogenic processes. The concentrations were enriched up to 113 μg/L for arsenic and 7.54 mg/L for fluoride, and 16% of 150 samples exceeded World Health Organization drinking water guidelines for each element. Simple Ca-HCO(3) groundwater types and positive correlations with pH, Ca, SO(4), and HCO(3) were characteristics of high (>10 μg/L) As groundwaters. The oxidation reaction of sulfide minerals in metasedimentary rocks and locally mineralized zones seems to be ultimately responsible for the existence of arsenic in groundwater. Desorption process under high pH conditions may also control the arsenic mobility in the study area. High (>1.5 mg/L) F groundwaters were found in the Na-HCO(3) type and with greater depth. Fluoride seemed to be enriched by deep groundwater interaction with granitic rocks, and continuous supply to shallow Ca-HCO(3)-type groundwater kept the concentration high. In the study area, drinking water management should include periodic As and F monitoring in groundwater.  相似文献   

2.

Bedrock groundwaters in Geumsan County, Korea, were surveyed to investigate the distribution and geochemical behaviors of arsenic and fluoride, mobilized through geogenic processes. The concentrations were enriched up to 113 μg/L for arsenic and 7.54 mg/L for fluoride, and 16% of 150 samples exceeded World Health Organization drinking water guidelines for each element. Simple Ca-HCO3 groundwater types and positive correlations with pH, Ca, SO4, and HCO3 were characteristics of high (>10 μg/L) As groundwaters. The oxidation reaction of sulfide minerals in metasedimentary rocks and locally mineralized zones seems to be ultimately responsible for the existence of arsenic in groundwater. Desorption process under high pH conditions may also control the arsenic mobility in the study area. High (>1.5 mg/L) F groundwaters were found in the Na-HCO3 type and with greater depth. Fluoride seemed to be enriched by deep groundwater interaction with granitic rocks, and continuous supply to shallow Ca-HCO3-type groundwater kept the concentration high. In the study area, drinking water management should include periodic As and F monitoring in groundwater.

  相似文献   

3.
This study evaluated variations in heavy metal contamination of stream waters and groundwaters affected by an abandoned lead–zinc mine, where a rockfill dam for water storage will be built 11 km downstream. For these purposes, a total of 10 rounds of stream and groundwater samplings and subsequent chemical analyses were performed during 2002–2003. Results of an exploratory investigation of stream waters in 2000 indicated substantial contamination with heavy metals including zinc (Zn), iron (Fe) and arsenic (As) for at least 6 km downstream from the mine. Stream waters near the mine showed metal contamination as high as arsenic (As) 8,923 μg L−1, copper (Cu) 616 μg L−1, cadmium (Cd) 223 μg L−1 and lead (Pb) 10,590 μg L−1, which greatly exceeded the Korean stream water guidelines. Remediation focused on the mine tailing piles largely improved the stream water qualities. However, there have still been quality problems for the waters containing relatively high concentrations of As (6–174 μg L−1), Cd (1–46 μg L−1) and Pb (2–26 μg L−1). Rainfall infiltration into the mine tailing piles resulted in an increase of heavy metals in the stream waters due to direct discharge of waste effluent, while dilution of the contaminated stream waters improved the water quality due to mixing with metal free rain waters. Levels of As, Cu and chromium (Cr) largely decreased after heavy rain but that of Pb was rather elevated. The stream waters were characterized by high concentrations of calcium (Ca) and sulfate (SO4), which were derived from dissolution and leaching of carbonate and sulfide minerals. It was observed that the proportions of Ca and SO4 increased while those of bicarbonate (HCO3) and sodium and potassium (Na+K) decreased after a light rainfall event. Most interestingly, the reverse was generally detected for the groundwaters. The zinc, being the metal mined, was the most dominant heavy metal in the groundwaters (1758–10,550 μg L−1) near the mine, which far exceeded the Korean standard of 1000 μg L−1 for drinking water. The decreases in the heavy metals contents in the groundwaters associated with reduced rainfall were quite different from the increases observed for the stream waters, which is not clearly understood at this time and warrants further investigation.  相似文献   

4.
Arsenic and fluoride in the groundwater of Mexico   总被引:4,自引:0,他引:4  
Concentrations of arsenic and fluoride above Mexican drinking water standards have been detected in aquifers of various areas of Mexico. This contamination has been found to be mainly caused by natural sources. However, the specific processes releasing these toxic elements into groundwater have been determined in a few zones only. Many studies, focused on arsenic-related health effects, have been performed at Comarca Lagunera in northern México. High concentrations of fluoride in water were also found in this area. The origin of the arsenic there is still controversial. Groundwater in active mining areas has been polluted by both natural and anthropogenic sources. Arsenic-rich minerals contaminate the fractured limestone aquifer at Zimapán, Central México. Tailings and deposits smelter-rich fumes polluted the shallow granular aquifer. Arsenic contamination has also been reported in the San Antonio-El Triunfo mining zone, southern Baja California, and Santa María de la Paz, in San Luis Potosí state. Even in the absence of mining activities, hydrogeochemistry and statistical techniques showed that arsenopyrite oxidation may also contaminate water, as in the case of the Independencia aquifer in the Mexican Altiplano. High concentrations of arsenic have also been detected in geothermal areas like Los Azufres, Los Humeros, and Acoculco. Prevalence of dental fluorosis was revealed by epidemiological studies in Aguascalientes and San Luis Potosí states. Presence of fluoride in water results from dissolution of acid-volcanic rocks. In Mexico, groundwater supplies most drinking water. Current knowledge and the geology of Mexico indicate the need to include arsenic and fluoride determinations in groundwater on a routine basis, and to develop interdisciplinary studies to assess the contaminant's sources in all enriched areas.  相似文献   

5.
Arsenic in groundwaters of the Lower Mekong   总被引:1,自引:0,他引:1  
Increasing incidence and awareness of arsenic in many alluvial aquifers of South-east Asia has raised concern over possible arsenic in the Lower Mekong Basin. Here, we have undertaken new research and reviewed many previous small-scale studies to provide a comprehensive overview of the status of arsenic in aquifers of Cambodia and the Cuu Long Delta of Vietnam. In general natural arsenic originates from the Upper Mekong basin, rather than from the local geology, and is widespread in soils at typical concentrations of between 8 and 16 ppm; (dry weight). Industrial and agricultural arsenic is localised and relatively unimportant compared to the natural alluvial arsenic. Aquifers most typically contain groundwaters of no more than 10 μg L−1, although scattered anomalous areas of 10 to 30 μg L−1 are also quite common. The most serious, but possibly ephemeral arsenic anomalies, of up to 600 μg L−1, are associated with iron and organic-rich flood-plain sediments subject to very large flood-related fluctuations in water level, resulting in transient arsenopyrite dissolution under oxidizing conditions. In general, however, high-arsenic groundwaters result from the competing interaction between sorption and dissolution processes, in which arsenic is only released under reducing and slightly alkaline conditions. High arsenic groundwaters are found both in shallow water-tables, and in deeper aquifers of between 100 and 120 m depth. There is no evidence of widespread arsenicosis, but there are serious localised health-hazards, and some risk of low-level arsenic ingestion through indirect pathways, such as through contaminated rice and aquaculture. An almost ubiquitous presence of arsenic in soils, together with the likelihood of greatly increased groundwater extraction in the future, will require continuing caution in water resources development throughout the region.  相似文献   

6.
Groundwater quality of the Banana Plain (Mbanga, Njombe, Penja—Cameroon) was assessed for its suitability for drinking, domestic, and agricultural uses. A total of 67 groundwater samples were collected from open wells, springs, and boreholes. Samples were analyzed for physicochemical properties, major ions, and dissolved silica. In 95% of groundwater samples, calcium is the dominant cation, while sodium dominates in 5% of the samples. Eighty percent of the samples have HCO3 as major anion, and in 20%, NO3 is the major anion. Main water types in the study area are CaHCO3, CaMgHCO3, CaNaHCO3, and CaNaNO3ClHCO3. CO2-driven weathering of silicate minerals followed by cation exchange seemingly controls largely the concentrations of major ions in the groundwaters of this area. Nitrate, sulfate, and chloride concentrations strongly express the impact of anthropogenic activities (agriculture and domestic activities) on groundwater quality. Sixty-four percent of the waters have nitrate concentrations higher than the drinking water limit. Also limiting groundwater use for potable and domestic purposes are contents of Ca2+, Mg2+ and HCO3 and total hardness (TH) that exceed World Health Organization (WHO) standards. Irrigational suitability of groundwaters in the study area was also evaluated, and results show that all the samples are fit for irrigation. Groundwater quality in the Banana Plain is impeded by natural geology and anthropogenic activities, and proper groundwater management strategies are necessary to protect sustainably this valuable resource.  相似文献   

7.
The Narim gold mine is located approximately 200km southeast of Seoul within the Sulcheon mineralised district in the Yeongnam massif, Korea. In this study, environmental geochemical analyses were undertaken for soil, sediment and water samples collected in April, September and November in 1998 from the Narim mine creek. The mine area consists mainly of granitic gneiss; however, mineral constituents of soil and sediment near the mine were mainly composed of quartz, feldspar, mica, amphibole, some pyrite and clay minerals. Also were found some pyrite, arsenopyrite, chalcopyrite, sphalerite, galena, malachite, goethite, various hydroxide and unidentified secondary minerals. Generally, high concentrations of heavy metals in the soil and sediment are correlated with a high proportion of secondary minerals. Hydrochemical compositions of water samples are characterised by relative significant enrichment of Na++K+ and alkali metals in the ground water, whereas the surface and mine waters are relatively enriched in Ca2++Mg2+ and heavy metals. Anion contents of the ground waters are typically enriched in HCO3 , NO3 and Cl, whereas the surface and mine waters are highly enriched in HCO3 and SO4 2–. The pH and EC values of the surface water from the non-mine creek are relatively lower compared with those of the surface water around the mine and waste dump. The range of D and 18O values (d parameters) of the water samples are shown in distinct two groups for the April waters of 10.1–13.1, and for the November waters of 5.8–7.9, respectively. This range variation indicates that two group water were composed of distinct waters because of seasonal difference. Geochemical modelling showed that mostly heavy toxic metals may exist largely in the form of free metal (M2+) and metal-sulphate (MSO4 2–), and SO4 2– concentration influenced the speciation of heavy metals in the mine water. These metals in the ground water could be formed of CO3 and OH complex ions. Using a computer program, saturation indices of albite, calcite, dolomite in mostly surface water show undersaturated and progressively evolved toward the saturation state, however, ground and mine waters are nearly saturated. The gibbsite, kaolinite and smectite are supersaturated in the surface and ground water, respectively. Calculated water-mineral reaction and stabilities suggest that the weathering of silicate minerals may be stable kaolinite. The clay minerals of K-illite and Na-smectite will be transformed to more stable kaolinite owing to the continuous reaction.  相似文献   

8.
Tap water from 497 properties using private water supplies, in an area of metalliferous and arsenic mineralisation (Cornwall, UK), was measured to assess the extent of compliance with chemical drinking water quality standards, and how this is influenced by householder water treatment decisions. The proportion of analyses exceeding water quality standards were high, with 65 % of tap water samples exceeding one or more chemical standards. The highest exceedances for health-based standards were nitrate (11 %) and arsenic (5 %). Arsenic had a maximum observed concentration of 440 µg/L. Exceedances were also high for pH (47 %), manganese (12 %) and aluminium (7 %), for which standards are set primarily on aesthetic grounds. However, the highest observed concentrations of manganese and aluminium also exceeded relevant health-based guidelines. Significant reductions in concentrations of aluminium, cadmium, copper, lead and/or nickel were found in tap waters where households were successfully treating low-pH groundwaters, and similar adventitious results were found for arsenic and nickel where treatment was installed for iron and/or manganese removal, and successful treatment specifically to decrease tap water arsenic concentrations was observed at two properties where it was installed. However, 31 % of samples where pH treatment was reported had pH < 6.5 (the minimum value in the drinking water regulations), suggesting widespread problems with system maintenance. Other examples of ineffectual treatment are seen in failed responses post-treatment, including for nitrate. This demonstrates that even where the tap waters are considered to be treated, they may still fail one or more drinking water quality standards. We find that the degree of drinking water standard exceedances warrant further work to understand environmental controls and the location of high concentrations. We also found that residents were more willing to accept drinking water with high metal (iron and manganese) concentrations than international guidelines assume. These findings point to the need for regulators to reinforce the guidance on drinking water quality standards to private water supply users, and the benefits to long-term health of complying with these, even in areas where treated mains water is widely available.  相似文献   

9.
The acute toxicity of arsenic(III) and arsenic(V) alone and in combination to a cladoceran, Daphnia carinata, was studied in both cladoceran culture medium and natural water collected from a local suburban stream. As(III) was found to be more toxic than As(V) to Daphnia survival. The LC50 values for As(III), As(V), and As(III) + As(V) were 0.554, 1.499, and 0.692 mg l−1, respectively. Although various species of As, particularly As(III) and As(V) co-exist together in natural waters, the existing guidelines for water quality are based on individual As species. The results of this investigation suggest that As(III) and As(V) can interact either synergistically or additively resulting in an increase in the overall toxicity of the mixture compared to individual As species. Also, indigenous microorganisms in natural water may play a significant role in the transformation of As, thereby influencing the toxicity of As in receiving waters. This study clearly suggests that the joint action of As species should be considered in the development of water quality guidelines. To our knowledge this is the first study on the interactive effect of As(III) and As(V) to a cladoceran. Thus, this study suggests that these two species of As, when present together above 0.1 mg l−1 concentration, are toxic to fresh water invertebrates; therefore, pollution with these compounds may adversely affect natural ecosystems.  相似文献   

10.
The blackfoot disease (BFD) observed in southwestern Taiwan is due to drinking high arsenic concentrations in well water. This paper presents some results concerning the distributions of arsenic species in water and sediments collected in the BFD (well, river and coastal) area and the background (lake and ocean) area for comparison. The results show that the concentrations of arsenate (870 ± 26 ug/L) and arsenite (70.2 ± 2.6 ug/ L) in well waters, and the contents of arsenic (1640 ug/g) with high percentage of easily reducible (Fe and Mn oxides, 91.7%) and exchangeable and carbonate (4.6%) phases in well sediments were much higher than those in river, lake and coastal samples. Low arsenic (3.46–31.8 ug/g) with high percentages (73.8–97.3%) of detritus and minerals phase with low percentages (0.4–9.8%) of total carbonate and exchangeable phases were found in the river and coastal samples in the BFD area as well as the lake and ocean samples in background area. It might suggest that the higher concentrations of toxic As(III) in well water and arsenic with higher values of easily reducible, carbonate and exchangeable phases in the well sediments, combined with the higher values of dissolved organic carbon, humic and fulvic acids and aromatic carbon as well as the higher fluorescence indensity in the well water are the key factors to cause the BFD in Taiwan.  相似文献   

11.
Understanding the mechanism of arsenic (As) mobilization from sediments to groundwater is important for water quality management in areas of endemic arsenic poisoning, such as the Datong basin in northern China. The bulk geochemistry analysis of sediment samples from three 50-m boreholes drilled specifically for this study at As-contaminated aquifers, the groundwaters of which have an As concentration up to 1060 μg/l, revealed that the average bulk concentrations of major and trace elements of the samples are similar to those of the average upper continental crust. The average As content of the sediment samples (18.7 mg/kg) is higher than that of modern unconsolidated sediments (5–10 mg/kg). Moreover, the abundance of elements varied with grain size, with higher concentrations in finer fractions of the sediments, such as silt and clay. The concentration of NH2OH–HCl-extracted iron (Fe) strongly correlated with that of extracted As, suggesting that Fe oxyhydroxides may be the major sink of As in the aquifer. The results of microcosm experiments showed that As mobilization from sediments to groundwater is probably mainly related to changes in the redox conditions, with moderately reducing conditions being favorable for As release from sediments into groundwater.  相似文献   

12.
Arsenic (As) speciation in surface and groundwater from two provinces in Argentina (San Juan and La Pampa) was investigated using solid phase extraction (SPE) cartridge methodology with comparison to total arsenic concentrations. A third province, Río Negro, was used as a control to the study. Strong cation exchange (SCX) and strong anion exchange (SAX) cartridges were utilised in series for the separation and preservation of arsenite (AsIII), arsenate (AsV), monomethylarsonic acid (MAV) and dimethylarsinic acid (DMAV). Samples were collected from a range of water outlets (rivers/streams, wells, untreated domestic taps, well water treatment works) to assess the relationship between total arsenic and arsenic species, water type and water parameters (pH, conductivity and total dissolved solids, TDS). Analysis of the waters for arsenic (total and species) was performed by inductively coupled plasma mass spectrometry (ICP-MS) in collision cell mode. Total arsenic concentrations in the surface and groundwater from Encon and the San José de Jáchal region of San Juan (north-west Argentina within the Cuyo region) ranged from 9 to 357 μg l?1 As. Groundwater from Eduardo Castex (EC) and Ingeniero Luiggi (LU) in La Pampa (central Argentina within the Chaco-Pampean Plain) ranged from 3 to 1326 μg l?1 As. The pH range for the provinces of San Juan (7.2–9.7) and La Pampa (7.0–9.9) are in agreement with other published literature. The highest total arsenic concentrations were found in La Pampa well waters (both rural farms and pre-treated urban sources), particularly where there was high pH (typically > 8.2), conductivity (>2,600 μS cm?1) and TDS (>1,400 mg l?1). Reverse osmosis (RO) treatment of well waters in La Pampa for domestic drinking water in EC and LU significantly reduced total arsenic concentrations from a range of 216–224 μg l?1 As to 0.3–0.8 μg l?1 As. Arsenic species for both provinces were predominantly AsIII and AsV. AsIII and AsV concentrations in San Juan ranged from 4–138 μg l?1 to <0.02–22 μg l?1 for surface waters (in the San José de Jáchal region) and 23–346 μg l?1 and 0.04–76 μg l?1 for groundwater, respectively. This translates to a relative AsIII abundance of 69–100% of the total arsenic in surface waters and 32–100% in groundwater. This is unexpected because it is typically thought that in oxidising conditions (surface waters), the dominant arsenic species is AsV. However, data from the SPE methodology suggests that AsIII is the prevalent species in San Juan, indicating a greater influence from reductive processes. La Pampa groundwater had AsIII and AsV concentrations of 5–1,332 μg l?1 and 0.09–592 μg l?1 for EC and 32–242 μg l?1 and 30–277 μg l?1 As for LU, respectively. Detectable levels of MAV were reported in both provinces up to a concentration of 79 μg l?1 (equating to up to 33% of the total arsenic). Previously published literature has focused primarily on the inorganic arsenic species, however this study highlights the potentially significant concentrations of organoarsenicals present in natural waters. The potential for separating and preserving individual arsenic species in the field to avoid transformation during transport to the laboratory, enabling an accurate assessment of in situ arsenic speciation in water supplies is discussed.  相似文献   

13.
本文主要研究了南黄海(32°N)沉积物间隙水中的Fe,Mn,Cu,Co,Ni与其硫化物及粘土矿物间的关系,结果表明:间隙水中的Mn~(2+),Cu~(2+)硫化物趋向于沉淀,Co~(2+),Ni~(2+)硫化物趋向于溶解,Fe~(2+)则有其硫化物的溶解-沉淀控制,Mn~(2+),Cu~(2+)还有其他体系和硫化物体系共同控制其浓度,间隙水中的Fe~(2+)可被蒙脱石吸附,Mn~(2+)被绿泥石吸附,Ca~(2+),Ni~(2+)被蒙脱石、绿泥石吸附,Co~(2+)被绿泥石、蒙脱石吸附,Fe~(2+),Mn~(2+)对粘土矿物吸附剂的专属性要求远比Cu~(2+),Co~(2地+),Ni~(2+)高,蒙脱石是南黄海沉积物中最重要的阳离子吸附剂,绿泥石次之。  相似文献   

14.
In Asturias (NW Spain) there are many abandoned mines, of which Hg mines are of particular significance from an environmental point of view, due to the presence of Hg and particularly As, which is found either in the form of specific (orpiment and realgar) or non-specific minerals (As-rich pyrite). The instability of these minerals leads to the presence of As-rich mine drainage and spoils heap leachates that enter surface waters or groundwaters. A study including the three most important Hg mines in the region (La Soterraña, Los Rueldos and El Terronal) has been conducted. Watercourses flowing through these mining areas are tributaries of the River Caudal, one of the most important rivers in the area. High concentrations of As were found in some of these waters, which were monitored over a period of three hydrological years and classified according to a water quality index. Those waters sampled close to the mines are generally of poor-to-bad quality, with low alkalinity and in some cases high metal content, but the quality of these waters improves with distance from the mines. The average mass load of As entering the River Caudal has been evaluated as: 200, 12 and 9,800 kg year?1 from La Soterraña, Los Rueldos and El Terronal mine sites, respectively. Despite the constant input of about 10 tonnes of As per year, the total As concentration remains below analytical detection thresholds on account of the river’s high water flow. Nevertheless, an important part of this As load is presumably retained in the river sediments, representing a potential risk of pollution of the aquatic ecosystems.  相似文献   

15.
The problems of contamination caused by arsenic (As) and other toxic metals in groundwater, surface water and soils in the Bengal basin of Bangladesh have been studied. Altogether 10 groundwater, seven surface water and 31 soil samples were collected from arsenic-affected areas and analysed chemically. The geologic and anthropogenic sources of As and other toxic metals are discussed in this paper. The chemical results show that the mean As concentrations in groundwater in the Char Ruppur (0.253mg As L–1), Rajarampur (1.955mg As L–1) and Shamta areas (0.996mg As L–1) greatly exceed the WHO recommended value, which is 0.01mg As L–1. The concentrations of As in groundwater are very high compared to those in surface water and in surface soil in the three (As-affected) areas studied. This indicates that the source of As in groundwater could be bedrock. The relatively high concentrations of Cr, Cu, Ni, Pb and Zn in surface water, compared to world typical value, are due to the solubility of metal ions, organometalic complexes, coprecipitation or co-existance with the colloidal clay fraction. In the soil, the elevated concentrations of As, Cr, Cu, Ni, Pb and Zn are due to their strong affinity to organic matter, hydrous oxides of Fe and Mn, and clay minerals.  相似文献   

16.
This article reports the synthesis of an efficient, low-cost material from maize powder to depollute arsenic-contaminated water. Arsenic is toxic for humans and other organisms even at low concentrations. The most well-known and severe case of arsenic poisoning through drinking water has been found in India and Bangladesh. Numerous inorganic materials have been tested for the removal of arsenic from water bodies over the last two decades. However, all such materials have several disadvantages such as unpredictable arsenic ion removal, high cost and the generation of toxic sludge that is often more difficult to manage. Alternatively, organic material from agricultural waste may be modified to enrich functional groups responsible for As sorption and, in turn, used to depollute contaminated waters. Here, Zea mays cob powder has been modified to remove arsenic species from water. Two modified materials were produced: an aminated maize powder and a thiolated maize powder. Amination was done using epichlorohydrin and dimethylamine. Thiolation was done using thioglycolic acids. Amination increased As (III) sorption from 70 to 75.8 % and As (V) sorption from 85 to 94.42 %, compared with unmodified maize powder. Thiolation increased As (III) sorption from 70 to 81.7 % and As (V) sorption from 85 to 90 %. Amination increased usability cycles from 3 to 5. Thiolation increased usability cycles from 3 to 6. The novel modified maize biosorbent has enough potential for the development of a low-cost technological pre-treatment step, prior to high-tech chemical treatments.  相似文献   

17.
为了研究地方性砷中毒高发区作物中砷含量及其对人体健康的威胁,在内蒙古自治区河套平原4个自然村采集了72个谷物蔬菜水果、81份人体尿样和8个自来水样品。用高效液相色谱-电感耦合等离子体质谱(HPLC-ICP-MS)分析测定采集的样品中各形态砷及其含量;用ICP-MS分析测定消解后的作物样品中砷总量。结果表明,自来水中总砷含量均小于1.0μg·L-1。尿液样品中总砷含量为4.50~319μg·L-1(平均值为56.9μg·L-1),二甲基砷(DMA)是尿砷的主要形态(>70%)。作物中砷的主要形态有无机三价砷As(III)、无机五价砷As(V)和DMA。谷物和蔬菜水果中总砷含量的最大值分别为102和335μg·kg-1。成人和儿童最大日摄入砷量分别为232和205μg。通过分析采样地人体尿砷、作物砷和地方性砷中毒发病率的相关性得出,作物中砷的含量虽未明显超过国家标准,但对人体健康有明显的潜在威胁。政府改水后(饮用水由井水变为达标的自来水),人体的健康风险主要来自作物中的砷,而不是饮用水中的砷。  相似文献   

18.
为弄清大同盆地地下水中影响砷的迁移、富集的主要地球化学与生物地球化学过程,为区域供水安全提供指导作用,针对高砷地下水系统开展了水文地球化学与含水层沉积物全岩地球化学研究;并在此基础上探讨了研究区高砷地下水成因。结果表明,研究区高砷地下水为偏碱性、强还原环境,砷含量为0.31~452μg·L-1,主要以砷酸盐形式存在,地下水中砷与三价铁的浓度有显著的相关性。高砷含水层沉积物中有机质、铁与砷含量表现出显著相关性。以上结果说明,碱性还原环境有利于地下水中砷的富集;微生物参与下,沉积物相有机质的氧化和Fe氧化物/氢氧化物的还原过程是本区高砷地下水形成的主控因素。  相似文献   

19.
Castromil is one of the gold mining areas in Portugal that has been abandoned since 1940. This area, which was first mined in Roman times, is located within a Hercynian granite body near the contact with Silurian metasediments. Gold is essentially disseminated along veins in the silicified granite, running NW-SE, related with a shear zone and frequently associated with sulphides (arsenopyrite and basically pyrite). In paragenetic terms, three stages of mineralization are considered: ferro-arseniferous (quartz + arsenopyrite I + pyrite I + pyrrhotite + bismuth), zinciferous (sphalerite + chalcopyrite), and remobilization (arsenopyrite II + galena + gold). Due to the lack of laws and environmental education, Castromil is today a gold mining heritage site where we can detect the consequences of an incautious exploration (tailings, wells and adits located in the old explored zone) and where a residential area is located. In order to characterize the actual state of the old mining area the trace metal contamination of soils and waters by mining activities was investigated. In the studied area 106 soil samples, 15 waters and 20 plants were sampled and analysed. The soil samples were analysed for 32 elements by ICP-AES. Waters were analysed by ionic chromatography and ICP-MS for major and trace elements. Plants were analysed for As, Fe and Pb by AAS. The results are discussed taking into account the risk-based standards for soils and groundwater's (target and intervention values) proposed by Swartjes (1999). The results show elevated concentration of As and Pb which were found in soils collected from agricultural areas. Foodstuff plants species collected in the Castromil agricultural area show high concentrations of As in the leaves (cabbage and lettuce) and in the tubers (potatoes). Groundwaters in the mining area contain high concentrations of As that exceeds the intervention values. The area must to be subject to a remediation process, considering the actual risks to humans and ecosystems and the risks due to contaminant migration.  相似文献   

20.
Arsenic contamination in water,soil, sediment and rice of central India   总被引:1,自引:0,他引:1  
Arsenic contamination in the environment (i.e. surface, well and tube-well water, soil, sediment and rice samples) of central India (i.e. Ambagarh Chauki, Chhattisgarh) is reported. The concentration of the total arsenic in the samples i.e. water (n=64), soil (n=30), sediment (n=27) and rice grain (n=10) were ranged from 15 to 825 μg L−1, 9 to 390 mg kg−1, 19 to 489 mg kg−1 and 0.018 to 0.446 mg kg−1, respectively. In all type of waters, the arsenic levels exceeded the permissible limit, 10 μg L−1. The most toxic and mobile inorganic species i.e. As(III) and As(V) are predominantly present in water of this region. The soils have relatively higher contents of arsenic and other elements i.e. Mg, Al, Si, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Ga, Zr, Sn, Sb, Pb and U. The mean arsenic contents in soil of this region are much higher than in arsenic soil of West Bengal and Bangladesh. The lowest level of arsenic in the soil of this region is 3.7 mg kg−1 with median value of 9.5 mg kg−1. The arsenic contents in the sediments are at least 2-folds higher than in the soil. The sources of arsenic contamination in the soil of this region are expected from the rock weathering as well as the atmospheric deposition. The environmental samples i.e. water, soil dust, food, etc. are expected the major exposure for the arsenic contamination. The most of people living in this region are suffering with arsenic borne diseases (i.e. melanosis, keratosis, skin cancer, etc.).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号