共查询到17条相似文献,搜索用时 46 毫秒
1.
生物强化修复石油污染土壤 总被引:2,自引:0,他引:2
筛选高效石油降解菌,考察菌株的降解性能及降解机理,进行花盆模拟高效外源菌强化修复石油污染土壤实验,在降解后期添加激活剂H2O2以及木屑来试图改善微生物的修复环境,减缓微生物的衰亡,并考察修复效果。结果表明,菌株L-1的降解效果较好,其对pH和温度有较大范围的适应性,能分泌较多的表面活性物质,细胞疏水性较强。将其应用于土壤修复中,经过50 d的修复,石油残留率达到50.6%左右,生物强化比自然修复残留率降低了8%左右。在第45天添加激活剂能有效改善修复效果,70 d时添加外源菌的土样最小石油残留率达到37.9%。 相似文献
2.
固定化微生物修复石油污染土壤影响因素研究 总被引:4,自引:0,他引:4
针对石油污染土壤修复,利用实验室已筛选的高效石油降解单菌SM-3,以天然有机材料为载体,吸附法制备固定化微生物。将游离与固定化微生物应用于室内花盆模拟修复石油污染土壤,对C/N/P、微生物投加量、石油含量、氧化剂和表面活性剂设计5因素4水平正交实验,探讨不同修复时期各影响因素的重要性顺序,最佳条件下各菌株的修复效果。结果表明,不同微生物在不同降解时期,各影响因素的重要性会发生变化;经过21 d的修复,固定化单菌SM-3石油降解率为22.77%,修复过程中,接种量是最重要的影响因素,营养元素N、P投加影响较大,表面活性剂和氧化剂影响次之。 相似文献
3.
4.
以高效石油降解菌N2、KB为目的菌种,玉米粉、麸皮和锯末为载体制备固体菌剂,并测定了这3种载体的饱和持水量、pH值和吸菌量。以吸菌量为评价指标,结合经济性综合选择最优载体,同时还考察了温度、pH值和料水比对最优载体吸菌量的影响。通过测定微生物数量和石油降解率的变化,考察了植物微生物联合修复效果。结果表明,与玉米粉和麸皮相比,锯末饱和持水量更大、吸菌量较大。锯末是木材厂的下脚料,可以实现高价值资源化利用。在温度30℃,pH为7,料水比1:1.5的最适培养条件下,固体菌剂中N2和KB两种细菌的活菌数量分别高达1.00×109CFU·g-1和1.58×109 CFU·g-1。采用生物菌剂和柳枝稷对石油污染土壤进行植物-微生物联合修复实验,100 d后石油降解率可达到50.5%。 相似文献
5.
6.
7.
石油污染土壤的植物与微生物修复技术 总被引:20,自引:3,他引:20
石油污染土壤的生物修复技术具有成本低、简便高效、对环境影响小等优点,正逐步成为石油污染治理研究的热点领域,具有广阔的发展前景.介绍了我国的石油污染概况及生物修复技术在石油污染治理中的应用,重点对石油污染土壤的微生物修复、植物修复、植物一微生物联合修复技术的研究进展及各自的优点、局限性进行了综述,并提出了石油污染土壤生物修复技术研究的重点领域. 相似文献
8.
生物电化学技术修复石油污染土壤并同步产出电能是一种新兴的污染土壤生态修复技术。对石油污染土壤通过其微生物燃料电池的构造,利用电化学阻抗谱分析了土壤的欧姆内阻,拟合估算了土壤的电导率,并考察了土壤微生物燃料电池的产电性能和修复效果。结果表明:采用丙酮清洗过的阳极并有水封的情况下,土壤微生物燃料电池的欧姆内阻下降了52%,电导率升高了1倍;在启动后的120 h内,最大电压和累计产出电量分别达189 mV和36 C,与对照相比分别增加了20和29倍。输出电压随着阴极与阳极之间距离的增大而减小。经过30 d的生物电化学处理,土壤中的总石油烃去除率是开路对照的3.3倍。该研究是石油污染盐碱土壤生物电化学修复的初步探索,以为污染土壤的生态修复提供新的思路。 相似文献
9.
10.
植物-微生物联合修复石油污染土壤的实验研究 总被引:1,自引:0,他引:1
筛选高效石油降解菌并考察菌株的石油降解能力,通过植物-微生物联合修复石油污染土壤室内实验,在修复过程中测定了土壤中细菌和固氮菌,碱解氮、速效磷和速效钾的含量变化,同时采用傅立叶变换离子回旋共振质谱(ESI FT-ICR MS)考察了植物-微生物联合修复效果。结果表明,菌株3#、4#的生长适应性较强,其混合菌的降解效果最好,将其混合菌液与植物进行植物-微生物联合修复不同浓度的石油污染土壤,经过150 d的温室降解,最高降解率达到73.47%。ESI FT-ICR MS分析结果表明,与空白组相比,植物组的O1、O2和N1类等化合物相对丰度都发生了显著变化,石油污染物得到一定程度的生物降解。 相似文献
11.
12.
生物修复剂在清除海滩石油污染中的应用 总被引:5,自引:0,他引:5
介绍了生物修复石油污染海滩时常用的修复剂类型及其特点.当实验室环境条件能较好控制时,生物强化剂一般是有效的;然而污染现场得出的证据不能表明其对生物降解有促进作用.实验室和现场的研究均表明营养型生物促进剂能有效促进石油的生物降解.水溶性营养易被波浪和潮汐冲刷掉;缓释型营养盐面临的主要挑战是如何控制其释放速率,以保证孔隙水中能较长时间维持理想的营养浓度;亲油型肥料中含有有机碳,有可能在微生物降解石油之前被优先降解.建议根据污染环境的特点选用适合的生物促进剂. 相似文献
13.
14.
木质素磺酸盐价格低廉,容易获得,若将其作为洗油剂中的牺牲剂,可较大幅度地降低洗油成本.以华北油田原油、华北平原典型表层土壤为模拟原料,配制了石油污染土壤,探讨木质素磺酸铵和木质素磺酸钠的洗油性能,以及木质素磺酸盐与壬基酚聚氧乙烯醚、曲拉通和平平加的复配效果.实验以碳酸钠和硅酸钠为助剂,经反复实验筛选,确定了4组最佳洗油剂配方:(Ⅰ)6(曲拉通):6(平平加):8(木素钠):40(硅酸钠):40(碳酸钠);(Ⅱ)6(曲拉通):6(壬酚聚醚):8(木素钠):35(硅酸钠):45(碳酸钠);(Ⅲ)9(曲拉通):3(壬酚聚醚):8(木素钠):50(硅酸钠):30(碳酸钠);(Ⅳ)6(曲拉通):6(壬酚聚醚):3(木素铵):5(木素钠):35(硅酸钠):45(碳酸钠).以此配方为基础,利用正交实验设计对搅拌温度、时间、固液比和加药浓度等工艺条件进行了优化.结果表明:当搅拌温度75℃、搅拌时间50 min、固液比1:15、加药总浓度为0.3g/L时,洗油率可达92.25%.清洗后污油无明显乳化现象,且浮于液面,只须简单刮油即可回收. 相似文献
15.
木质素盐在原油污染土壤清洗中的应用 总被引:5,自引:0,他引:5
木质素磺酸盐价格低廉,容易获得,若将其作为洗油剂中的牺牲剂,可较大幅度地降低洗油成本.以华北油田原油、华北平原典型表层土壤为模拟原料,配制了石油污染土壤,探讨木质素磺酸铵和木质素磺酸钠的洗油性能,以及木质素磺酸盐与壬基酚聚氧乙烯醚、曲拉通和平平加的复配效果.实验以碳酸钠和硅酸钠为助剂,经反复实验筛选,确定了4组最佳洗油剂配方:(Ⅰ)6(曲拉通):6(平平加):8(木素钠):40(硅酸钠):40(碳酸钠);(Ⅱ)6(曲拉通):6(壬酚聚醚):8(木素钠):35(硅酸钠):45(碳酸钠);(Ⅲ)9(曲拉通):3(壬酚聚醚):8(木素钠):50(硅酸钠):30(碳酸钠);(Ⅳ)6(曲拉通):6(壬酚聚醚):3(木素铵):5(木素钠):35(硅酸钠):45(碳酸钠).以此配方为基础,利用正交实验设计对搅拌温度、时间、固液比和加药浓度等工艺条件进行了优化.结果表明:当搅拌温度75℃、搅拌时间50 min、固液比1:15、加药总浓度为0.3g/L时,洗油率可达92.25%.清洗后污油无明显乳化现象,且浮于液面,只须简单刮油即可回收. 相似文献
16.