首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Speciation of some heavy metals in River Nile sediments,Cairo, Egypt   总被引:1,自引:0,他引:1  
River sediments are basic components of our environment. It also constitutes a major source of persistent bioaccumulative toxic chemicals which may pose threats to ecological and human health even after contaminants are no longer released from point and non-point sources. Therefore, the aim of this study was to investigate the mobility and the availability of metals in sediments from different sites along the Nile River in Cairo district using sequential chemical extraction technique. The speciation data showed that most metals were associated with organic/sulfide and residual fractions. The order of total metal concentrations in sediment samples was found to be Fe > Mn > Zn > Ni > Cu ≥ Cr > Pb > Cd.  相似文献   

2.
Heavy metal concentrations in black mussels (Mytilus galloprovincialis) collected from Cape Town Harbour were determined using energy dispersive X-ray fluorescence (EDXRF) and inductively coupled plasma-mass spectrometry (ICP-MS). EDXRF showed that tissue portions of the mussels contained K, Ca, Fe, Cu, Zn, Si, Sr, Al and Au, while the shell portion contained K, Ca, Fe, Cr, Zn, Si and Sr. In addition to these metals, EDXRF also revealed the presence of Al in the shells of the largest mussels. Highest concentrations of Cu and Zn were recorded in the tissues of the smallest mussels. Due to poorer detection limits of EDXRF, ultra-trace elements (Mn, Pb, As, Hg, V, Cr, Sn, Cd, Ni and Co) were determined in mussels using ICP-MS. The average metal concentrations found in the mussels are as follows; Pb (7.30 ± 0.67), Cd (1.98 ± 0.13), Hg (4.92 ± 0.60), As (6.94 ± 0.04), Sn (2.63 ± 0.13), Ni (1.88 ± 0.05), Cr (3.54 ± 0.05), V (4.17 ± 0.23), Co (0.74 ± 0.01) and Mn (35.20 ± 1.46). ANOVAs, Pearson correlation and principal component analysis (PCA) were employed in data analysis. The order of the abundance of metals in the mussels is Mn > Pb > As > Hg > V > Cr > Sn > Cd > Ni > Co. The average metal concentrations found in the mussels were higher than the permissible Food and Agriculture Organization (FAO) limits and other international guidelines.  相似文献   

3.
In this study, river bed sediments were submitted to a BCR sequential extraction, together with three bioavailability tests: a weak acid elutriate (HCl), a physiologically based extraction test (PBET) and a toxicity characteristic leaching procedure (TCLP). The most remarkable features of the BCR procedure were: i) Mn and Zn showed the highest proportion of the F1 exchangeable fraction; ii) in addition to Fe, Pb and Zn were the metals with the higher percentages in the F2 reducible fraction; iii) Fe and Cu were the elements with the highest proportion of the F3 oxidizable fraction; iv) the application of Principal Component Analysis to the metals in each of the three fractions did not show clear associations between metals and sediment components considered as metal scavengers, v) considering the sum of the three BCR fractions, the elements showed a decreasing availability of: Fe > Pb > Zn > Cu > Mn > Ni > Cr. The single extractions followed a decreasing extractability order of: HCl > PBET > TCLP and they were far from the extractability deduced from the sum of fractions in the BCR extraction.  相似文献   

4.
The Akaki River, laden with untreated wastes from domestic, industrial, and commercial sources, serves as a source of water for irrigating vegetable farms. The purpose of this study is to identify the impact of waste-water irrigation on the level of heavy metals and to predict their potential mobility and bioavailability. Zn and V had the highest, whereas Hg the lowest, concentrations observed in the soils. The average contents of As, Co, Cr, Cu, Ni, Zn, V, and Hg of both soils; and Pb and Se from Fluvisol surpassed the mean + 2 SD of the corresponding levels reported for their uncontaminated counterparts. Apparently, irrigation with waste water for the last few decades has contributed to the observed higher concentrations of the above elements in the study soils (Vertisol and Fluvisol) when compared to uncontaminated Vertisol and Fluvisol. On the other hand, Vertisol accommodated comparatively higher average levels of Cr, Cu, Ni, Zn, etc V, and Cd, whereas high contents of Pb and Se were observed in Fluvisol. Alternatively, comparable levels of Co and Hg were found in either soil. Except for Ni, Cr, and Cd in contaminated Vertisol, heavy metals in the soils were not significantly affected by the depth (0–20 and 30–50 cm). When the same element from the two soils was compared, the levels of Cr, Cu, Ni, Pb, Se, Zn, V, Cd at 0–20 cm; and Cr, Ni, Cu, Cd, and Zn at 30–50 cm were significantly different. Organic carbon (in both soils), CEC (Fluvisol), and clay (Vertisol) exhibited significant positive correspondences with the total heavy metal levels. Conversely, Se and Hg contents revealed perceptible associations with carbonate and pH. The exchangeable fraction was dominated by Hg and Cd, whereas the carbonate fraction was abounded with Cd, Pb, and Co. conversely, V and Pb displayed strong affinity to reducible fraction, where as Cr, Cu, Zn, and Ni dominated the oxidizable fraction. Cr, Hg, Se, and Zn (in both soils) showed preference to the residual fraction. Generally, a considerable proportion of the total levels of many of the heavy metals resided in non residual fractions. The enhanced lability is generally expected to follow the order: Cd > Co > Pb > Cu > Ni > Se > V and Pb > Cd > Co > Cu > Ni > Zn in Vertisol and Fluvisol, respectively. For the similar wastewater application, the soil variables influence the status and the distribution of the associated heavy metals among the different soil fractions in the study soils. Among heavy metals that presented relatively elevated levels and with potential mobility, Co, Cu, Ni (either soil), V (Vertisol), Pb, and Zn (Fluvisol) could pose health threat through their introduction into the food chain in the wastewater irrigated soils.  相似文献   

5.
Heavy metals in suburban soils pose both indirect and direct health risks. This study assessed the concentrations of Cr, Zn, Pb, and Cd in Jengka (Malaysia) suburban soil and estimated the human health risk. Health risk assessment (HRA) was utilized to assess non-cancer and cancer risks. The concentrations of heavy metals increased in the following order: Cd < Zn < Cr < Pb. The heavy metals were found to be divided into two components using principal component analysis (PCA), with PC1 comprising Pb and Cd and PC2 containing Zn and Cr. PC1 originates from anthropogenic sources, while PC2 is often from mixed anthropogenic and natural sources. Despite having the lowest mean concentration, Cd was enriched based on the geo-accumulation index (Igeo) and enrichment factor (EF). Average hazard index values were below the acceptable threshold (HI < 1) for dermal and inhalation pathways suggesting a low non-cancer risk. Jengka suburban soil had total lifetime cancer risk values slightly higher than the acceptable threshold (1 × 10−5). Skin contact was the most prominent contributing exposure pathway for both non-carcinogenic and carcinogenic risks. This study suggests that heavy metal bioactivity levels be used to make a plausible HRA of heavy metal pollution in suburban soils.  相似文献   

6.
Characteristic levels of metal ions in post dredged sediment and dredged sediments materials of a municipal creek in the Niger Delta show that significant concentrations of heavy metals are found to be accumulated more on the surface (0–15cm depth) of the dredged material as compared to the sub surface (15–30cm) and post dredged sediments. The distribution patterns were in the following order Fe > Mn > Zn > Cu > Pb > Ni > Cd and Fe > Mn > Zn > Pb > Cu > Ni > Cd for the post dredged sediment and dredged sediment materials respectively. The levels of the various metals were far below the EPA screening levels for open water disposal, consequently total levels of heavy metal found in these sediments pose no problem by open-water or upland disposal  相似文献   

7.
The distribution of some heavy metals, namely Cd, Pb, Zn, Fe, Cu, Cr and Mn in epipellic sediments of Igbede, Ojo and Ojora rivers of Lagos was studied weekly in the early summer (November) of 2003. The levels of selected trace metals were determined using Atomic Absorption Spectrophotometer (UNICAM 969 AAS SOLAR). Trends in heavy metal burdens in the sediments revealed weekly variations in all the rivers assessed. Statistical analyses also showed different mean levels of trace metals in the aquatic environments, the distribution of which followed the sequence Fe > Zn > Mn > Pb > Cu > Cr > Cd, Fe > Zn > Cu > Mn > Pb > Cr > Cd and Fe > Zn > Mn > Cu > Cr > Pb > Cd in Igbede, Ojo and Ojora rivers respectively. Fe recorded the highest concentration levels (1,582.95 ± 96.57 μ g/g–1,910.34 ± 723.19 μ g/g) in all the sediments investigated while the Cd levels (0.06 ± 0.10 μ g/g–0.47 ± 0.36 μ g/g) were the lowest. Expectedly, trace metal concentrations in fine grain muddy sediments of the Igbede and Ojo coastline were much higher than those of Ojora which consist of coarse and sandy deposits covering the near shore area. Generally, the results obtained fell within tolerable limits stipulated by World Health Organization (WHO).  相似文献   

8.
The optimized BCR sequential extraction procedure was applied to nine roadside soil samples for the determination of Cd, Cr, Pb and Ni. The extractable metals were isolated into three operationally defined fractions viz: acid extractable, reducible and oxidizable. The residue was treated with aqua regia solution. Metal analysis was done using flame atomic absorption spectrophotometry with air–acetylene flame. Results obtained showed the concentrations of the metals as relative abundance in the mobile phases of the samples (based on the sum of the first three fractions) are in the following order: Cd(91.9) > Pb(82.8) > Ni(49.5) > Cr(39.0). The most non-mobilizable metals were Cr and Ni which are generally lithogenic, associated with the silicate matrix, and the order is as follows: Cr(61.0) > Ni(50.5) > Pb(17.2) > Cd(8.1). The recovery of all the metals expressed as the ratio of total metal concentration to fractional sum of the optimized BCR sequential extraction procedure was of the order: Cr(95.6) > Pb(95.0) > Ni(94.8) > Cd(92.4).  相似文献   

9.
Samples of some popular brands of canned sardines in soybean oil in the Nigerian market were analyzed for levels of cadmium, lead, iron, cobalt, nickel, manganese, chromium, copper and zinc after wet digestion with acids by graphite furnace atomic absorption spectrophotometry. The mean concentrations for the metals in the different brands were as follows: cadmium 0.11–0.26 μg/g, iron 8.04–48.18 μg/g, cobalt 0.01–7.23 μg/g, nickel 0.04–3.26 μg/g, manganese 0.64–1.37 μg/g, chromium 0.01–0.10 μg/g, copper 0.10 μg/g and zinc 0.09–4.63 μg/g. Significant differences were observed in the heavy metal levels in the different brands of canned sardines except for copper and chromium. Cadmium, nickel and lead exceeded statutory safe limits.  相似文献   

10.
Coal burning in the steel industry is the chief source of mercury presence in surrounding environment. About 20 water-storage ponds and three natural water streams are located in adjoining areas of an integrated steel plant in Bhilai, India. Hundreds of hospital admissions with chronic ailments due to hazardous emissions from the steel industry are frequently reported. Many of these ailments are related to reported mercury-poisoning diseases. Measurements of mercury levels in various environmental matrices around this industrial area was started early in the 1990s. From 1990–1995, few environmental samples were analyzed for mercury content but from 1995 onwards, comprehensive assessment of mercury load along with other toxic metals in various environmental matrices were begun. This work synthesizes and compares data of mercury in the surface water from three major field programs, in 1997, 2002, and 2006. The focus is on both spatial and temporal variation. In the present survey (2006), mercury levels are significantly higher compared to subsequent surveys and have shown 10–18 times higher values compared to 2001 and 1997 surveys. The differences in Hg levels between downwind and other sites in three survey programs are found to be in order: 1997 > 2001 > 2006. Regression between water and sediment mercury levels has shown variation in correlation values and higher in winter season.  相似文献   

11.
The characteristic levels of heavy metals (Cd, Cr, Cu, Pb, Ni and Zn) of soil profiles of automobile mechanic waste dumps were studied. The concentration of heavy metals decreased with the depth of the profile and lateral distance from the dumpsites. The levels found in this study exceeded background concentrations and limits for agricultural and residential purposes. The distribution pattern of heavy metals in the soil profiles were in the following order Pb > Zn > Cu > Cd > Ni > Cr. The mechanic waste dumps represent potential sources of heavy metal pollution to environment. The elevated levels of heavy metals in these soil profiles constitute a serious threat to both surface and groundwater.  相似文献   

12.
Heavy metals in the aquatic environment have, to date, come essentially from naturally occurring geochemical resources. However, this has been enhanced by anthropogenic activities such as crude oil exploration and exploitation activities, resulting in pollution in the Taylor Creek aquatic ecosystem. The catfish species Bagrus bayad and other environmental segments were collected from five selected sites along Taylor Creek, southern Nigeria, and total metal concentration determined. The concentration levels of the metals in B. bayad were higher than the values reported in the literature for fresh fish and may lead to a higher risk of harmful effects. The bivariate regression models relating metals in B. bayad and metals in the surface waters were significant (R 2 ≥ 0.9002). The log (bio-concentration factor; BCF) values of Cr and Zn in B. bayad were the highest, whereas the lowest was found for Ni. The ecological distribution of the log (BCF) values was, for all the heavy metals, moderately stable over the creek. All log-transformed bio-magnification factors (BMF) in the creek were positive, which indicates that the metal concentration was greater in B. bayad than in suspended particulate matter (SPM). The absolute log (BMF) values of heavy metals can, therefore, be ranked in order of decreasing magnitude: Cr (3.26) > Zn (2.99) > Cd (2.93) > Fe (2.76) > Pb (2.66) > Mn (2.36) > Ni (2.24). This sequence indicates that toxic metals such as Cd, Cr and Pb are undergoing significant bio-reduction from SPM to B. bayad. The degree of correlation between the metals was different in B. bayad, which suggests that the sources of the metals polluting Taylor Creek were diverse.  相似文献   

13.
Responses of lagoon crab, Callinectes amnicola were explored as useful biological markers of heavy metal pollution. The toxicity level of the metals based on the 96-h LC50 values showed that copper with LC50 value of 0.018 mM was found to be two times more toxic than Lead (0.041 mM) against the lagoon crab, C. amnicola. The exposure of the lagoon crab to sublethal concentrations (1/100th and 1/10th of 96-h LC50 values) of Cu and Pb compound, respectively, resulted in the bioaccumulation of the test metals to varying degrees in the selected organs that were dependent on the type of metal and concentration of metal compound in the test media. The degree of metal (Cu and Pb) accumulation was generally in the following order: gills > muscle > heptopancrease. Exposure of the crabs to sublethal concentrations of the metals also caused pathological changes such as the disruption of the gill filaments and degeneration of glandular cells with multifocal areas of calcification in the hepatopancreas. A reduction in the weight of the exposed animals over a 14-day period of observation was also recorded. The significance of these results and the usefulness of the biological endpoints in monitoring programmes aimed at establishing the total environmental level of heavy metals in aquatic ecosystems were discussed.  相似文献   

14.
This study investigated the soil nematode community structure along the Yellow River in the Lanzhou area of China, and analyzed the impact of heavy metals (Cd, Pb, Cr, Cu, and Zn) and polycyclic aromatic hydrocarbons (PAHs) on the nematode community. Soil samples from five locations (named A–E), which were chosen for soil analysis, showed significant differences in their heavy metal content (p < 0.01), as well as in the variety of nematodes (up to 41 genera) and families (up to 20) that were present. The different samples also differed significantly in the total PAH content (p < 0.05), as well as the six types of PAH present. Sites A–C showed the most severe contamination with heavy metals and PAHs; these sites had the lowest abundance of fungivores and omnivore/predators, but the proportion of bacteriovores was the highest (p < 0.05). Site E, in contrast, showed only minor pollution with heavy metals and PAHs, and it contained the highest abundance of plant parasites (p < 0.05). Several nematode ecological indicators were found to correlate with concentration of soil pollutants at all the sites tested: the maturity index (MI, in addition to plant parasites), plant parasite index (PPI), ΣMI (including all the soil nematodes), Shannon-Wiener diversity index (H′′), and Wasilewska index (WI). Disturbance to the soil environment was more severe when MI, ΣMI, and H′ values were lower. The results of the study show that the abundance and structure of the soil nematode communities in the sampling locations were strongly influenced by levels of heavy metals and PAHs in the soil. They also show that the diversity index H′ and the maturity index can be valuable tools for assessing the impact of pollutants on nematodes.  相似文献   

15.
Agroforestry systems (AFSs) have an important role in capturing above and below ground soil carbon and play a dominant role in mitigation of atmospheric CO2. Attempts has been made here to identify soil organic matter fractions in the cacao-AFSs that have different susceptibility to microbial decomposition and further represent the basis of understanding soil C dynamics. The objective of this study was to characterize the organic matter density fractions and soil size fractions in soils of two types of cacao agroforestry systems and to compare with an adjacent natural forest in Bahia, Brazil. The land-use systems studied were: (1) a 30-year-old stand of natural forest with cacao (cacao cabruca), (2) a 30-year-old stand of cacao with Erythrina glauca as shade trees (cacao + erythrina), and (3) an adjacent natural forest without cacao. Soil samples were collected from 0-10 cm depth layer in reddish-yellow Oxisols. Soil samples was separated by wet sieving into five fraction-size classes (>2000 μm, 1000–2000 μm, 250–1000 μm, 53–250 μm, and <53 μm). C and N accumulated in to the light (free- and intra-aggregate density fractions) and heavy fractions of whole soil and soil size fraction were determined. Soil size fraction obtained in cacao AFS soils consisted mainly (65 %) of mega-aggregates (>2000 μm) mixed with macroaggregates (32–34%), and microaggregates (1–1.3%). Soil organic carbon (SOC) and total N content increased with increasing soil size fraction in all land-use systems. Organic C-to-total N ratio was higher in the macroaggregate than in the microaggregate. In general, in natural forest and cacao cabruca the contribution of C and N in the light and heavy fractions was similar. However, in cacao + erythrina the heavy fraction was the most common and contributed 67% of C and 63% of N. Finding of this study shows that the majority of C and N in all three systems studied are found in macroaggregates, particularly in the 250–1000 μm size aggregate class. The heavy fraction was the most common organic matter fraction in these soils. Thus, in mature cacao AFS on highly weathered soils the main mechanisms of C stabilization could be the physical protection within macroaggregate structures thereby minimizing the impact of conversion of forest to cacao AFS.  相似文献   

16.
Eichhornia crassipes was tested for its ability to bioconcentrate 8 toxic metals (Ag, Cd, Cr, Cu, Hg, Ni, Pb, and Zn) commonly found in wastewater from industries. Young plants of equal size were grown hydroponically and amended with 0, 0.1, 0.3, 0.5, 1.0, 3.0, and 5.0 mM of each heavy metal individually for 21 days. The test plant had the lowest and the highest tolerance indices for Hg and Zn, respectively. A significant (P ≤ .05) reduction in biomass production was observed in metal treated plants compared with the control. All strace elements accumulated to higher concentrations in roots than in shoots. Trace element concentrations in tissues and the bioconcentration factors (BCF) were proportional to the initial concentration of individual metal in the growth medium and the duration of exposure. From a phytoremediation perspective, E. crassipes is a promising plant species for remediation of natural water bodies and/or wastewater polluted with low levels of Zn, Cr, Cu, Cd, Pb, Ag and Ni.  相似文献   

17.
Groundwater (well water) from a residential area within the vicinity of an industrial estate in Lagos, Nigeria were sampled and analysed by Flame Atomic Absorption Spectroscopy for their heavy metals content. This was with a view of assessing the quality of the water, which was being used for domestic activities, especially, drinking usually without treatment. Total trace metal determination by mineral acid digestion of water samples was applied. This method proved to be better than an extractive concentration technique in the quality assurance protocols with the recovery range being 90.7 ± 0.006–97.6 ± 0.003%. Mean concentration of trace metals in water samples ranged from Fe: 0.05–0.47 mg l−1; Al: 0.1–1.54 mg l−1; Cu: 0.14–1.39 mg l−1; Zn: 0.04–0.43 mg l−1; Cd: trace–0.02 mg l−1; Pb: trace–0.03 mg l−1, Mn: 0.01–0.18 mg l−1 and Ni: 0.02–0.11 mg l−1. Physical parameters of water samples examined were within the drinking water safety limits except for conductivity. Results generally indicate the presence of heavy metal constituents in groundwater samples. Detection of metals such as cadmium and lead which have serious health implications above WHO and USEPA limits in drinking water gives cause for concern.  相似文献   

18.
Maintenance of soil organic carbon (SOC) is important for sustainable use of soil resources due to the multiple effects of SOC on soil nutrient status and soil structural stability. The objective of this study was to identify the changes in soil aggregate distribution and stability, SOC, and nitrogen (N) concentrations after cropland was converted to perennial alfalfa (Medicago sativa L. Algonguin) grassland for 6 years in the marginal oasis of the middle of Hexi Corridor region, northwest China. Significant changes in the size distribution of dry-sieving aggregates and water-stable aggregates, SOC, and N concentrations occurred after the conversion from crop to alfalfa. SOC and N stocks increased by 20.2% and 18.5%, respectively, and the estimated C and N sequestration rates were 0.4 Mg C ha−1 year−1 and 0.04 Mg N ha−1 year−1 following the conversion. The large aggregate (>5 mm) was the most abundant dry aggregate size fraction in both crop and alfalfa soils, and significant difference in the distribution of dry aggregates between the two land use types occurred only in the >5 mm aggregate fraction. The percentage of water-stable macroaggregates (>2, 2–0.25 mm) and aggregate stability (mean weight diameter of water-stable aggregates, WMWD) were significantly higher in alfalfa soils than in crop soils. There was a significant linear relationship between total SOC concentration and aggregate parameters (mean weight diameter) for alfalfa soils, indicating that aggregate stability was closely associated with increased SOC concentration following the conversion of crops to alfalfa. The SOC and N concentrations and the C/N ratio were greatest in the >2 mm water-stable aggregates and the smallest in the 0.25–0.05 mm aggregates in crop and alfalfa soils. For the same aggregate, SOC and N concentrations in aggregate fractions increased with increasing total SOC and N concentrations. The result showed that the conversion of annual crops to alfalfa in the marginal land with coarse-texture soils can significantly increase SOC and N stocks, and improve soil structure.  相似文献   

19.
Age dependency of [3H]-ouabain binding, 45Ca2+ eflux and its magnetosensitivity in rats’ brain cortex and heart muscle tissues were studied. Curves of dose-dependent [3H]-ouabain binding consisted of three components with different affinities (10−7–10−4 M (α1); 10−9–10−7 M (α2); and 10−11–10−9 M (α3)). These curves were also characterized by different dose-dependent kinetics. [3H]-ouabain binding with α3 receptors in brain cortex and heart muscle tissues of young and adult animals had a dose-dependent character, while that in old ones had a dose-independent character. A 0.2 T static magnetic field (SMF) exposure had modulation effect on ouabain binding with α1, α2 and α3 receptors in young rats, while in adult ones, only α3 receptors were magnetosensitive. In old animals, SMF exposure had no significant effect on ouabain binding with α3 receptors in brain cortex, while in heart muscle, it had inhibitory effect on it. Age-dependent effect of ouabain impact on 45Ca2+ efflux showed that all concentrations of ouabain lead to inhibitory effect in young animals’ brain cortex and heart muscle (with the exception of 10−10 and 10−6 M), while in old ones, it had activation effect as compared with data received without ouabain. SMF exposure in young animals had activation effect on 45Ca2+ efflux from brain cortex and heart muscle in data without ouabain, and in old rats, 45Ca2+ efflux from brain cortex was magnetic insensitive. In old animals, SMF increased 45Ca2+ efflux even after extra low concentration of ouabain. It is suggested that α3 receptors having a crucial role in the regulation of Na+/Ca2+ exchange serve as age-dependent magnetosensors of excitable cells.  相似文献   

20.
The bioavailability of cobalt and its transfer from soil to vegetables and rice were investigated. Among 312 soils collected from vegetable and paddy fields in the suburban areas of some major cities of Fujian Province, southeast China, total soil Co ranged from 3.5 to 21.7 mg kg?1, indicating a slight accumulation compared with the background value of the province. DTPA extracted 0.1–8.5% of soil total Co. Total and DTPA-extractable Co correlated with soil pH, CEC, free Fe, total Mn, clay and silt content more significantly in paddy soils than in the soils from vegetable fields. The average Co concentrations in the edible parts of vegetables and rice were 15.4 μg kg?1 and 15.5 μg kg?1, respectively. The transfer factor (the ratio of plant Co to soil DTPA-extractable Co, TFDTPA) ranged from 0.003 to 0.126 with a median of 0.049. The TFDTPA decreased in the order of leafy vegetables > fruit vegetables > root vegetables > rice. The TFDTPA of all crops decreased with increasing DTPA-extractable Co. Increase in pH, CEC, organic matter, clay, silt, free iron and total Mn limited the soil-to-plant transfer of Co to varying degrees. The transfer of Co from the soils to the edible parts of the crops was lower than that of Zn, Cu and Cd, but higher than that of Pb in the same areas. The concentrations of Co in rice and vegetables in the study areas were considered to be safe for the local residents because of the slight anthropogenic input and the low transfer potential to the edible parts of Co from the soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号