首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metal oxides have great potential for controlling the fate and transport of viruses in the subsurface and water-treatment systems. The processes, however, are subject to solution chemistry. In this study, a number of column experiments were conducted to examine the effects of solution pH and anions (carbonate and phosphate) on attachment, transport, and inactivation of two bacteriophages (phiX174 and MS-2) in goethite-coated sand medium. Removal of both viruses on goethite-coated sand increased as solution pH decreased from 9.3 to 7.5, due mostly to virus inactivation. MS-2, a relatively hydrophobic virus with a lower isoelectric point (3.9), was more sensitive to the change of solution pH than phiX174, a relatively hydrophilic virus with a higher isoelectric point (6.6), in terms of their attachment and inactivation on goethite. About 90% of the MS-2 particles removed by goethite (accounting for 81% of the total input) were inactivated at pH 7.5, whereas all of the removed MS-2 particles (accounting for 10% of the total input) still remained infectious at pH 9.3. In comparison, approximately 74% of the goethite-bound phiX174 particles (accounting for 95% of the total input) lost their infectivity at pH 7.5, in contrast to a complete recovery at pH 9.3 (accounting for 65% of the total input) when the columns were eluted using a beef extract solution (pH 9.5). Presence of phosphate (20 mM H(2)PO(4)(-)) in input solution reduced virus attachment and appeared to protect the viruses from being inactivated during transport; this effect was more significant on MS-2 than on phiX174. Specifically, approximately 29% of the phiX174 particles and approximately 49% of MS-2 particles injected into the column were removed during transport. Mass recovery data showed that no phiX174 was inactivated in the presence of phosphate, whereas about 38% of the MS-2 particles attached on goethite lost their infectivity. Conversely, presence of carbonate on goethite increased virus attachment and inactivation due to contribution of additional attachment sites from protonated surface groups of the carbonate ions that were adsorbed on goethite. About 70% of the total input viruses (both phiX174 and MS-2) were removed during transport, of which 35% phiX174 and 85% MS-2 were eventually inactivated.  相似文献   

2.
Large amounts of 137Cs have been accidentally released to the subsurface from the Hanford nuclear site in the state of Washington, USA. The cesium-containing liquids varied in ionic strengths, and often had high electrolyte contents, mainly in the form of NaNO3 and NaOH, reaching concentrations up to several moles per liter. In this study, we investigated the effect of ionic strengths on Cs migration through two types of porous media: silica sand and Hanford sediments. Cesium sorption and transport was studied in 1, 10, 100, and 1000 mM NaCl electrolyte solutions at pH 10. Sorption isotherms were constructed from batch equilibrium experiments and the batch-derived sorption parameters were compared with column breakthrough curves. Column transport experiments were analyzed with a two-site equilibrium-nonequilibrium model. Cesium sorption to the silica sand in batch experiments showed a linear sorption isotherm for all ionic strengths, which matched well with the results from the column experiments at 100 and 1000 mM ionic strength; however, the column experiments at 1 and 10 mM ionic strength indicated a nonlinear sorption behavior of Cs to the silica sand. Transport through silica sand occurred under one-site sorption and equilibrium conditions. Cesium sorption to Hanford sediments in both batch and column experiments was best described with a nonlinear Freundlich isotherm. The column experiments indicated that Cs transport in Hanford sediments occurred under two-site equilibrium and nonequilibrium sorption. The effect of ionic strength on Cs transport was much more pronounced in Hanford sediments than in silica sands. Effective retardation factors of Cs during transport through Hanford sediments were reduced by a factor of 10 when the ionic strength increased from 100 to 1000 mM; for silica sand, the effective retardation was reduced by a factor of 10 when ionic strength increased from 1 to 1000 mM. A two order of magnitude change in ionic strength was needed in the silica sand to observe the same change in Cs retardation as in Hanford sediments.  相似文献   

3.
Breakthrough curves, on a semi-log scale, from tests in porous media with block-input of viruses, bacteria, protozoa and colloidal particles often exhibit a typical skewness: a rather slowly rising limb and a smooth transition of a declining limb to a very long tail. One-site kinetic models fail to fit the rising and declining limbs together with the tail satisfactorily. Inclusion of an equilibrium adsorption site does not seem to improve simulation results. This was encountered in the simulation of breakthrough curves from a recent field study on the removal of bacteriophages MS2 and PRD1 by passage through dune sand. In the present study, results of laboratory experiments for the study of this issue are presented. Breakthrough curves of salt and bacteriophages MS2, PRDI, and phiX174 in 1 D column experiments have been measured. One- and two-site kinetic models have been applied to fit and predict breakthrough curves from column experiments. The two-site model fitted all breakthrough curves very satisfactorily, accounting for the skewness of the rising limb as well as for the smooth transition of the declining limb to the tail of the breakthrough curve. The one-site model does not follow the curvature of the breakthrough tail, leading to an overestimation of the inactivation rate coefficient for attached viruses. Interaction with kinetic site 1 is characterized by relatively fast attachment and slow detachment, whereas attachment to and detachment from kinetic site 2 is fast. Inactivation of viruses and interaction with kinetic site 2 provide only a minor contribution to removal. Virus removal is mainly determined by the attachment to site 1. Bacteriophage phiX174 attached more than MS2 and PRD1, which can be explained by the greater electrostatic repulsion that MS2 and PRD1 experience compared to the less negatively charged phiX174.  相似文献   

4.
Retardation capacity of organophilic bentonite for anionic fission products   总被引:7,自引:0,他引:7  
Sorption and diffusivity of iodide and pertechnetate (I- and TcO4-) on MX-80 bentonite with different hexadecylpyridinium (HDPy+) loadings were studied using equilibrium solutions of different ionic strengths. In HDPy(+)-modified bentonite, iodide and pertechnetate ions exhibited increasing sorption (characterized by the distribution ratio, Rd), while Cs+ and Sr2+ showed decreasing sorption with increasing organophilicity. In case of medium-loading levels, the simultaneous sorption of anions (I- and TcO4-) and cations (Cs+ and Sr2+) was observed. Sorption of ions was influenced by the composition of the electrolytes employed. It decreased gradually with increasing ionic strength of the electrolyte solutions. The experiments revealed the general tendency that the diffusivity (Da [cm2.s-1]) for iodide and pertechnetate decreases with increasing organophilicity and increases with increasing ionic strength of the equilibrium solutions, confirming the results of the sorption experiments. Additionally, some mineralogical and chemical investigations, like IR spectral analysis of the organo-bentonite samples and exchange behavior of HDPy+, were performed. On the basis of these analyses, it was concluded that the alkylammonium ions are sorbed as (1) HDPy+ cations, (2) HDPyCl molecules and (3) micelles with decreasing binding intensities in this order.  相似文献   

5.
This study investigates the influence of the two different clay minerals kaolinite and smectite as well as of organic matter on the cation sorption and desorption behaviour of three imidazolium based ionic liquids -1-butyl-3-methyl-imidazolium tetrafluoroborate (IM14 BF(4)), 1-methyl-3-octyl-imidazolium tetrafluoroborate (IM18 BF(4)) and 1-butyl-3-methyl-imidazolium bis[(trifluoromethyl)sulfonyl]imide (IM14 (CF(3)SO(2))(2)N) - in soil. The German standard soil Lufa 2.2 - a natural soil classified as a loamy sand - was the basis substrate for the different soil compositions and also served as a reference soil. The addition of organic matter and clays increases the sorption of the substances and in particular smectite had striking effects on the sorption capacity for all three ionic liquids indicating that ionic interactions play an important role for sorption and desorption processes of ionic liquids in soil. One exception was for kaolinite-containing soils and the IM14 cation: with (CF(3)SO(2))(2)N(-) as an anion the sorption was identical at either 10 wt% or 15 wt% clay content, and with BF(4)(-) sorption was even lower at 15 wt% kaolinite than at 10 wt%. Desorption was weak for IM18 BF(4), presumably owing to the longer alkyl side chain. With regard to the influence of kaolinite on desorption, the same pattern was observed as it was found for the sorption of IM14 BF(4) and IM14 (CF(3)SO(2))(2)N.  相似文献   

6.
We present results from experiments on the migration of 137Cs through columns containing quartz sand. Times for 137Cs movement through these columns and the quantity of 137Cs adsorbed by the sand decreased as the ionic strength of the pore water increased from 0.002 to 0.1 m. The breakthrough curves were characterized by a slow approach towards steady-state concentrations as well as by long tails, indicating that 137Cs adsorption to the sand grains was, at least in part, controlled by rate-limited reactions. Various formulations for solute mass transfer were tested for their ability to fit the experimental breakthrough curves. Based on a statistical analysis, a nonlinear, two-site model was identified as the most appropriate for describing the suite of experimental data. Variation in the model parameter that describes the rate of 137Cs adsorption to the sand showed no consistent pattern with changes in ionic strength. In contrast, model parameters describing the sorption capacity of the sand grains and the fraction of kinetic sorption sites on the sand decreased with increasing ionic strength. The parameter describing the rate of 137Cs desorption varied directly with changes in ionic strength.  相似文献   

7.
Biochars’ properties will change after application in soil due to the interactions with soil constituents, which would then impact the performance of biochars as soil amendment. For a better understanding on these interactions, two woody biochars of different surface areas (SA) were physically treated with aluminum oxide (Al-oxide) to investigate its potential influence on biochars’ sorption property. Both the micropore area and mesopore (17~500 Å in diameter) area of the low-SA biochar were enhanced by at least 1.5 times after treatment with Al-oxide, whereas the same treatment did not change the surface characteristics of the high-SA biochar due partly to its well-developed porosity. The enhanced sorption of the pesticide isoproturon to the Al-oxide-treated low-SA biochar was observed and is positively related to the increased mesopore area. The desorption hysteresis of pesticide from the low-SA biochar was strengthened because of more pesticide molecules entrapped in the expanded pores by Al-oxide. However, no obvious change of pesticide sorption to the high-SA biochar after Al-oxide treatment was observed, corresponding to its unchanged porosity. The results suggest that the influence of Al-oxide on the biochars’ sorption property is dependent on their porosity. This study will provide valuable information on the use of biochars for reducing the bioavailability of pesticides.  相似文献   

8.
Li J  Zhou B  Shao J  Yang Q  Liu Y  Cai W 《Chemosphere》2007,68(7):1298-1303
The effects of different heavy metals (Cd, Pb), cationic surfactants cetyltrimethylammonium bromide (CTAB), anionic surfactant sodium dodecylbenzenesulfonate (SDBS) and the chemistry of the solution (pH and ionic strength) on the sorption of bisphenol A (BPA) to sediment were studied. Results showed that the presence of Cd and Pb caused a significant increase on the sorption of BPA to sediment and the sorption isotherms were in good agreement with Freundlich equation. The effect of surfactants on the adsorption of BPA onto sediment was found to strongly depend on the type of the surfactants. The presence of CTAB promoted BPA sorption and the amount of BPA adsorbed onto sediment increased linearly with concentration of CTAB. In contrast, the presence of anionic surfactant (SDBS) caused a slight reduction on the sorption of BPA. It was also found that the sorption behavior of BPA was affected by solution pH and ionic strength. The larger amount of BPA was absorbed with higher ionic strength and lower pH. This study may provide important insights into the understanding of the transport and fate of BPA in the environment.  相似文献   

9.
In a recent field study on dune recharge, bacteriophages MS2 and PRD1 were found to be removed 3 log10 over the first 2.4 m and only 5 log10 over the next 27 m. To understand the causes of this nonlinear removal, column experiments were carried out under conditions similar to the field: same recharge water, temperature (5 +/- 3 degrees C) and pore water velocity (1.5 m day(-1)). Soil samples were taken along a streamline between the recharge canal and the first monitoring well. Bacteriophage phiX174 was included for comparison. The high initial removal in the field was found not to be due to heterogeneity of phage suspensions but to soil heterogeneity. Phage removal rates correlated strongly positively with soil organic carbon content, and relatively strongly positively with silt content and the presence of ferric oxyhydroxides. Soil organic carbon content, silt content and the presence of ferric oxyhydroxides were found to decrease exponentially with travel distance. Removal rates of phiX174 were found to be 3-10 times higher than those of MS2 and PRD1 due to the lower electrostatic repulsion that the less negatively charged phiX174 experiences. It is suggested that the high initial removal in the field is due to the presence of favorable sites for attachment formed by ferric oxyhydroxides that decrease exponentially with travel distance. Similar removal rates may be found at both laboratory and field scale. However, due to local variations at field scale detailed knowledge on soil heterogeneity may be needed to enable a reliable prediction of removal.  相似文献   

10.
The sorption and desorption behavior of radium on bentonite and purified smectite was investigated as a function of pH, ionic strength and liquid to solid ratio by batch experiments. The distribution coefficients (Kd) were in the range of 10(2) to > 10(4) ml g-1 and depended on ionic strength and pH. Most of sorbed Ra was desorbed by 1 M KCl. The results for purified smectite indicated that Ra sorption is dominated by ion exchange at layer sites of smectite, and surface complexation at edge sites may increase Ra sorption at higher pH region. Reaction parameters between Ra and smectite were determined based on an interaction model between smectite and groundwater. The reaction parameters were then used to explain the results of bentonite by considering dissolution and precipitation of minerals and soluble impurities. The dependencies of experimental Kd values on pH, ionic strength and liquid to solid ratio were qualitatively explained by the model. The modeling result for bentonite indicated that sorption of Ra on bentonite is dominated by ion exchange with smectite. The observed pH dependency was caused by changes of Ca concentration arising from dissolution and precipitation of calcite. Diffusion behavior of Ra in bentonite was also investigated as a function of dry density and ionic strength. The apparent diffusion coefficients (Da) obtained in compacted bentonite were in the range of 1.1 x 10(-11) to 2.2 x 10(-12) m2 s-1 and decreased with increasing in dry density and ionic strength. The Kd values obtained by measured effective diffusion coefficient (De) and modeled De were consistent with those by the sorption model in a deviation within one order of magnitude.  相似文献   

11.
Zhuang J  Yu GR 《Chemosphere》2002,49(6):619-628
Surface charges play a major role in determining the interactions of contaminants with soils. The most important sources of soil charges are clay mineral colloids, whose electrochemical properties are usually modified by metal-oxides and organic matter in natural environments. In this study, effects of coatings of organic matter and Fe- and Al-oxides on a series of electrochemical properties and heavy metal sorption of three clay minerals (kaolinite, montmorillonite and illite) predominant in natural soils were investigated using batch techniques. The results indicate that the coatings increased the specific surface area of the clay minerals, except for the Al-oxide coated montmorillonite and organic matter coated 2:1 clay minerals. The sesquioxide coatings increased amount of positive charges but decreased negative charges. This causes great reduction of the negative potential on the clay surfaces, shift of the zero point of charge to a higher pH, and promotion of fluoride sorption due to presence of more OH- and OH2 on the oxide surfaces than on the clay surfaces. In contrast, the organic coating significantly increased the negativity of surface charges, and thus the zero point of charge and zeta-potential of the clays dropped down. The organic coating also induced a reduction of fluoride sorption on the clays. With respect to the sorption of lead and cadmium, the sesquioxide coatings produced insignificant effects. The experiments of lead/cadmium competitive sorption show that on both the oxide-coated surface and the original clay surface there exist different types of sites, each of which preferentially binds with a heavy metal.  相似文献   

12.
Study of sorption kinetics of some ionic liquids on different soil types   总被引:1,自引:0,他引:1  
In the present contribution sorption kinetics experiments under static conditions were utilized in three selected ionic liquids cations (1-ethyl-3-methylimidazolium, 1-butyl-3-methylimidazolium, 1-hexyl-3-methylimidazolium chlorides) study with five type of soil, differing in total organic carbon (TOC) content. The experimental results indicate the sorption capacity growth with increase in TOC content and hydrophobicity of ionic liquid cation. The obtained kinetic sorption parameters as well as distribution coefficients (Kd) were used to estimate the sorption properties of the soil types towards the ionic liquids in question. The Gibbs free energy values indicate that ionic liquid cations sorption on soils could be generally considered as a physical adsorption with exothermic effect. But the values of −dG for studied cations sorption on soil with very high of TOC content in soil (45%) may testify to nature of chemical adsorption. Sorption of the analyzed compounds occurs probably by means of hydrogen bonds, electrostatic and π  π interaction with the organic matter and the clay minerals of the soils.  相似文献   

13.
The chemical composition and pH of 30 fresh snow samples collected during December 1986 to May 1987 at Gulmarg (34 degrees 03' N, 74 degrees 24' E, 2655 m above mean sea level), a remote place in north India, were studied. The snow samples were, by and large, alkaline in nature and were largely influenced by non-marine aerosols. The concentrations of cations (Ca(2+), K(+) and Mg(2+)) were more than the anions (SO(2-)(4) and NO(-)(3)). Factor analysis indicated that most of the ionic components were transported into the region during the period of measurements. The transport of ionic components could be attributed to the passage of western disturbances over this region. The comparison of concentrations of anions and cations in the snow samples at Gulmarg with those reported from a few countries in the west revealed that the composition of Gulmarg snow largely differs in the concentrations of cations rather than anions. Among the cations, the concentration of Ca(2+) was high at Gulmarg and this could be responsible for buffering the pH of snow in the alkaline range.  相似文献   

14.
Antimony sorption at gibbsite-water interface   总被引:3,自引:0,他引:3  
Antimony (Sb) is extensively used in flame retardants, lead-acid batteries, solder, cable coverings, ammunition, fireworks, ceramic and porcelain glazes and semiconductors. However, the geochemical fate of antimony (Sb) remained largely unexplored. Among the different Sb species, Sb (V) is the dominant form in the soil environment in a very wide redox range. Although earlier studies have examined the fate of Sb in the presence of iron oxides such as goethite and hematite, few studies till date reported the interaction of Sb (V) with gibbsite, a common soil Al-oxide mineral. The objective of this study was to understand the sorption behavior of Sb (V) on gibbsite as a function of various solution properties such as pH, ionic strength (I), and initial Sb concentrations, and to interpret the sorption-edge data using a surface complexation model. A batch sorption study with 20 g L−1 gibbsite was conducted using initial Sb concentrations range of 2.03-16.43 μM, pH values between 2 and 10, and ionic strengths (I) between 0.001 and 0.1 M. The results suggest that Sb (V) sorbs strongly to the gibbsite surface, possibly via inner-sphere type mechanism with the formation of a binuclear monodentate surface complex. Weak I effect was noticed in sorption-edge data or in the isotherm data at a low surface coverage. Sorption of Sb (V) on gibbsite was highest in the pH range of 2-4, and negligible at pH 10. Our results suggest that gibbsite will likely play an important role in immobilizing Sb (V) in the soil environment.  相似文献   

15.
In order to contain the movement of organic contaminants in groundwater, a subsurface sorption barrier consisting of sand or clay minerals coated with a cationic surfactant has been proposed. The effectiveness of such a sorption barrier might be affected by the presence of dissolved organic matter (DOM) in the groundwater. To study the impact of DOM on barrier performance, a series of batch experiments were performed by measuring naphthalene and phenanthrene sorption onto sand coated with cetylpyridinium chloride (CPC) and bentonite coated with hexadecyltrimethylammonium bromide (HDTMA) in the presence of various concentrations of DOM. The overall soil-water distribution coefficient (K*) of naphthalene and phenanthrene onto CPC-coated sand decreased with increasing DOM concentration, whereas the K* of the compounds onto HDTMA-coated bentonite slightly increased with increasing DOM concentration. To describe the overall distribution of polycyclic aromatic hydrocarbons (PAHs) in the systems, a competitive multiphase sorption (CMS) model was developed and compared with an overall mechanistic sorption (OMS) model. The modeling studies showed that while the OMS model did not explain the CPC-coated sand experimental results, a model that included competitive sorption between DOM and PAH did. The experimental results and the modeling study indicated that there was no apparent competition between DOM and PAH in the HDTMA-coated bentonite system, and indicated that in groundwater systems with high DOM, a barrier using HDTMA-coated bentonite might be more effective.  相似文献   

16.
The injection of bacteria in the subsurface has been identified as a potential method for in situ cleanup of contaminated aquifers. For high bacterial loadings, the presence of previously deposited bacteria can result in decreased deposition rates--a phenomenon known as blocking. Miscible displacement experiments were performed on short sand columns (approximately 5 cm) to determine how bacterial deposition on positively charged metal-oxyhydroxide-coated sands is affected by the presence of previously deposited bacteria. Approximately 8 pore volumes of a radiolabeled bacterial suspension at a concentration of approximately 1 x 10(9) cells ml-1 were introduced into the columns followed by a 2-pore-volume flush of cell-free buffer. It was found that the presence of Al- and Fe-coated sand increased both deposition rates and maximum fractional surface coverage of bacteria on the sediment surfaces. The effect of grain size on maximum bacterial retention capacity, however, was not significant. Decreasing ionic strength from 10(-1) to 10(-2) M KCl resulted in noticeable decreases in sticking efficiency (alpha) and maximum surface coverage (thetamax) for clean silica sand--results consistent with DLVO theory. In columns containing positively charged Al- and Fe-coated sands, however, changes in alpha and thetamax due to decreasing ionic strength were minimal. These findings demonstrate the importance of geochemical controls on the maximum bacterial retention capacity of sands.  相似文献   

17.
As one of the widely used antibiotics in the world, the environmental risks of tylosin (TYL) received more and more attention. In order to assess its environmental fate and ecological effects accurately, it is necessary to understand the sorption properties of TYL on the soils/sediments. The sorption of TYL on goethite at different pH and ionic strength conditions were measured through a series of batch experiments and the sorption data of TYL were fitted by Freundlich and dual-mode sorption models. It was obvious that sorption was strongly dependent on pH and ionic strength. Sorption capacity of TYL increased as the pH increased and ionic strength decreased. The pH and ionic strength-dependent trends might be related with complexation between cationic/neutral TYL species and goethite. The sorption affinity of TYL on goethite decreased as ionic strength increased, which only occurred at higher TYL concentrations, suggested that inner complex might have dominated process at low concentrations and outer complex might occur at higher concentrations of TYL. Spectroscopic evidence indicated that tricarbonylamide and hydroxyl functional groups of TYL might be accounted for the sorption on mineral surfaces. The experimental data of TYL sorption could be fitted by surface complexation model (FITEQL), indicating that ≡FeOH with TYL interaction could be reasonably represented as a complex formation of a monoacid with discrete sites on goethite. The sorption mechanism of TYL might be related with surface complexation, electrostatic repulsion, and H-bounding on goethite. It should be noticed that the heterogeneous of sorption affinity of TYL on goethite at various environment to assess its environment risk.  相似文献   

18.
Cyromazine (CY) is a triazine pesticide used as an insect growth inhibitor for fly control in cattle manure, field crops, vegetables, and fruits. Sorption of CY onto humic acid (HA) may affect its environmental fate. In this study, HA was used to investigate the sorption of CY at different solution chemistry conditions (pH, ionic strength) and in the presence of foreign ions and norfloxacin. All sorption isotherms fitted well with the Freundlich and Langmuir models. The sorption reached a maximum at initial pH 4.0 over the initial pH range of 3.0–7.0, implying that the primary sorption mechanism was cation exchange interaction between CY+ species and the negatively charged functional groups of HA. Increasing Ca2+ concentration resulted in a considerable reduction in the K d values of CY, hinting that Ca2+ had probably competed with CY+ for the cation exchange sites on the surfaces of HA. The sorption of CY on HA in different ionic media followed the order of NH4Cl ≈ KCl > K2SO4 > ZnCl2 ≈ CaCl2 at pH 5.0. Spectroscopic evidence demonstrated that the amino groups and triazine ring of CY was responsible for sorption onto HA, while the carboxyl group and the O-alkyl structure of HA participated in adsorbing CY.  相似文献   

19.
Mechanistic model calculations for the migration of Cs, Ra, Am and Pb in compacted bentonite have been carried out to evaluate sensitivities with respect to different parameter variations. A surface chemical speciation/electric double layer model is used to calculate: (i) porewater composition and radionuclide speciation in solution and at the bentonite surface, yielding the distribution of mobile and sorbed species and (ii) interaction of diffusing species with negatively charged pore walls to obtain diffusion parameters. The basic scenario considers the interaction of compacted bentonite with a fresh-type groundwater; variations include the presence of bentonite impurities and saline groundwater. It is shown that these scenarios result in significant variations of porewater composition that affect migration via three mechanisms that can partly compensate each other: (1) effects on sorption through radionuclide complexation in solution, and competition of major cations for surface sites; (2) changes in radionuclide solution speciation leading to different diffusing species under different conditions; (3) effects on diffusion through changes in the electric double layer properties of the clay pores as a function of ionic strength.  相似文献   

20.
Packed column and mathematical modeling studies were conducted to explore the influence of water saturation, pore-water ionic strength, and grain size on the transport of latex microspheres (1.1 microm) in porous media. Experiments were carried out under chemically unfavorable conditions for colloid attachment to both solid-water interfaces (SWI) and air-water interfaces (AWI) using negatively charged and hydrophilic colloids and modifying the solution chemistry with a bicarbonate buffer to pH 10. Interaction energy calculations and complementary batch experiments were conducted and demonstrated that partitioning of colloids to the SWI and AWI was insignificant across the range of the ionic strengths considered. The breakthrough curve and final deposition profile were measured in each experiment indicating colloid retention was highly dependent on the suspension ionic strength, water content, and sand grain size. In contrast to conventional filtration theory, most colloids were found deposited close to the column inlet, and hyper-exponential deposition profiles were observed. A mathematical model, accounting for time- and depth-dependent straining, produced a reasonably good fit for both the breakthrough curves and final deposition profiles. Experimental and modeling results suggest that straining--the retention of colloids in low velocity regions of porous media such as grain junctions--was the primary mechanism of colloid retention under both saturated and unsaturated conditions. The extent of stagnant regions of flow within the pore structure is enhanced with decreasing water content, leading to a greater amount of retention. Ionic strength also contributes to straining, because the number of colloids that are held in the secondary energy minimum increases with ionic strength. These weakly associated colloids are prone to be translated to stagnation regions formed at grain-grain junctions, the solid-water-air triple point, and dead-end pores and then becoming trapped.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号