首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclic population dynamics of forest insects with periods of more than two generations have been discussed in relation to a variety of extrinsic and intrinsic forces. In the present study, we employed the selection pressure of density dependent competitive interactions according to Witting's equations (Witting, 2000) as driver for a discrete spatiotemporal model of the green oak leaf roller (Tortrix viridana). The model was successfully parameterised to rebuild the cyclic population dynamics of an empirical data set of a 30-year leaf roller monitoring in Russia. Our analysis focussed on the role of herbivore mortality and host plant food quality, which have a significant effect on T. viridana population dynamics. An additional egg or larvae mortality lowers population density and can lead to selection pressures that favour individuals with higher growth rate. This increased population growth rate can not only compensate the additional mortality, but also can lead to higher average moth abundances in subsequent generations. Furthermore, we analysed the effect of inter- and intraspecific variation in host plant quality on herbivore population dynamics and the spatial distribution of abundance and defoliation patterns. We found significant effects of the qualitative composition of a trees neighbourhood on the herbivore population of the respective tree. Also, the patchy damage patterns observable in reality have been reproduced by the present model. The applicability of the model approach and the putative genetic processes underlying Witting's model are discussed.  相似文献   

2.
Many plant species defend themselves against herbivorous insects indirectly by producing and releasing induced volatiles to attract natural enemies of the herbivores. In this paper, we consider the recruitment of natural enemies attracted by plant-induced volatiles and introduce the An–Liu–Johnson–Lovett model into the Lotka–Volterra model in an attempt to add this missing vital link in tritrophic interaction. Increase in attraction strength of plant-induced volatiles to the natural enemy leads to high fluctuation amplitude of plant biomass and herbivore population. When the attack strength of natural enemies reaches a certain level, fluctuation amplitude of plant biomass and herbivore population will decrease and plant biomass will approach to its environmental carrying capacity. The simulation demonstrates that plant volatile compounds induced by insects have led to the introduction of a third tritrophic level, e.g., natural enemies, into the plant–herbivore system, resulting in the coexistence of plants, insects, and natural enemies during the evolution process.  相似文献   

3.
Intraspecific crop diversification is thought to be a possible solution to the disease susceptibility of monocultured crops. We modelled the stratified dispersal of an airborne pathogen population in order to identify the spatial patterns of cultivar mixtures that could slow epidemic spread driven by dual dispersal mechanisms acting over both short and long distances. We developed a model to simulate the propagation of a fungal disease in a 2D field, including a reaction-diffusion model for short-distance disease dispersal, and a stochastic model for long-distance dispersal. The model was fitted to data for the spatio-temporal spread of faba bean rust (caused by Uromyces viciae-fabae) through a discontinuous field. The model was used to compare the effectiveness of eight different planting patterns of cultivar mixtures against a disease spread by short-distance and stratified dispersal. Our combined modelling approach provides a reasonably good fit with the observed data for the spread of faba bean rust. Similar predictive power could be expected for the management of resource-mediated invasions by other airborne fungi. If a disease spreads by short-distance dispersal, random mixtures can be used to slow the epidemic spread, since their spatial irregularity creates a natural barrier to the progression of a smooth epidemic wave. In the context of stratified dispersal, heterogeneous patterns should be used that include a minimum distance between susceptible units, which decreases the probability of infection by long-distance spore dispersal. We provide a simple framework for modelling the stratified dispersal of disease in a diversified crop. The model suggests that the spatial arrangement of components in cultivar mixtures has to accord with the dispersal characteristics of the pathogen in order to increase the efficiency of diversification strategies in agro-ecosystems and forestry. It can be applied in low input agriculture to manage pathogen invasion by intercropping and cultivar mixtures, and to design sustainable systems of land use.  相似文献   

4.
Abstract:  Local species diversity of insect herbivores feeding on rainforest vegetation remains poorly known. This ignorance limits evaluation of species extinction patterns following various deforestation scenarios. We studied leaf-chewing insects feeding on 59 species of woody plants from 39 genera and 18 families in a lowland rainforest in Papua New Guinea and surveyed all plants with a stem diameter at breast height of ≥5 cm in a 1-ha plot within the same area. We used two extrapolation methods, based on randomized species-accumulation curves, to combine these two data sets and estimate the number of species of leaf-chewing herbivores feeding on woody plants from the 1-ha area. We recorded 58,483 feeding individuals from 940 species of leaf-chewing insects. The extrapolation estimated that there were 1567–2559 species of leaf-chewing herbivores feeding on the 152 plant species from 97 genera and 45 families found in 1 ha of the forest. Most of the herbivore diversity was associated with plant diversity on the familial and generic levels. We predicted that, on average, the selection of 45 plant species each representing a different family supported 39% of all herbivore species, the 52 plant species each representing a different additional genus from these families supported another 39% of herbivore species, and the remaining 55 plant species from these genera supported 22% of herbivore species. Lepidoptera was the most speciose taxon in the local fauna, followed by Coleoptera and orthopteroids (Orthoptera and Phasmatodea). The ratio of herbivore to plant species and the estimated relative species richness of the Lepidoptera, Coleoptera, and orthopteroids remained constant on the spatial scale from 0.25 to 1 ha. However, the utility of local taxon-to-taxon species ratios for extrapolations to geographic scales requires further study.  相似文献   

5.
Environmental and/or genetic among-site variation in plant quality may influence growth and fecundity of specialized herbivores inhabiting a particular site. Such variation is important as it generates spatial variation in selection for traits related to plant–herbivore interaction. Littoral macroalgae are known to respond plastically to environmental variation by modifying their chemistry or morphology. We studied geographic variation in phlorotannin, nitrogen, protein, and sugar (fucose, mannitol, and melibiose) concentrations of the brown alga Fucus vesiculosus at 12 sites separated by 0.5 to 40 km in the naturally fragmented Archipelago Sea in the northern Baltic Sea. By this regional variation in algal chemistry we attempted to explain among-population variation in size and fecundity of the crustacean herbivore Idotea baltica. We observed high spatial variation in all the measured chemical characteristics of F. vesiculosus, as well as in female size and the number of eggs produced by the herbivores. Spatial variation in nitrogen or protein contents of the alga did not explain the variation of herbivore traits. However, egg size positively covaried with spatial variation in the concentration of mannitol, the major storage carbohydrate of the alga. Such a positive relationship may arise if I. baltica can utilize the nutritive value of a mannitol-rich diet thereby being better able to provision the developing eggs with energy-rich metabolites. Unexpectedly, the concentration of phlorotannins, secondary metabolites having a putative role in defense against herbivory, positively covaried with the size of the herbivore. Among-population variation in host plant chemistry and covariation of that with herbivore growth and reproduction imply that herbivores respond to the local quality of their host plants, and that geographical structuring of populations has to be taken into account in studies of plant–herbivore interactions.Communicated by M. Kühl, Helsingør  相似文献   

6.
Herbivores tend to increase feeding rate and fitness when consuming a mixed diet relative to a single diet. According to the detoxification limitation hypothesis (DLH), feeding choices and rates when confronted with chemically rich plants are determined by herbivore physiology, and specifically by the metabolic pathways that herbivores use to manipulate secondary metabolites. We tested two predictions of the DLH using two generalist herbivores, the urchin Arbacia punctulata and amphipod Ampithoe longimana. These herbivores have geographic ranges which overlap with brown seaweeds that produce diterpenes (Dictyota menstrualis, D. ciliolata) and a green seaweed that produces sesquiterpenes and diterpenes (Caulerpa sertularioides). As predicted by the DLH, herbivore consumption rates in no-choice feeding assays were limited by extract intake rates. This suggests an upper limit in the herbivores’ abilities to physiologically manipulate seaweed metabolites. Contrary to a second prediction of the DLH, urchins consumed equal amounts of foods coated with limiting concentrations of two seaweed extracts offered singly, as a mixture, or as a pairwise choice. This result suggests that secondary metabolites of these seaweeds are manipulated by a linked set of detoxification pathways. Improving our understanding of the mechanisms that underlie diet mixing depends on greater attention to the physiology of herbivore resistance to secondary metabolites.  相似文献   

7.
高东 《生态环境》2010,19(8):1999-2003
农业集约化生产方式加速了农业生态系统单一化的进程,导致系统平衡破坏,病、虫、草害频发。在以农业生态环境改善和修复为手段的农业可持续生产和发展的模式中,以农作物多样性的合理布局来提高农业生物多样性水平和控制病、虫、草害的实践,显示出其强大的生命力,即将不同物种的作物或同一作物的不同品种按一定的组合方式和栽种模式进行合理的间栽和套作,将病、虫、草害的发生控制在可以承受的范围内。构建水生动物、水生植物与水稻共存的稻作系统,利用物种多样性、遗传多样性控制有害生物,是农业可持续发展的重要途径。本文综述了国内外稻田物种多样性、遗传多样性利用模式的研究进展,论述了稻田物种多样性、遗传多样性对稻作生态系统的改善,特别是水稻病、虫、草的控制效果及作用机理。  相似文献   

8.
Steffan-Dewenter I  Schiele S 《Ecology》2008,89(5):1375-1387
The relative importance of bottom-up or top-down forces has been mainly studied for herbivores but rarely for pollinators. Habitat fragmentation might change driving forces of population dynamics by reducing the area of resource-providing habitats, disrupting habitat connectivity, and affecting natural enemies more than their host species. We studied spatial and temporal population dynamics of the solitary bee Osmia rufa (Hymenoptera: Megachilidae) in 30 fragmented orchard meadows ranging in size from 0.08 to 5.8 ha in an agricultural landscape in central Germany. From 1998 to 2003, we monitored local bee population size, rate of parasitism, and rate of larval and pupal mortality in reed trap nests as an accessible and standardized nesting resource. Experimentally enhanced nest site availability resulted in a steady increase of mean local population size from 80 to 2740 brood cells between 1998 and 2002. Population size and species richness of natural enemies increased with habitat area, whereas rate of parasitism and mortality only varied among years. Inverse density-dependent parasitism in three study years with highest population size suggests rather destabilizing instead of regulating effects of top-down forces. Accordingly, an analysis of independent time series showed on average a negative impact of population size on population growth rates but provides no support for top-down regulation by natural enemies. We conclude that population dynamics of O. rufa are mainly driven by bottom-up forces, primarily nest site availability.  相似文献   

9.
Barber NA  Marquis RJ 《Ecology》2011,92(3):699-708
Ecological communities are structured by both deterministic, niche-based processes and stochastic processes such as dispersal. A pressing issue in ecology is to determine when and for which organisms each of these types of processes is important in community assembly. The roles of deterministic and stochastic processes have been studied for a variety of communities, but very few researchers have addressed their contribution to insect herbivore community structure. Insect herbivore niches are often described as largely shaped by the antagonistic pressures of predation and host plant defenses. However host plants are frequently discrete patches of habitat, and their spatial arrangement can affect herbivore dispersal patterns. We studied the roles of predation, host plant quality, and host spatial proximity for the assembly of a diverse insect herbivore community on Quercus alba (white oak) across two growing seasons. We examined abundances of feeding guilds to determine if ecologically similar species responded similarly to variation in niches. Most guilds responded similarly to leaf quality, preferring high-nitrogen, low-tannin host plants, particularly late in the growing season, while bird predation had little impact on herbivore abundance. The communities on the high-quality plants tended to be larger and, in some cases, have greater species richness. We analyzed community composition by correlating indices of community similarity with predator presence, leaf quality similarity, and host plant proximity. Birds did not affect community composition. Community similarity was significantly associated with distance between host plants and uncorrelated with leaf quality similarity. Thus although leaf quality significantly affected the total abundance of herbivores on a host plant, in some cases leading to increased species richness, dispersal limitation may weaken this relationship. The species composition of these communities may be driven by stochastic processes rather than variation in host plant characteristics or differential predation by insectivorous birds.  相似文献   

10.
Understanding which factors affect the feeding preferences of herbivores is essential for predicting the effects of herbivores on plant assemblages and the evolution of plant–herbivore interactions. Most studies of marine herbivory have focussed on the plant traits that determine preferences (especially secondary metabolites), while few studies have considered how preferences may vary among individual herbivores due to genetic or environmental sources of variation. Such intraspecific variation is essential for evolutionary change in preference behaviour and may alter the outcome of plant–herbivore interactions. In an abundant marine herbivore, we determined the relative importance of among-individual and environmental effects on preferences for three host algae of varying quality. Repeated preference assays were conducted with the amphipod Peramphithoe parmerong and three of its brown algal hosts: Sargassum linearifolium, S. vestitum and Padina crassa. We found no evidence that preference varied among individuals, thus constraining the ability of natural selection to promote increased specialisation on high-quality S. linearifolium. Most of the variation in preference occurred within individuals, with amphipod preferences strongly influenced by past diet. The increased tendency for amphipods to select alternate hosts to that on which they had been recently feeding indicates that amphipods are actively seeking mixed diets. Such a feeding strategy provides an explanation for the persistence of this herbivore on hosts in the field that support poor growth and survival if consumed alone. The effects of past diet indicate that herbivore preferences are a function of herbivore history in addition to plant traits and are likely to vary with the availability of algae in space and time.  相似文献   

11.
de Sassi C  Lewis OT  Tylianakis JM 《Ecology》2012,93(8):1892-1901
Warmer temperatures can alter the phenology and distribution of individual species. However, differences across species may blur community-level phenological responses to climate or cause biotic homogenization by consistently favoring certain taxa. Additionally, the response of insect communities to climate will be subject to plant-mediated effects, which may or may not overshadow the direct effect of rising temperatures on insects. Finally, recent evidence for the importance of interaction effects between global change drivers suggests that phenological responses of communities to climate may be altered by other drivers. We used a natural temperature gradient (generated by elevation and topology), combined with experimental nitrogen fertilization, to investigate the effects of elevated temperature and globally increasing anthropogenic nitrogen deposition on the structure and phenology of a seminatural grassland herbivore assemblage (lepidopteran insects). We found that both drivers, alone and in combination, severely altered how the relative abundance and composition of species changed through time. Importantly, warmer temperatures were associated with biotic homogenization, such that herbivore assemblages in the warmest plots had more similar species composition than those in intermediate or cool plots. Changes in herbivore composition and abundance were largely mediated by changes in the plant community, with increased nonnative grass cover under high treatment levels being the strongest determinant of herbivore abundance. In addition to compositional changes, total herbivore biomass more than doubled under elevated nitrogen and increased more than fourfold with temperature, bearing important functional implications for herbivores as consumers and as a prey resource. The crucial role of nonnative plant dominance in mediating responses of herbivores to change, combined with the frequent nonadditive (positive and negative) effects of the two drivers, and the differential responses of species, highlight that understanding complex ecosystem responses will benefit from multifactor, multitrophic experiments at community scales or larger.  相似文献   

12.
Mody K  Unsicker SB  Linsenmair KE 《Ecology》2007,88(4):1012-1020
Generalist insect herbivores may profit by feeding on a mixture of plant species that differ in nutritional quality. Herbivore performance can also be affected by intraspecific host plant variation. However, it is unknown whether conspecific plant individuals differ sufficiently to promote diet-mixing behavior in specialist herbivores. We experimentally tested this "specialist diet-mixing hypothesis" for specialist caterpillars (Chrysopsyche imparilis, Lasiocampidae) in a West African savanna. The caterpillars switched regularly between host tree individuals (Combretum fragrans, Combretaceae). To examine whether switching benefited caterpillar performance via diet-mixing, the caterpillars were reared either on leaves from several plant individuals (mixed diet) or on leaves from a single plant. The strongest effect of diet-mixing was found for fecundity, with females reared on a mixed diet laying significantly more eggs than sisters receiving a single-plant diet. In addition, a mixed diet decreased variability in egg size and increased the growth of second-instar caterpillars. Supplementary food choice experiments were conducted to assess a potential influence of lowered host quality (induced by herbivory) on caterpillar behavior; no such effect was found. By linking intraspecific host-switching behavior and herbivore performance, this study provides new information on the relevance of intraspecific plant variation for herbivorous insects.  相似文献   

13.
Maclean JE  Goheen JR  Doak DF  Palmer TM  Young TP 《Ecology》2011,92(8):1626-1636
Plant populations are regulated by a diverse array of herbivores that impose demographic filters throughout their life cycle. Few studies, however, simultaneously quantify the impacts of multiple herbivore guilds on the lifetime performance or population growth rate of plants. In African savannas, large ungulates (such as elephants) are widely regarded as important drivers of woody plant population dynamics, while the potential impacts of smaller, more cryptic herbivores (such as rodents) have largely been ignored. We combined a large-scale ungulate exclusion experiment with a five-year manipulation of rodent densities to quantify the impacts of three herbivore guilds (wild ungulates, domestic cattle, and rodents) on all life stages of a widespread savanna tree. We utilized demographic modeling to reveal the overall role of each guild in regulating tree population dynamics, and to elucidate the importance of different demographic hurdles in driving population growth under contrasting consumer communities. We found that wild ungulates dramatically reduced population growth, shifting the population trajectory from increase to decline, but that the mechanisms driving these effects were strongly mediated by rodents. The impact of wild ungulates on population growth was predominantly driven by their negative effect on tree reproduction when rodents were excluded, and on adult tree survival when rodents were present. By limiting seedling survival, rodents also reduced population growth; however, this effect was strongly dampened where wild ungulates were present. We suggest that these complex interactions between disparate consumer guilds can have important consequences for the population demography of long-lived species, and that the effects of a single consumer group are often likely to vary dramatically depending on the larger community in which interactions are embedded.  相似文献   

14.
Underwood N  Halpern SL 《Ecology》2012,93(5):1026-1035
How insect herbivores affect plant performance is of central importance to basic and applied ecology. A full understanding of herbivore effects on plant performance requires understanding interactions (if any) of herbivore effects with plant density and size because these interactions will be critical for determining how herbivores influence plant population size. However, few studies have considered these interactions, particularly over a wide enough range of densities to detect nonlinear effects. Here we ask whether plant density and herbivores influence plant performance linearly or nonlinearly, how plant density affects herbivore damage, and how herbivores alter density dependence in transitions between plant size classes. In a large field experiment, we manipulated the density of the herbaceous perennial plant Solanum carolinense and herbivore presence in a fully crossed design. We measured plant size, sexual reproduction, and damage to plants in two consecutive years, and asexual reproduction of new stems in the second year, allowing us to characterize both plant performance and rates of transition between plant size classes across years. We found nonlinear effects of plant density on damage. Damage by herbivores and plant density both influenced sexual and asexual reproduction of S. carolinense; these effects were mostly mediated via effects on plant size. Importantly, we found that herbivores altered the pattern of linear density dependence in some transition rates (including survival and asexual reproduction) between plant size classes. These results suggest that understanding the ecological or evolutionary effects of herbivores on plant populations requires consideration of plant density and plant size, because feedbacks between density, herbivores, and plant size may complicate longer-term dynamics.  相似文献   

15.
Stanton ML  Palmer TM 《Ecology》2011,92(5):1073-1082
Three recent meta-analyses of protective plant-ant mutualisms report a surprisingly weak relationship between herbivore protection and measured demographic benefits to ant-plants, suggesting high tolerance for herbivory, substantial costs of ant-mediated defense, and/or benefits that are realized episodically rather than continuously. Experimental manipulations of protective ant-plant associations typically last for less than a year, yet virtually all specialized myrmecophytes are long-lived perennials for which the costs and benefits of maintaining ant symbionts could accrue at different rates over the host's lifetime. To complement long-term monitoring studies, we experimentally excluded each of four ant symbionts from their long-lived myrmecophyte host trees (Acacia drepanolobium) for 4.5 years. Ant species varied in their effectiveness against herbivores and in their effects on intermediate-term growth and reproduction, but the level of herbivore protection provided was a poor predictor of the net impact they had on host trees. Removal of the three Crematogaster species resulted in cumulative gains in host tree growth and/or reproduction over the course of the experiment, despite the fact that two of those species significantly reduce chronic herbivore damage. In contrast, although T. penzigi is a relatively poor defender, the low cost of maintaining this ant symbiont apparently eliminated negative impacts on overall tree growth and reproduction, resulting in enhanced allocation to new branch growth by the final census. Acacia drepanolobium is evidently highly tolerant of herbivory by insects and small browsers, and the costs of maintaining Crematogaster colonies exceeded the benefits received during the study. No experimental trees were killed by elephants, but elephant damage was uniquely associated with reduced tree growth, and at least one ant species (C. mimosae) strongly deterred elephant browsing. We hypothesize that rare but catastrophic damage by elephants may be more important than chronic herbivory in maintaining the costly myrmecophyte habit in this system.  相似文献   

16.
In response to insect herbivory, plants emit volatiles that are used by the herbivores’ natural enemies to locate their host or prey. Herbivore attack also enhances tea aroma. Herbivore-induced plant volatiles (HIPVs) vary both quantitatively and qualitatively with infestation duration and herbivore density. Thus, whether HIPVs can reliably communicate the identities of herbivores is of interest. Here, we studied the tea plant volatiles induced by the tea leafhopper (Empoasca vitis, a piercing–sucking insect), the tea geometrid (Ectropis oblique, a chewing insect), and methyl jasmonate (MeJA, a plant hormone). Geometrid feeding induced more complex volatile blends than did leafhopper infestation. The volatiles induced by both herbivores significantly increased in quality and quantity with time during the first 16 h of infestation, after which the profiles of induced volatile blends and the emission of induced compounds varied diurnally. (E)-β-Ocimene displayed a unique rhythm in which emission peaked at night. The amount of HIPVs significantly increased, while their profiles changed little, with herbivore density. Overall, the leafhoppers and geometrids induced significantly different volatiles from tea plants, while the HIPV profiles varied with a circadian rhythm and were similar at different herbivore densities. Our findings also suggest a new method of enhancing tea flavor using exogenously applied plant hormones, because the volatiles induced by leafhoppers and MeJA were similar in general composition.  相似文献   

17.
Fenton A  Rands SA 《Ecology》2006,87(11):2832-2841
Parasites are known to directly affect their hosts at both the individual and population level. However, little is known about their more subtle, indirect effects and how these may affect population and community dynamics. In particular, trophically transmitted parasites may manipulate the behavior of intermediate hosts, fundamentally altering the pattern of contact between these individuals and their predators. Here, we develop a suite of population dynamic models to explore the impact of such behavioral modifications on the dynamics and structure of the predator-prey community. We show that, although such manipulations do not directly affect the persistence of the predator and prey populations, they can greatly alter the quantitative dynamics of the community, potentially resulting in high amplitude oscillations in abundance. We show that the precise impact of host manipulation depends greatly on the predator's functional response, which describes the predator's foraging efficiency under changing prey availabilities. Even if the parasite is rarely observed within the prey population, such manipulations extend beyond the direct impact on the intermediate host to affect the foraging success of the predator, with profound implications for the structure and stability of the predator-prey community.  相似文献   

18.
Mooney KA 《Ecology》2006,87(7):1805-1815
Predators affect herbivores directly and indirectly, by consumptive and nonconsumptive effects, and the combined influence of multiple predators is shaped by interactions among predators. I documented the individual and combined effects of birds (chickadees, nuthatches, warblers) and ants (Formica podzolica) on arthropods residing in pine (Pinus ponderosa) canopies in a factorial field experiment. Birds and ants removed herbivores but simultaneously benefited them by removing predatory arthropods. Birds and ants had net negative and positive effects, respectively, on the abundance of herbivore prey, supporting the notion that vertebrate predators have stronger negative effects on herbivores than do arthropod predators. Aphids (ant-tended and untended species) constituted three-quarters of herbivore biomass. The effect of birds on ant-tended aphids was twice that on untended aphid species or tended aphid species without ants. This was not due to there being more ant-tended aphids for birds to prey on; tended and untended aphid species were in similar abundances in the absence of birds. Instead, the effects of birds were strengthened by attributes of the mutualism that rendered tended aphids susceptible to predation. These dynamics led to nonadditive effects of birds and ants: birds only reduced tended aphid species and total herbivore abundances on trees with ants, while ants only increased tended aphid species and total herbivore abundances in the absence of birds. Consequently, top predators in this system only influenced total herbivore abundance when they disrupted an ant-aphid mutualism.  相似文献   

19.
Davis TS  Hofstetter RW 《Ecology》2012,93(2):421-429
Many herbivores consume microbial food sources in addition to plant tissues for nutrition. Despite the ubiquity of herbivore-microbe feeding associations, few studies examine how host plant phenotypes affect microbial symbionts of herbivores. We tested the hypothesis that chemical polymorphism in a plant population mediates the performance of nutritional microbial symbionts. We surveyed the composition of ponderosa pine resin in northern Arizona, USA, for variation in six monoterpenes, and we approximated four chemical phenotypes. We reared populations of an herbivorous tree-killing beetle (Dendroctonus brevicomis) in ponderosa pine host material, controlling for three monoterpene compositions representing an alpha-pinene to delta-3-carene gradient. Beetles were reared in host material where the dominant monoterpene was alpha-pinene, delta-3-carene, or a phenotype that was intermediate between the two. We isolated nutritional fungal symbionts (Entomocorticium sp. B) from beetle populations reared in each phenotype and performed reciprocal growth experiments in media amended to represent four "average" monoterpene compositions. This allowed us to test the effects of natal host phenotype, chemical polymorphism, and the interaction between natal host phenotype and chemical polymorphism on a nutritional symbiont. Three important findings emerged: (1) fungal isolates grew 25-32% faster when acquired from beetles reared in the intermediate phenotype; (2) the mean growth rate of nutritional fungi varied up to 44% depending on which monoterpene composition media was amended with; and (3) fungal isolates uniformly performed best in the intermediate phenotype regardless of the chemical composition of their natal host. The performance of nutritional fungi related to both the chemical "history" of their associated herbivore and the chemical phenotypes they are exposed to. However, all fungal isolates appeared adapted to a common chemical phenotype. These experiments argue in favor of the hypothesis that chemical polymorphism in plant populations mediates growth of nutritional symbionts of herbivores. Intraspecific chemical polymorphism in plants contributes indirectly to the regulation of herbivore populations, and our experiments demonstrate that the ecological effects of plant secondary chemistry extend beyond the trophic scale of the herbivore-plant interaction.  相似文献   

20.
Terrestrial plants have long been known to induce resistance towards herbivores in response to direct grazing, and strong evidence of inter-plant information transfer through volatile signals has been reported recently. Still, little is known about information exchange in aquatic plant–herbivore interactions. In this study, 12 Swedish seaweed species were exposed either to direct grazing by a generalist crustacean herbivore (Idotea granulosa), or to waterborne signals produced by actively feeding herbivores for 1 week. In order to test for the presence of induced chemical resistance in the different seaweed species, the dried and homogenized seaweed tissues were incorporated into an agar matrix, and herbivores were allowed to choose between the resulting control and induced artificial diets in two different two-choice feeding trials. The herbivores were actively feeding from all seaweed species in the induction experiments, although the amount of seaweed tissue consumed differed significantly between species. A chemically based induced herbivore resistance was found in response to direct grazing in four of the tested seaweed species (two red, one brown, and one green seaweed species). Furthermore, four seaweeds (one red, two brown, and one green seaweed species) induced resistance towards further grazing in response to waterborne chemical signals. Several seaweed species responded differently when exposed to different herbivore-related cues, indicating that both cues and responses can be highly specific. The results show that herbivore-induced resistance is present in 7 of 12 of the tested Swedish seaweed species, but that different signals (i.e., direct grazing and waterborne cues) elicit complex responses in the seaweeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号