首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Poorter L  Kitajima K 《Ecology》2007,88(4):1000-1011
In many plant communities, there is a negative interspecific correlation between relative growth rates and survival of juveniles. This negative correlation is most likely caused by a trade-off between carbon allocation to growth vs. allocation to defense and storage. Nonstructural carbohydrates (NSC) stored in stems allow plants to overcome periods of stress and should enhance survival. In order to assess how species differ in carbohydrate storage in relation to juvenile light requirements, growth, and survival, we quantified NSC concentrations and pool sizes in sapling stems of 85 woody species in moist semi-evergreen and dry deciduous tropical forests in the rainy season in Bolivia. Moist forest species averaged higher NSC concentrations than dry forest species. Carbohydrate concentrations and pool sizes decreased with the light requirements of juveniles of the species in the moist forest but not in the dry forest. Combined, these results suggest that storage is especially important for species that regenerate in persistently shady habitats, as in the understory of moist evergreen forests. For moist forest species, sapling survival rates increased with NSC concentrations and pool sizes while growth rates declined with the NSC concentrations and pool sizes. No relationships were found for dry forest species. Carbon allocation to storage contributes to the growth-survival trade-off through its positive effect on survival. And, a continuum in carbon storage strategies contributes to a continuum in light requirements among species. The link between storage and light requirements is especially strong in moist evergreen forest where species sort out along a light gradient, but disappears in dry deciduous forest where light is a less limiting resource and species sort out along drought and fire gradients.  相似文献   

2.
3.
In situ measurements comparing vertical SO42− profiles in vegetated and non-vegetated sediments showed that SO42− concentrations in vegetated sediments increased significantly at the beginning of the growing season and then gradually decreased during the rest of the growing season. Throughout the growing season, SO42− concentrations remained higher in the vegetated sediments than in the sediments without plants. The higher SO42− concentrations in the vegetated sediments indicate that oxygen release from roots and evapotranspiration-induced advection by plants play an important role in the dynamics of sulfur species in sediments. Since the total pool of solid-phase sulfide is relatively large compared to the mass of SO42− in the sediments, the gradual decrease of SO42− concentrations may result from limitation of the solid-phase sulfide that is in direct contact with or very close to the roots and rhizomes. This would mean that the main pool of solid-phase sulfide and associated trace metals are not affected by the oxygen release from roots, and the associated trace metals will not become bioavailable during the growing season.  相似文献   

4.
The forest succession model FORDYN is developed based on TREEDEV model. TREEDEV is a process-based tree growth model, that calculates tree growth based on carbon and nitrogen balance, and is calculated using on the photo-production of leaves, respiration, nitrogen content of all organisms and that in soil, and other losses due to respiration, litter and renewal of stems, branches, leaves and roots. In the FORDYN model succession is divided into three phases called early, middle and late succession, and the transition between these three succession phases is distinguished by a difference in leaf area index. As a verification of the model we used the characteristics and available data of a monsoon evergreen broad-leaved forest in Dinghushan Biosphere Reserve (DHS-BR). The model was validated with natural forest data. In addition, a sensitivity analysis was performed in which 30 independent variables were varied and analyzed in connection with their influence on 16 dependent variables describing forest conditions. The simulation results describe the changes in total biomass, carbon and nitrogen change in plant–litter–soil system of an undisturbed monsoon evergreen broad-leaved forest during succession. We compared these findings with simulation in which different logging management strategies were used. The results show that having a longer logging cycle, delaying the first logging time and a smaller logging fraction the scenario can contribute to a sustainable forest development, while still having a positive economic yield.  相似文献   

5.
The Atlantic Rain Forest, an important biodiversity hot spot, has faced severe habitat loss since the last century which has resulted in a highly fragmented landscape with a large number of small forest patches (<100 ha). For conservation planning it is essential to understand how current and future forest regeneration depends on ecological processes, fragment size and the connection to the regional seed pool. We have investigated the following questions by applying the forest growth simulation model FORMIND to the situation of the Atlantic Forest in the state of São Paulo, SE Brazil: (1) which set of parameters describing the local regeneration and level of density regulation can reproduce the biomass distribution and stem density of an old growth forest in a reserve? (2) Which additional processes apart from those describing the dynamics of an old growth forest, drive forest succession of small isolated fragments? (3) Which role does external seed input play during succession? Therefore, more than 300 tree species have been classified into nine plant functional types (PFTs), which are characterized by maximum potential height and shade tolerance. We differentiate between two seed dispersal modes: (i) local dispersal, i.e. all seedlings originated from fertile trees within the simulated area and (ii) external seed rain. Local seed dispersal has been parameterized following the pattern oriented approach, using biomass estimates of old growth forest. We have found that moderate density regulation is essential to achieve coexistence for a broad range of regeneration parameters. Considering the expected uncertainty and variability in the regeneration processes it is important that the forest dynamics are robust to variations in the regeneration parameters. Furthermore, edge effects such as increased mortality at the border and external seed rain have been necessary to reproduce the patterns for small isolated fragments. Overall, simulated biomass is much lower in the fragments compared to the continuous forest, whereas shade tolerant species are affected most strongly by fragmentation. Our simulations can supplement empirical studies by extrapolating local knowledge on edge effects of fragments to larger temporal and spatial scales. In particular our results show the importance of external seed rain and therefore highlight the importance of structural connectivity between regenerating fragments and mature forest stands.  相似文献   

6.
Directional changes in the species composition of a tropical forest   总被引:1,自引:0,他引:1  
Long-term studies have revealed that the structure and dynamics of many tropical forests are changing, but the causes and consequences of these changes remain debated. To learn more about the forces driving changes within tropical forests, we investigated shifts in tree species composition over the past 25 years within the 50-ha Forest Dynamics Plot on Barro Colorado Island (BCI), Panama, and examined how observed patterns relate to predictions of (1) random population fluctuations, (2) carbon fertilization, (3) succession from past disturbance, (4) recovery from an extreme El Ni?o drought at the start of the study period, and (5) long-term climate change. We found that there have been consistent and directional changes in the tree species composition. These shifts have led to increased relative representations of drought-tolerant species as determined by the species' occurrence both across a gradient of soil moisture within BCI and across a wider precipitation gradient from a dry forest near the Pacific coast of Panama to a wet forest near its Caribbean coast. These nonrandom changes cannot be explained by stochastic fluctuations or carbon fertilization. They may be the legacy of the El Ni?o drought, or alternatively, potentially reflect increased aridity due to long-term climate change. By investigating compositional changes, we increased not only our understanding of the ecology of tropical forests and their responses to large-scale disturbances, but also our ability to predict how future global change will impact some of the critical services provided by these important ecosystems.  相似文献   

7.
8.
The forest vegetation simulator (FVS) model was calibrated for use in Ontario, Canada, to predict the growth of forest stands. Using data from permanent sample plots originating from different regions of Ontario, new models were derived for dbh growth rate, survival rate, stem height and species group density index for large trees and height and dbh growth rate for small trees. The dataset included black spruce (Picea mariana (Mill.) B.S.P.) and jack pine (Pinus banksiana Lamb.) for the boreal region, sugar maple (Acer saccharum Marsh.), white pine (Pinus strobus L.), red pine (Pinus resinosa Ait.) and yellow birch (Betula alleghaniensis Britton) for the Great Lakes-St. Lawrence region, and balsam fir (Abies balsamea (L.) Mill.) and trembling aspen (Populus tremuloides Michx.) for both regions. These new models were validated against an independent dataset that consisted of permanent sample plots located in Quebec. The new models predicted biologically consistent growth patterns whereas some of the original models from the Lake States version of FVS occasionally did not. The new models also fitted the calibration (Ontario) data better than the original FVS models. The validation against independent data from Quebec showed that the new models generally had a lower prediction error than the original FVS models.  相似文献   

9.
Regular observations made over a period of 5 yr in four permanent transects provided data on plant, sea urchin, and fish densities which indicate that two unusually severe winter storms in 1980 (Storm I) and 1983 (Storm II) had different effects on a southern California kelp-forest community. Storm I removed all canopies of the giant kelp Macrocystis pyrifera, but spared most understory kelps, mainly Pterygophora californica. Hence, the previously large accumulation of detached drift kelp, mostly M. pyrifera, disappeared. Denied their preferred diet of drift kelp, the sea urchins Strongylocentrotus franciscanus and S. purpuratus then emerged from shelters to find alternative food. Without effective predators, they consumed most living plants, including the surviving understory kelps. This weakened the important detritus-based food chain, as indicated indirectly by declining abundances of algal turf and fish (Embiotocidae) that eat small animals living in turf. In 1983, Storm II reversed the process by eliminating exposed urchins, while clearing rock surfaces for widespread kelp settlement and growth. By summer 1984, the kelp grew to maturity to form extensive canopies despite elevated water temperatures during summer and fall of 1983. Thus, severe storms may have vastly different effects on community structure, depending on the state of the community before the disturbance.  相似文献   

10.
We manipulated availability of food and nesting sites in one population of the forest ant Myrmica punctiventris. The manipulations produced significant changes in relatedness structure, reproductive allocation, and response to hierarchical selection. Food availability appeared to have a consistently stronger influence on these aspects of social organization than did availability of nesting sites. We interpret our experimental results in light of observed differences between populations, and discuss implications for kin selection dynamics. Received: 30 July 1998 / Accepted after revision: 31 October 1998  相似文献   

11.
Studies on spatiotemporal pattern of population abundance predict that close populations should exhibit a high level of synchrony, reflected in a parallel time variation of at least one demographic parameter. We tested this prediction for two threatened species of Procellariiformes sharing similar life history traits: the European Storm Petrel (Hydrobates pelagicus) and the Balearic Shearwater (Puffinus mauretanicus). Within each species, we compared adult survival, proportion of transients (breeders that do not settle), and average productivity at two neighboring colonies. Physical and environmental features (e.g., food availability) of the breeding sites were similar. However, while Balearic Shearwater colonies were free of predators, aerial predators occurred especially in one colony of the European Storm Petrel. Despite this difference, we found similar results for the two species. A high proportion of transient birds was detected in only one colony of each species, ranging between 0.00-0.38 and 0.10-0.63 for the petrels and shearwaters, respectively. This seems to be an emergent feature of spatially structured populations of seabirds, unrelated to colony size or predator pressure, that can have important demographic consequences for local population dynamics and their synchrony. Local survival of resident birds was different at each colony, an unexpected result, especially for predator-free colonies of Balearic Shearwater. Productivity varied between the two colonies of European Storm Petrels, but not between the two colonies of Balearic Shearwaters. We demonstrated that within each species, several demographic parameters were colony specific and sufficiently different to generate short-term asynchronous dynamics. Our findings suggest that, in spatially structured populations, local factors, such as predation or small-scale habitat features, or population factors, such as individual quality or age structure, can generate unexpected asynchrony between neighboring populations.  相似文献   

12.
Tropical forests are experiencing enormous threats from deforestation and habitat degradation. Much knowledge of the impacts of these land-use changes on tropical species comes from studies examining patterns of richness and abundance. Demographic vital rates (survival, reproduction, and movement) can also be affected by land-use change in a way that increases species vulnerability to extirpation, but in many cases these impacts may not be manifested in short-term changes in abundance or species richness. We conducted a literature review to assess current knowledge and research effort concerning how land-use change affects species vital rates in tropical forest vertebrates. We found a general paucity of empirical research on demography across taxa and regions, with some biases toward mammals and birds and land-use transitions, including fragmentation and agriculture. There is also considerable between-species variation in demographic responses to land-use change, which could reflect trait-based differences in species sensitivity, complex context dependencies (e.g., between-region variation), or inconsistency in methods used in studies. Efforts to improve understanding of anthropogenic impacts on species demography are underway, but there is a need for increased research effort to fill knowledge gaps in understudied tropical regions and taxa. The lack of information on demographic impacts of anthropogenic disturbance makes it difficult to draw definite conclusions about the magnitude of threats to tropical ecosystems under anthropogenic pressures. Thus, determining conservation priorities and improving conservation effectiveness remains a challenge.  相似文献   

13.
人参生长光环境研究进展   总被引:8,自引:0,他引:8  
于海业  张蕾 《生态环境》2006,15(5):1101-1105
光因子是直接影响植物光合作用的主导因子。人参(PanaxginsengC.A.Mey.)作为典型的阴性植物,对光环境的要求十分严格。文章从保护野山参物种资源及光环境对人参生长发育的重要作用的角度,介绍了人参生长光环境的研究现状:研究时期集中于20世纪80、90年代,以指导园参栽培为目的,围绕可见光区的光强和光质特征展开,以光环境静态调查及光强日动态、光质颜色对人参生理影响为主要研究内容。文中分析了国内外对于人参适宜光照的研究结果存在较大差异的原因可能是人参种质、不同生长阶段的光合能力及光分布空间变化给人参光合作用造成的影响。总结了已有研究的结果,例如,①参棚透光率为25%时,光照强度达到饱和光强度,人参光合速率最高;②浅绿膜人参生育健壮,光合作用强度高,干物质积累快,有利于参根增重。2000年以后,随着林下栽参的兴起,原有研究成果不足以满足目前科学种植的需要,国外已经出现林下分光谱辐射对人参根部皂甙积累影响数量关系的研究,而国内针对林下参生长光环境的研究仍停留在上世纪90年代针对可见光区光强变化的水平上。文章最后指出,现有研究成果在科学指导林下栽参的选址及现代化管理方面存在不足,通过学科交叉与融合、建立合理的人参生长光环境动态模型是未来人参生长光环境研究的发展趋势。  相似文献   

14.
森林土地利用变化及其对碳循环的影响   总被引:5,自引:0,他引:5  
周剑芬  管东生 《生态环境》2004,13(4):674-676
由于人口剧增,人类活动的影响不断加大,在过去100年全球土地利用/土地覆被发生了巨大的变化。最常见的土地利用变化是由森林转变为农业用地。森林砍伐使森林生态系统地上部生物量大大减少,砍伐后作农业用地,降低了植被生产力,减少了土壤有机质的输入,增强了腐殖质的矿化作用,有机质分解速率增加,有机碳贮量随之降低,从而影响到森林生态系统的碳循环,使大量碳元素释放到大气中,引起温室效应,导致全球变暖。另一个常见的土地利用变化是植树造林和森林恢复,这一过程可以增加森林生态系统的碳储量,从而减缓大气CO2体积分数的上升。  相似文献   

15.
Ecological patterns vary in space and time. Therefore, when using dynamic models in ecology, the spatial aspect should not be neglected prematurely since it could possibly change the model outcomes to a considerable extent. In view of this problem, we describe here a method how to construct a non-spatial version from a spatially explicit simulation model. The principle idea is to suppress the spatial correlations of cells in a grid in time by continuously re-assigning a random neighbourhood for each cell on the grid. Since this procedure actually eliminates the spatial dimensions, it allows to quantify the unadulterated impact of spatial processes on the model results. To illustrate an important application of this approach in the context of forest management we use a grid-based model that simulates succession of Norway spruce (Picea abies (L.) Karst.) at mountainous sites after blowdown events. The output of this model is compared with the results of the deduced non-spatial version of this model regarding the predicted amount of re-growing trees. The non-spatial version dramatically overestimates the number of spruce trees on different microsites. Thus, the uncritical use of the non-spatial model might give reason to wrong management decisions that are based on too optimistic predictions. In practice, this may lead to dangerous situations, especially in mountain forests serving as protection against avalanches and landslides. This example demonstrates the successful applicability of our approach. Our method can be interpreted as a contribution to an extended sensitivity analysis: it analyses the sensitivity of the results due to structural changes of the model. This sensitivity allows one to estimate the redundancy or the necessity of spatially explicit processes in a model with regard to the parsimony principle of modelling. Since our approach is not dependent on special features of the simulation model used here, it is assumed to be applicable for other spatial models, too, and can thus be considered of general interest for a diligent model analysis.  相似文献   

16.
After presenting a short review of process-based model requirements to capture the plant dynamic response to defoliation, this paper describes the development and testing of a model of crown damage and defoliation for Eucalyptus. A model that calculates light interception and photosynthetic production for canopies that vary spatially and temporally in leaf area and photosynthetic properties is linked to the forest growth model CABALA. The process of photosynthetic up-regulation following defoliation is modelled with a simple conditional switch that triggers up-regulation when foliar damage or removal causes the ratio of functional leaf area to living tissue in the tree to change.We show that the model predicts satisfactorily when validated with trees of Eucalyptus nitens and Eucalyptus globulus from a range of sites of different ages, subject to different types of stress and different types of defoliation events (R2 = 0.96 across a range of sites). However, the complexity of particular situations can cause the model to fail (e.g. very heavy defoliation events where branch death occurs).It is concluded that while the model will not cope with all situations, an appropriate level of generality has been captured to represent many of the physiological processes and feedbacks that occur following defoliation or leaf damage. This makes the model useful for guiding management interventions following pest attack and allows the development of scenarios including climate change impact analyses and decision-making on the merits of post-defoliation fertilisation to expedite recovery.  相似文献   

17.
围填海的海洋环境影响国内外研究进展   总被引:2,自引:0,他引:2  
围填海是通过人工修筑堤坝、填埋土石方等工程措施将天然海域空间改变成陆地以拓展社会经济发展空间的人类活动,它是当前我国海岸开发利用的主要形式。大规模围填海在产生巨大的社会经济效益的同时,也给海洋生态环境造成了深远的影响,受到了国内外学者的广泛关注。文章在系统收集了国内外围填海的海洋环境影响研究报道成果的基础上,分别从:①围填海对滨海地形地貌、湿地景观的影响研究;②围填海对近岸海域水动力环境的影响研究;③围填海对滨海湿地退化与生态功能的影响研究;④围填海对近岸海洋生态系统结构与功能的影响;⑤围填海对海洋渔业资源衰退的影响等5个方面深入分析了围填海的海洋环境影响国内外研究进展及其存在的主要问题。并剖析了加强围填海的海洋环境监测与评估,实施围填海的海洋生态环境修复与生态补偿等国际围填海研究新趋势。针对围填海的海洋环境影响国内外研究现状和发展趋势,提出加强对集中连片围填海区域的长期累积效应研究、加强围填海对海洋生态环境结构功能影响过程及机理研究、加强多学科交叉在围填海海洋环境影响方面的综合研究等相关建议。  相似文献   

18.
赫晓霞  栾胜基  艾东 《生态环境》2008,17(1):416-421
"贫困是最大的污染者",贫困与环境恶化之间存在着显著的相互作用关系.为了进一步了解和认识贫困的环境影响,文章在理论分析的基础上进行了实证研究.首先提出了对农村环境的新定义:对农户而言,农村环境就是他们的生存环境,包括生产环境和生活环境.在此基础上,提出了表征农村环境的两个基本要素土地和农居环境和相应的表征指标.指出在农村环境问题的形成过程中,农户贫困的生存状态起着重要的作用,并且用具体的案例研究说明,在贫困山区,农户的贫困对于农户的生产与生活进步都产生了很大的限制,因此对于农村环境问题的研究和探讨应该从改善农户的经济行为开始,并且以摆脱贫困,改善农户的生存状态为目标,才可能最终达到改善农村环境,实现农村可持续发展的根本目标.  相似文献   

19.
Seawater intrusion into aquifers in coastal flat areas constitutes a considerable factor of degradation of the natural environment and a restrictive agent for the development of those areas. The intrusion occurs in a great extent of the Strymon river estuary up to the Evros river estuary.

Saline intrusion into fresh groundwater formations generally results inadvertently from man's activities, such as excessive pumping resulting in reduction or reversal of groundwater gradients and destruction of natural barriers that separate fresh and saline water, which disturb the existing natural hydrodynamic balance between sea and groundwater.

The simultaneous study of the specific electrical conductance of groundwater, as well as the chloride‐bicarbonate ratio and hydrological properties of the various aquifers, makes the accurate prediction of seawater intrusion possible.  相似文献   

20.
Environmental impact assessment (EIA) is a key mechanism for protecting threatened plant and animal species. Many species are not perfectly detectable and, even when present, may remain undetected during EIA surveys, increasing the risk of site‐level loss or extinction of species. Numerous methods now exist for estimating detectability of plants and animals. Despite this, regulations concerning survey protocol and effort during EIAs fail to adequately address issues of detectability. Probability of detection is intrinsically linked to survey effort; thus, minimum survey effort requirements are a useful way to address the risks of false absences. We utilized 2 methods for determining appropriate survey effort requirements during EIA surveys. One method determined the survey effort required to achieve a probability of detection of 0.95 when the species is present. The second method estimated the survey effort required to either detect the species or reduce the probability of presence to 0.05. We applied these methods to Pimelea spinscens subsp. spinescens, a critically endangered grassland plant species in Melbourne, Australia. We detected P. spinescens in only half of the surveys undertaken at sites where it was known to exist. Estimates of the survey effort required to detect the species or demonstrate its absence with any confidence were much higher than the effort traditionally invested in EIA surveys for this species. We argue that minimum survey requirements be established for all species listed under threatened species legislation and hope that our findings will provide an impetus for collecting, compiling, and synthesizing quantitative detectability estimates for a broad range of plant and animal species. Incorporación de la Capacidad de Detectar una Especie Amenazada a la Evaluación de Impacto Ambiental  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号