首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: During the summer of 1971 about 150 water samples were examined for total and fecal coliform bacteria in the Upper Illinois Waterway at 19 river stations. The data per station were found to be normal geometric distributed. Bacteria densities changed with sampling dates and generally decreased with water movement downstream. Several sewage treatment effluents made marked pulses along the bacterial die-off curves. The observed fecal coliform results were evaluated in terms of the Illinois Pollution Control Board's standards. The FC:TC ratio on the waterway for each station were presented. Using Chick's Law, coliforms death rates were estimated. Efforts to correlate observed total and fecal densities with temperature, flow, algal densities, dissolved oxygen, and 5-day biochemical oxygen demand were not successful. (KEY TERMS: algae; biochemical oxygen demand; coliform bacteria; dissolved oxygen; flow; stream survey; temperature; water pollution; water quality standards)  相似文献   

2.
ABSTRACT: Fecal contamination and organic pollution of an agricultural drainage in northeast Indiana was high. Bacterial counts (total coliform, TC; fecal coliform, FC; and fecal streptococcus, FS) and biochemical oxygen demand (BOD) were used to assess waste concentrations. Coliform counts indicated that sections of the drainage receiving septic effluent had waste concentrations far in excess of public health standards (mean FC = 550,000/100 ml). Areas of drainage remote from septic tank pollution were found to occasionally meet federal public health standards for whole body contact recreation but generally these areas had twice the allowable limit of 200 FC/100 ml. Bacterial contamination was highest during runoff events when the median values for TC, FC, and FS were 5, 3, and 17 times greater, respectively, than the median values during low stream discharge. Surface flows carried contaminants from unconfined livestock operations and fecally contaminated sediment was transported by high waters. During one runoff event a BOD loading of 36.7 kg/km2 was recorded and the peak BOD concentration observed was 16 mg/l. A discharge of liquid manure from a confined livestock operation caused a major fish kill. Pollution from septic tanks and unconfined livestock is greatest at high stream discharge when dilution reduces the impact on aquatic life.  相似文献   

3.
ABSTRACT: A residential single family dwelling was retrofitted to recycle graywater for landscape irrigation and toilet flushing. The objective of this study was to determine improvements in graywater quality by evaluating five simple graywater treatment systems that were easily adapted to the household plumbing. The treatment systems consisted of (1) water hyacinths and sand filtration, (2) water hyacinths, copper ion disinfection, and sand filtration, (3) copper ion disinfection and sand filtration, (4) copper/silver ion disinfection and sand filtration, and (5) 20–μm cartridge filtration. Water quality parameters measured were fecal and total coliform indicator bacteria, nitrates, suspended solids, and turbidity. Reductions in bacterial concentration, suspended solids and turbidity were achieved by all systems tested. Treatment reduced nitrate concentrations to an average of 2.6 mg/liter. Reductions in suspended solids, and turbidity were influenced more by the quality of the graywater entering the treatment system than the efficiency of the systems themselves. The water hyacinths and sand filtration system provided the best graywater quality in terms of the concentrations of fecal indicator bacteria. The system providing the best water quality in regard to average suspended solids after treatment was the water hyacinths, copper ion, and sand filtration system, and the best average turbidity was achieved by the copper/silver ion generating unit with sand filtration. All systems were capable of significant reductions in fecal indicator bacteria, suspended solids, and turbidity; however, additional treatment or disinfection would be necessary to further reduce the level of coliform and fecal coliform bacteria to achieve regulatory standards in the State of Arizona.  相似文献   

4.
Water samples from streams and springs in the Great Smoky Mountains National Park were analyzed for fecal coliform, fecal streptococcus, and total coliform bacteria. Levels of bacteria were found to be highly variable but related to elevation, time of year, type of water source, and water level of the streams. Visitors did not seem to be major contributors to bacterial contamination. Levels of fecal coliform and total coliform in most water samples were unsuitable for drinking without treatment. Tennessee state standards for body contact recreation (swimming and wading) were exceeded in a few samples but none from streams suitable for swimming. As a result of these findings, park managers increased efforts to inform visitors of the need to treat drinking water and removed improvements at backcountry springs which tended to give the springs the image of safe, maintained water sources.  相似文献   

5.
ABSTRACT: The transmission of disease in ground water is a topic of great concern to government agencies, ground water specialists, and the general public. The purpose of this study was to compare the temporal variability in storm flow of fecal coliform bacteria densities and Cryptosporidium parvum oocyst densities in agriculturally impacted karst ground water. Cryptosporidium parvum oocyst densities ranged from 0 to 1,050 oocysts/1, and mean storm densities ranged from 3.5 to 156.8 oocysts/1. Fecal coliform densities ranged from less than 1 CFU/100ml to more than 40,000 CFU/100ml, and geometric mean storm densities ranged from 1.7 CFU/100ml to more than 7,000 CFU/100ml. Fecal coliform densities correlated well with flow during storms, but Cryptosporidium oocyst densities exhibited a great deal of sample to sample variability and were not correlated with flow. Fecal coliform densities did not correlate positively with Cryptosporidium oocyst densities. Fecal coliform densities were greatest at storm peaks, when sediment loads were also greatest. Multiple transport mechanisms for fecal coliform bacteria and C. parvum oocysts may necessitate various agricultural land management and livestock health maintenance practices to control movement of pathogens to karst ground water.  相似文献   

6.
ABSTRACT: The impact on water quality by agricultural activity in karst terrain is an important consideration for resource management within the Appalachian Region. Karst areas comprise about 18 percent of the Region's land area. An estimated one-third of the Region's farms, cattle, and agricultural market value are on karst terrain. The purpose of this study was to compare fecal bacteria densities in karst groundwater impacted by two primary agricultural land uses in central Appalachia. Fecal bacteria densities were measured in cave streams draining two primary land management areas. The first area was pasture serving a beef cow-calf operation. The second area was a dairy. Neither area had best management practices in place for controlling animal wastes. Median fecal coliform and fecal streptococcus densities were highest in cave streams draining the dairy. Median fecal coliform densities in the dairy-impacted stream were greater than 4,000 CFU/100 ml and the median fecal coliform densities in the pasture-impacted streams were less than 10 CFU/100 ml. Median fecal streptococcus densities in the same streams were greater than 2,000 CFU/100 ml and 32 CFU/100 nil, respectively. A second dairy, with best management practices for control of animal and milkhouse waste, did not appear to be contributing significant amounts of fecal bacteria to the karst aquifer. It was concluded that agriculture was affecting bacterial densities in the karst aquifer. New management practices specifically designed to protect karst groundwater resources may be one way to protect the groundwater resource.  相似文献   

7.
ABSTRACT: Surface water impairment by fecal coliform bacteria is a water quality issue of national scope and importance. In Virginia, more than 400 stream and river segments are on the Commonwealth's 2002 303(d) list because of fecal coliform impairment. Total maximum daily loads (TMDLs) will be developed for most of these listed streams and rivers. Information regarding the major fecal coliform sources that impair surface water quality would enhance the development of effective watershed models and improve TMDLs. Bacterial source tracking (BST) is a recently developed technology for identifying the sources of fecal coliform bacteria and it may be helpful in generating improved TMDLs. Bacterial source tracking was performed, watershed models were developed, and TMDLs were prepared for three streams (Accotink Creek, Christians Creek, and Blacks Run) on Virginia's 303(d) list of impaired waters. Quality assurance of the BST work suggests that these data adequately describe the bacteria sources that are impairing these streams. Initial comparison of simulated bacterial sources with the observed BST data indicated that the fecal coliform sources were represented inaccurately in the initial model simulation. Revised model simulations (based on BST data) appeared to provide a better representation of the sources of fecal coliform bacteria in these three streams. The coupled approach of incorporating BST data into the fecal coliform transport model appears to reduce model uncertainty and should result in an improved TMDL.  相似文献   

8.
ABSTRACT: Landfill siting and design guidelines or regulations differ from state to state. Most include hydrogeological criteria, referring to hydraulic conductivities, aquifers, ground water flow patterns, contaminant travel times, and distance between landfill and sensitive targets for contaminants, etc. However, almost all of the existing hydrogeological guidelines are incomplete, inconsistent, or both. The aquitard between landfill and regional aquifer frequently offers less resistance to leachate migration than compliance with regulations may suggest. Residence times of leachate, that makes it through the landfill liner, is often overestimated. Monitoring wells in the regional aquifer are unreliable detectors of local leaks in a landfill. If a landfill does leak, costly aquifer restoration is called for. For traditional landfill designs, ground water monitoring considerations suggest the siting over homogeneous sand and gravel aquifers, rather than over complex till environments. An alternative landfill design criterion is suggested, which is based on a negative hydraulic gradient underneath the landfill. This design guarantees ground water protection, simplifies landfill monitoring, and generally enhances the landfill economy.  相似文献   

9.
This study examined bacteria and nutrient quality in tile drainage and shallow ground water resulting from a fall land application of liquid municipal biosolids (LMB), at field application rates of 93,500 L ha(-1), to silt-clay loam agricultural field plots using two different land application approaches. The land application methods were a one-pass AerWay SSD approach (A), and surface spreading plus subsequent incorporation (SS). For both treatments, it took between 3 and 39 min for LMB to reach tile drains after land application. The A treatment significantly (p < 0.1) reduced application-induced LMB contamination of tile drains relative to the SS treatment, as shown by mass loads of total Kjeldahl N (TKN), NH(4)-N, Total P (TP), PO(4)-P, E. coli., and Clostridium perfringens. E. coli contamination resulting from application occurred to at least 2.0-m depth in ground water, but was more notable in ground water immediately beneath tile depth (1.2 m). Treatment ground water concentrations of selected nutrients and bacteria for the study period ( approximately 46 d) at 1.2-m depth were significantly higher in the treatment plots, relative to control plots. The TKN and TP ground water concentrations at 1.2-m depth were significantly (p < 0.1) higher for the SS treatment, relative to the A treatment, but there were no significant (p > 0.1) treatment differences for the bacteria. For the macroporous field conditions observed, pre-tillage by equipment such as the AerWay SSD, will reduce LMB-induced tile and shallow ground water contamination compared to surface spreading over non-tilled soil, followed by incorporation.  相似文献   

10.
Due to chronic nutrient enrichment of surface water, wetlands adjacent to land managed with fertilizer have been studied to determine their role in nutrient dynamics. We sampled golf course runoff and determined the loads of NO3- and PO4(-3) transported during storms and the attenuation of those loads when runoff passed through a riparian wetland. All sampled storm events contained NO3- (2 to 1470 g NO3-N per event) and PO4(-3) (1 to 4156 g PO4-P per event). Extensive nutrient attenuation occurred when water passed through the riparian wetland. In 11 events, NO3- and PO4(-3) attenuation averaged 80 and 74%, respectively. In subsequent experiments, we created a stream of water flowing into the wetland and amended it with NO3-, PO4(-3) and Br-, creating an artificial runoff event. The experiments were conducted using conditions similar to those of natural runoff events. We observed rapid and complete attenuation of PO4(-3) immediately after runoff water infiltrated into the wetland subsurface. No PO4(-3) was observed in discharge from the wetland. Nitrate attenuation occurred following a lag phase of several hours that was probably due to reactivation of denitrifying enzymes. Nitrate attenuation was initially less than 60% but increased to 100% in all experiments. We observed extensive dilution of runoff water in the wetland subsurface indicating mixing with pre-event ground water in the wetland. The results indicated that intermittent inputs of NO3- and PO4(-3) could be successfully attenuated in the wetland on the time scale of natural storm events.  相似文献   

11.
ABSTRACT. Owing to their enormous capacity, ground-water reservoirs are at least equal in importance to the ground water itself. As regulators of water movement in the hydrological cycle, these reservoirs surpass all lakes combined, natural and manmade. While many aquifers are not well understood, data on many others are adequate for long-range broad-scale planning. An example is the basalt aquifer of the Snake River Plain in Idaho. However, the area has managerial problems which concern the time, the place and the feasibility of manipulations of water. All continents of the world contain great aquifers. For every huge aquifer, however, hundreds of smaller ones occur, and even these contain astonishing amounts of water. Aquifers in the Ohio River Basin of the United States are good examples. Management of total water resources is a difficult problem at many places. But many problems could be met and many water shortages alleviated or eliminated by use of aquifers, not merely as sources of water, but as reservoirs for management of water.  相似文献   

12.
Few studies have documented spatial and temporal variations in ground water quality in areas with high densities of animal farming operations (AFOs), or the long-term effects on surface-water quality. Changes in ground water quality were characterized in an irrigated area with a high density of AFOs in southern Alberta, Canada to evaluate the effect on ground water quality of manure application to fields. Fifty-five piezometers in the oxidized zone were sampled once or twice annually from 1995 to 2001, and temporal changes were analyzed using mixed model analysis. Average NO3- -N increased significantly from 12.5 to 17.4 mg L(-1) and average Cl- increased significantly from 19.4 to 34.4 mg L(-1) in piezometers installed in an unconfined sand aquifer at locations receiving fertilizer and manure. Compared with these manured locations, nitrate and chloride concentrations were significantly lower in shallow aquifer water in areas of pasture or native range, and concentrations did not change significantly with time. Nitrate and chloride concentrations in shallow ground water in fine-textured manured locations did not change significantly. Ground water below about 6 m in till and fine lacustrine sediments contains 18O signatures indicative of recharge under preirrigation or glacially influenced conditions, suggesting this ground water has a low vulnerability to agricultural contamination. Evaluations suggest that shallow ground water discharge will cause NO3- -N and Cl- in the Oldman River to increase by factors of at least 4.3 and 1.3, respectively, with more significant effects in smaller streams and under low-flow conditions.  相似文献   

13.
ABSTRACT: Data were developed within a three-year period for indicator bacteria and three species of bacterial pathogens following rural storm event hydrographs. The first flush concept was confirmed in all hydrographs. Bacterial density peaking occurred at or before the hydrograph peaks. FC and FS values were higher in more developed areas than the primary rural test site and their numerical ratios followed similar trends. Chlorine demand of storm waters varied between 8 and 16 mg/l and, the ozone requirement was greater than 32 mg/l in the same waters. Aftergrowth of total coliform bacteria occurred following chlorine and ozone doses of 16 mg/l and 32 mg/l respectively. Fecal coliform, fecal streptococci, Salmonella sp., and Pseudomonas sp. all were reduced to near detectable limits by the disinfectants up to 8 days. Staphylococcus sp. demonstrated a propensity to restablish their populations. Multiple regression analysis of the bacterial groups and species in storm waters suggested the fecal streptococci to have been the most useful group in evaluating bacterial storm water quality, with staphylocci have been closely related insofar as their statistical significance was concerned.  相似文献   

14.
Abstract:  Pesticide and transformation product concentrations and frequencies in ground water from areas of similar crop and pesticide applications may vary substantially with differing lithologies. Pesticide analysis data for atrazine, metolachlor, alachlor, acetochlor, and cyanazine and their pesticide transformation products were collected at 69 monitoring wells in Illinois and northern Indiana to document occurrence of pesticides and their transformation products in two agricultural areas of differing lithologies, till, and sand. The till is primarily tile drained and has preferential fractured flow, whereas the sand primarily has surface water drainage and primary porosity flow. Transformation products represent most of the agricultural pesticides in ground water regardless of aquifer material – till or sand. Transformation products were detected more frequently than parent pesticides in both the till and sand, with metolachlor ethane sulfonic acid being most frequently detected. Estimated ground‐water recharge dates for the sand were based on chlorofluorocarbon analyses. These age‐dating data indicate that ground water recharged prior to 1990 is more likely to have a detection of a pesticide or pesticide transformation product. Detections were twice as frequent in ground water recharged prior to 1990 (82%) than in ground water recharged on or after 1990 (33%). The highest concentrations of atrazine, alachlor, metolachlor, and their transformation products, also were detected in samples from ground water recharged prior to 1990. These age/pesticide detection relations are opposite of what would normally be expected, and may be the result of preferential flow and/or ground‐water mixing between aquifers and aquitards as evident by the detection of acetochlor transformation products in samples with estimated ground‐water ages predating initial pesticide application.  相似文献   

15.
ABSTRACT: Recent investigations describing the hydrogeology of the Blue Ridge Province of Virginia suggest the occurrence of multiple aquifers and flow paths that may be responsible for the variable flow behavior of springs and seeps appearing throughout the region. Deep, confined aquifers associated with ubiquitous faults and shallow, variably confined saprolite aquifers may contribute water to spring outlets resulting in significantly different quantities of discharge and water quality. Multiple analyses are required to adequately identify the flow paths to springs. In this investigation, hydrograph analyses, surface electrical resistivity surveys, aquifer tests, and nitrate concentrations are used in conjunction with previously reported analyses from borehole logs and age dating of ground water to identify two distinct flow paths. Results indicate that base flow occurs from a deep fault zone aquifer and such discharge can be maintained even during prolonged periods of drought, while increased discharge identified on hydrograph peaks suggests the occurrence of rapid flow through the saprolite aquifer within a radius of about 25 meters of the spring orifice. Springflow hydrograph analysis is suitable for rapid characterization of flow paths leading to spring outlets. Rapid characterization is important for evaluation of potential water quality problems arising from contamination of shallow and deep aquifers and for evaluation of water resource susceptibility to drought. The techniques evaluated here are suitable for use in other locations in fractured crystalline rock environments.  相似文献   

16.
ABSTRACT: Many water bodies within the United States are contaminated by non‐point source (NPS) pollution, which is defined as those materials posing a threat to water quality arising from a number of individual sources and diffused through hydrologic processes. One such NPS pollutant that is of critical concern are pathogens derived from animal wastes, including humans. The potential presence of pathogens is identified by testing the water for fecal conform, a bacteria also associated with animal wastes. Water contaminated by animal wastes are most often associated with urban and agricultural areas, thus it is postulated that by utilizing land cover indicators, those water bodies that may be at risk of fecal coliform contamination may be identified. This study utilizes land cover information derived from the Multi‐Resolution Land Characterization (MRLC) project to analyze fecal coliform contamination in South Carolina. Also utilized are 14 digit hydro‐logic unit code (HUC) watersheds of the state, a digital elevation model, and test point data stating whether fecal coliform levels exceeded State Water Quality Standards. Proportions of the various land covers are identified within the individual watersheds and then analyzed using a logistic regression. The results reveal that watersheds with large proportions of urban land cover and agriculture on steep slopes had a very high probability of being impaired. (KEY TERMS: Geographic Information Systems; land use planning; nonpoint source pollution; statistical analysis; water quality; watershed management.)  相似文献   

17.
Abundance of fecal caliform bacteria is a weak index of the presence of human pathogens in wastewater entering coastal waters. In spite of this, use of fecal caliform indices for management purposes is widespread. To gain insight into interpretation of fecal coliform data, we evaluated size of stocks of fecal coliforms in water, sediments, and sea wrack, in Buttermilk Bay, a coastal embayment in Massachusetts. Sediments contained most of the fecal coliforms. Fecal coliforms in sediments were as much as one order of magnitude more abundant than in the water column or in sea wrack. The fecal coliforms in sediments of Buttermilk Bay were so abundant that resuspension of fecal coliforms from just the top 2 cm of muddy sediments could add sufficient cells to the water column to have the whole bay exceed the federal limit of fecal coliforms for shellfishing. The major sources of fecal coliforms to the bay were water-fowls, surface runoff, groundwater, and streams. Waterfowl were the largest source of fecal coliforms during cold months; surface runoff, streams, and groundwater were most important during warm months. Redirection of surface runoff pipes is unlikely to be a very successful management action since contributions via this source are insufficient to account for the measured increases in concentrations of fecal coliforms in water. Removal of waterfowl is also unlikely to be useful, since fecal coliform concentrations leading to closures of shellfish beds and swimming areas are most frequent during warm months when waterfowl are rarest. Rates of loss of fecal caliform cells from the water column by death and tidal exchange were high. Mortality of cells was about an order of magnitude larger than losses by tidal exchange. The amounts of fecal coliforms brought into the bay by waterfowl, surface runoff, groundwater, and streams are an order of magnitude smaller than the losses by mortality and tidal removal. This implies that there is an additional source of fecal coliforms within the bay. We suggest that resuspension of the upper layers of sediments can easily account for the fecal coliforms present in the water. Fecal coliform content of water and shellfish were not correlated. In contrast, sediment and shellfish fecal coliform abundances were significantly related. Monitoring of fecal coliforms in sediments may provide a better assessment of shellfish than sampling of water. The large fecal coliform stock in sediments should be the first priority for management. Efforts ought to be directed toward the reduction of sediment fecal coliform stocks. Lowering nutrient additions to coastal water bodies may be one practical approach.  相似文献   

18.
This study examines sources of fecal coliform in Segment 2302 of the Rio Grande, located south of the International Falcon Reservoir in southern Texas. The watershed is unique because the contributing drainage areas lie in Texas and Mexico. Additionally, the watershed is mostly rural, with populated communities known as “colonias.” The colonias lack sewered systems and discharge sanitary water directly to the ground surface, thus posing an increased health hazard from coliform bacteria. Monitoring data confirm that Segment 2302 is not safe for contact recreation due to elevated fecal coliform levels. The goal of the study was to simulate the observed exceedences in Segment 2302 and evaluate potential strategies for their elimination. Fecal coliform contributions from ranching and colonia discharges were modeled using the Hydrologic Simulation Program‐Fortran (HSPF). Model results indicated that the regulatory 30‐day geometric mean fecal coliform concentration of 200 colony forming units (cfu) per 100 milliliters is exceeded approximately three times per year for a total of 30 days. Ongoing initiatives to improve wastewater facilities will reduce this to approximately once per year for 14 days. Best management practices will be necessary to reduce cattle access to streams and eliminate all exceedences. The developed model was limited by the relatively sparse flow and fecal coliform data.  相似文献   

19.
ABSTRACT: Fecal‐indicator bacteria were sampled at 14 stream sites in Anchorage, Alaska, USA, as part of a study to determine the effects of urbanization on water quality. Population density in the subbasins sampled ranged from zero to 1,750 persons per square kilometer. Higher concentrations of fecal‐coliform, E. coli, and enterococci bacteria were measured at the most urbanized sites. Although fecal‐indicator bacteria concentrations were higher in summer than in winter, seasonal differences in bacteria concentrations generally were not significant. Areas served by sewer systems had significantly higher fecal‐indicator bacteria concentrations than did areas served by septic systems. The areas served by sewer systems also had storm drains that discharged directly to the streams, whereas storm sewers were not present in the areas served by septic systems. Fecal‐indicator bacteria concentrations were highly variable over a two‐day period of stable streamflow, which may have implications for testing of compliance to water‐quality standards.  相似文献   

20.
ABSTRACT: Agricultural practices such as cattle grazing and animal manure application can contribute to relatively high runoff concentrations of fecal coliform (FC) and fecal streptococcus (FS). Available information, however, is inconsistent with respect to the effects of such practices as well as to measures that can discriminate among candidate sources of FC and FS. The objective of this study was to assess the effects of grazing, time of year, and runoff amounts on FC and FS concentrations and to evaluate whether FCIFS concentration ratios are consistent with earlier values reported as characteristic of animal sources. Runoff from four Northwest Arkansas fields was sampled and analyzed for fecal coliform (FC) and fecal streptococcus (FS) for nearly three years (1991–1994). Each field was grazed and fertilized, with two fields receiving inorganic fertilizer and two receiving animal manure. Runoff amount had no effect on runoff concentrations of FC or FS. There were no consistent relationships between the presence of cattle and FC and FS runoff concentrations. Both FC and FS concentrations were affected by the season during which the runoff occurred. Higher concentrations were observed during warmer months. Runoff FC concentrations exceeded the primary contact standard of 200 cfu/100 mL during at least 89 percent of all runoff events and the secondary contact standard of 1000 cfu/100 mL during at least 70 percent of the events. Ratios of FC to FS concentrations varied widely (from near zero to more than 100), confirming earlier findings that FC/FS ratios are not a reliable indicator of the source of FC and FS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号