首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Contaminant sorption within the soil matrix frequently limits biodegradation. However, contaminant bioavailability can be species-specific. This study investigated bioavailability of phenanthrene (PHE) to two PHE-degrading bacteria (Pseudomonas strain R and isolate P5-2) in the presence of rhamnolipid biosurfactant and/or a biosurfactant-producing bacterium, Pseudomonas aeruginosa ATCC 9027. Pseudomonas strain R mineralized more soil-sorbed PHE than strain P5-2, but in aqueous cultures the rate and extent of PHE mineralization by P5-2 exceeded that by P. strain R. In Fallsington sandy loam (fine-loamy, mixed, active, mesic Typic Endoaquult) (high PHE-sorption capacity) the addition of rhamnolipid increased PHE mineralization by P. strain R. Phenanthrene mineralization in soils inoculated with P5-2 was minimal and no enhancement in PHE degradation was observed when biosurfactant was added. Co-inoculation of Fallsington sandy loam with the biosurfactant producer did not affect PHE mineralization by isolate P5-2, but significantly enhanced PHE mineralization by P. strain R. The enhancement of PHE mineralization could not be explained by P. aeruginosa-mediated PHE degradation. The addition of rhamnolipid at concentrations above the critical micelle concentration (CMC) resulted in enhanced PHE release from test soils. These results suggest that the PHE-degrading strains were able to access different pools of PHE and that the biosurfactant-enhanced release of PHE from soils did not result in enhanced biodegradation. The results also demonstrated that bacteria with the catabolic potential to degrade sorbed hydrophobic contaminants could interact commensally with surfactant-producing strains by an unknown mechanism to hasten the biodegradation of aromatic hydrocarbons. Thus, understanding interactions among microbes may provide opportunities to further enhance biodegradation of soil-bound organic contaminants.  相似文献   

2.
To investigate the distribution of parathion [O,O-diethyl O-(4-nitrophenyl) phosphorothioate] and its highly toxic metabolite paraoxon [O,O-diethyl O-(4-nitrophenyl)phosphate] between the soluble and sorbed pools in the soil, batch experiments were conducted to evaluate the rate of adsorption and desorption of 14C-labeled parathion and paraoxon in soil. The mineralization and degradation of these products were also investigated during a 56-d experiment under controlled laboratory conditions. Adsorption patterns indicated initial fast adsorption reactions occurring within 4 h for both parathion and paraoxon. We also observed the formation of nonextractable residues. The paraoxon was more intensively degraded than the parathion, and production of p-nitrophenol and other metabolites was observed. A kinetic model was developed to describe the sorption and biodegradation rates of parathion, taking into account the production, retention, and biodegradation of paraoxon, the main metabolite of parathion. After fitting the parameters of the model we made a simulation of the kinetics of the appearance and disappearance of paraoxon. From the simulation we predicted a quantity of metabolite in the liquid phase amounting to 1% of the quantity of parathion initially applied. This is in agreement with the experimental data.  相似文献   

3.
Sorption and degradation of the herbicide 2,4-D [2,4-dichlorophenoxyacetic acid] were determined for 123 surface soils (0 to 15 cm) collected in 2002 and in 2004 between 49 degrees to 60 degrees north longitude and 110 degrees to 120 degrees west latitude in Alberta, Canada. The soils were characterized by soil organic carbon content (SOC), pH, electrical conductivity, soil texture, cation exchange capacity, carbonate content, and total soil microbial activity. The 2,4-D sorption coefficients, Kd and Koc, were highly variable with coefficients of variation of 89 and 59%, respectively, at the provincial scale. Both Kd and Koc were well described by regression models with SOC and soil pH as variables, regardless of scale. Surprisingly, variations in 2,4-D mineralization were much smaller than variations in sorption. Variability in total 2,4-D mineralization was particularly low, with a coefficient of variation of only 7% at the provincial scale. Average 2,4-D half-lives in ecoregions ranged from 1.7 to 3.5 d, much lower than the field dissipation half-life of 10 d reported for 2,4-D in general pesticide property databases. Regression models describing degradation parameters were generally poor or not significant because 2,4-D mineralization was only weakly associated with measured 2,4-D sorption parameters and soil properties. As such, regional variations in herbicide sorption coefficients should be measured or calculated based on soil properties, to assign distinct pesticide fate model input parameters when estimating 2,4-D off-site transport at the provincial scale. Spatial variations in herbicide degradation appear less important for Alberta as 2,4-D half-lives were similar in soils across the province. The rapid mineralization of 2,4-D is noteworthy because 2,4-D is widely used in Alberta and perhaps adaptation of soil microbial communities allowed for accelerated degradation regardless of soil properties or the extent of 2,4-D sorption by soil.  相似文献   

4.
White-rot fungi (WRF) such as Trametes hirsuta completely degrade (mineralize) pentachlorophenol (PCP) and many other organopollutants. This has led to them being used to decontaminate various substrates (e.g. soil) through biorememediation. However, because PCP is a biocide, it can inhibit fungal growth and thereby its own degradation. It was hypothesized that substrate pH might affect PCP degradation, because when the pH is lower than 4.7 (the pKa for PCP) the phenol predominates, while at higher pH the phenate does. These two PCP species differ markedly in physical and biological properties. The effect of cyclodextrins was also investigated since it is known that the inclusion complexes these form with PCP differ in bioavailability and toxicity from non-complexed PCP. Tests were first made in liquid and agar media (where conditions are relatively easy to control), and then in a sawdust, because it is a common target matrix for WRF bioremediation. Results with the liquid and agar media showed that growth in the presence of inhibitory PCP concentrations decreased as the pH decreased, consistent with the phenol being more toxic. Growth in sawdust was less affected by PCP regardless of the pH, presumably because the PCP sorbed to the wood which decreased its bioavailability. Some cyclodextrins markedly decreased the PCP's toxicity in liquid, agar and sawdust media. Rates of PCP mineralization (measured from production of (14)CO(2) from (14)C PCP) in liquid cultures containing 0.5 mgkg(-1) PCP (a sub-inhibitory concentration) were similar from pH 2.5-7.5, indicating that the phenol and the phenate were equally degradable. Degradation of a growth inhibiting concentration on sawdust (1,000 mgkg(-1)) could be increased slightly by lowering the pH below the pKa, this increasing sorption to the wood. Degradation increased more when the pH was raised well above the pKa, presumably due to the phenate being less toxic and more soluble, making it more available to the degradative system. Although some cyclodextrins decreased growth inhibition, they also interfered with degradation. If this interference could be overcome, cyclodextrins could be used to increase the maximal PCP concentration that could be treated by WRF bioremediation.  相似文献   

5.
Adsorption of 2,4-dichlorophenoxyacetic acid by an Andosol   总被引:1,自引:0,他引:1  
To identify the important soil components involved in 2,4-dichlorophenoxyacetic acid (2,4-D) adsorption on Andosols, 2,4-D adsorption on a surface horizon of an Andosol was compared with that on hydrogen peroxide (H2O2)-treated (soil organic matter [SOM] was removed), acid-oxalate (OX)-treated (active metal hydroxides and SOM were removed), and dithionite-citrate-bicarbonate (DCB)-treated (free and active metal [hydr]oxides and SOM were removed) soil samples at equilibrium pHs ranging from 4 to 8. Although the untreated soil contained a large amount of organic C (71.9 g kg-1), removal of SOM had little effect on 2,4-D adsorption. Active surface hydroxyls, which were attached to the active and free metal (hydr)oxides and metal SOM complexes, were identified as the most important soil functional group for 2,4-D adsorption. The dominant mechanism of the 2,4-D adsorption was a ligand exchange reaction in which the carboxylic group of 2,4-D displaced the active surface hydroxyl associated with metals and formed a strong coordination bond between the 2,4-D molecule and soil solid phase. The ligand exchange reaction reasonably accounted for the selective adsorption of 2,4-D over Cl-, competitive adsorption of phosphate over 2,4-D, reduction in plant-growth-inhibitory activity of soil-adsorbed 2,4-D, and the high 2,4-D adsorption ability of Andosols. Although a humic acid purified from the soil did not adsorb 2,4-D, the presence of the humic acid increased 2,4-D adsorption on Al and Fe, probably by inhibiting the hydrolysis and polymerization of Al and Fe resulting in the preservation of available adsorption sites on these metals. The adsorption behavior of 2,4-D on soils could be a good index for predicting the adsorption behavior of other organic acids in soils.  相似文献   

6.
Field studies have demonstrated that prolonged pesticide-soil contact times (aging) may lead to unexpected persistence of these compounds in the environment. Although this phenomenon is well documented in the field, there have been very few controlled laboratory studies that have tested the effects of long-term aging and the role of differing sorbates on contaminant sorption-desorption behavior and fate in soils. This study examines the sorption-desorption behavior of chlorobenzene, ethylene dibromide (1,2-dibromomethane), atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine), and 2, 4-D (2,4-dichlorophenoxyacetic acid) on one soil type after 1 d, 30 d, and 14 mo of aging. Sorption isotherms were evaluated after each aging period to observe changes in the uptake of each compound by soil. Desorption kinetic data were generated after each aging period to observe changes in release from soil, and desorption parameters were evaluated using a three-site desorption model that includes equilibrium, nonequilibrium, and nondesorption sites. The data indicate no statistically significant increase in sorption for ethylene dibromide or chlorobenzene from 1 to 30 d, although sorption of 2,4-D increased slightly, and sorption of atrazine decreased slightly. Statistically significant increases in linear sorption coefficients (Kd), from 1 d to 14 mo of aging, were apparent for ethylene dibromide and 2,4-D. The Kd values for chlorobenzene, measured after 1 d, 30 d, and 14 mo of aging, were statistically indistinguishable. Aging affected the distribution of chemicals within sorption sites. With aging, the desorbable fraction decreased and the nondesorbable fraction, which was apparent after only 1 d of pesticide-soil contact, increased for all chemicals studied.  相似文献   

7.
The mixture of 1,3-dichloropropene (1,3-D) and chloropicrin (CP) is used as a preplant soil fumigant. In comparison with individual fumigants, application of a mixture may affect the environmental dissipation and fate of each chemical, such as emission and degradation. We investigated the degradation of CP, 1,3-D, and their mixture in fresh soils and sterile soils, and evaluated the competitive characteristic of fumigants in the mixture. The degradation of low concentrations of CP in fresh soil was accelerated at early times in the presence of 1,3-D, whereas the addition of CP reduced the degradation rate of trans-1,3-D, possibly by inhibiting the activity of trans-1,3-D degrading microorganisms. The potential of applying amendments to the soil to increase the rate of CP and 1,3-D degradation was also illustrated. The degradation of both fumigants was significantly enhanced in soils amended with ammonium thiosulfate (ATS) and sodium diethyldithiocarbamate (Na-DEDTC) compared with unamended soil. Competitive degradation was observed for CP in amended soils in the presence of 1,3-D. The degradation of cis-1,3-D in amended soils spiked as a mixture of 1,3-D and CP was repressed compared with the rate of degradation in samples spiked with 1,3-D only. This implied that in abiotic degradation, CP and cis-1,3-D competed for a limited number of reaction sites in amended soil, resulting in decreased degradation rates. No significant influence of fumigant mixtures was observed for trans-1,3-D in amended soil.  相似文献   

8.
Parathion is an insecticide of a group of highly toxic organophosphorus compounds. To investigate the dissipation and toxicological impact of parathion [O,O-diethyl O-(4-nitrophenyl) phosphorothioate] and its highly toxic metabolite, paraoxon, soil laboratory experiments were conducted in columns during a 19-d experiment under variably saturated conditions. Water and pesticide transport, sorption, and biodegradation of parathion were measured in three soil pools (soluble phase, weakly and strongly sorbed phases) using C-labeled pesticide. The effects of parathion and its metabolite on the mobility of soil nematodes were observed and then modeled with an effective variable, which combined pesticide concentration and time of application. Results showed that parathion was highly sorbed and slowly degraded to a mixture of metabolites. The parent compound and its metabolites remained located in the top 0.06-m soil layer. A kinetic model describing the sorption, biodegradation, and allocation into different soil pools of parathion and its metabolites was coupled with heat and water transport equations to predict the fate of parathion in soil. Simulated results were in agreement with experimental data, showing that the products remained in the upper soil layers even in the case of long-term (11-mo) simulation. The strongly sorbed fraction may be regarded as a pesticide reservoir that regularly provides pesticide to the weakly sorbed phase, and then, liquid phase, respectively. From both modeling and observations, no major toxicological damage of parathion and paraoxon to soil nematodes was found, although some effects on nematodes were possible, but at the soil surface only (0.01- and 0.02-m depth).  相似文献   

9.
A multitrophic outdoor mesocosm system was used to mimic a wetland ecosystem and to investigate the effects of glyphosate and two herbicide mixtures on wetland microbial communities. The glyphosate concentration used was 1000 times the environmentally relevant concentration (ERC). One herbicide mixture consisted of six auxin-type herbicides (2,4-D, MCPA, clopyralid, dicamba, dichlorprop, mecoprop), each at 1000 times the ERC. The second mixture was comprised of eight herbicides, including the six auxin-type herbicides as well as bromoxynil and glyphosate. For this mixture, a dose-response approach was used to treat mesocosms with the ERCs of each herbicide as the base concentration. Algal biomass and production and bacterial production and numbers for pelagic and attached communities were measured at different times over a 22-d period. The experimental results indicate that the eight-herbicide mixture, even at low concentrations, produced negative effects on microbial communities. Glyphosate on its own suppressed algal biomass and production for the duration of the study in pelagic and biofilm communities. Algal biomass and production, although initially depressed in the auxin-type herbicide treatment, were stimulated from Day 9 until experiment end. Due to their similar modes of action, the effects of this herbicide mixture appear to be a result of concentration addition. Such negative effects, however, were brief, and microbial communities recovered from herbicide exposure. Based on evidence presented in this study, it appears that glyphosate has a higher potential to inhibit primary production and chlorophyll content in pelagic and attached wetland algal communities than the auxin-type herbicide mixture.  相似文献   

10.
Polyacrylamide (PAM) treatment of irrigation water is a growing conservation technology in irrigated agriculture in recent years. There is a concern regarding the environmental impact of PAM after its application. The effects of anionic PAM on the sorption characteristics of four widely used herbicides (metolachlor, atrazine, 2,4-D, and picloram) on two natural soils were assessed in batch equilibrium experiments. Results showed that PAM treatment kinetically reduced the sorption rate of all herbicides, possibly due to the slower diffusion of herbicide molecules into interior sorption sites of soil particles that were covered and/or cemented together by PAM. The equilibrium sorption and desorption amounts of nonionic herbicides (metolachlor and atrazine) were essentially unaffected by anionic PAM, even under a high PAM application rate, while the sorption amounts of anionic herbicides (2,4-D and picloram) were slightly decreased and their desorption amounts increased little. The impact mechanisms of PAM were related to the molecular characteristics of PAM and herbicides. The negative effects of PAM on the sorption of anionic herbicides are possibly caused by the enhancement of electrostatic repulsion by presorbed anionic PAM and competition for sorption sites. However, steric hindrance of the large PAM molecule weakens its influence on herbicide sorption on interior sorption sites of soil particles, which probably leads to the small interference on herbicide sorption, even under high application rates.  相似文献   

11.
The bioavailability and biodegradation of polycyclic aromatic hydrocarbons (PAHs) can be increased through the addition of surfactants. Previous studies of this nature have been conducted under mesophilic conditions. Hence, the aim of the present study was to investigate the effects of synthetic surfactants and biosurfactants on solubilization and degradation of phenanthrene (PHE) in a series of batch solution experiments under thermophilic conditions. Tween 80, Triton X-100, and biosurfactants produced from Pseudomonas aeruginosa strain P-CG3 (P-CG3) and Pseudomonas aeruginosa ATCC 9027 (P. 9027) were used in this study. Surfactants effectively enhanced the solubility of PHE at 50 degrees C and the biosurfactant from P-CG3 was most effective with a 28-fold increase in apparent solubility of PHE at a concentration of 10 x critical micelle concentration (CMC) compared with the controls. However, addition of synthetic surfactants or biosurfactants inhibited the biodegradation of PHE in mineral salts medium by an isolate Bacillus sp. B-UM. Degradation of PHE diminished with increasing surfactant concentrations, and PHE degradation was completely inhibited for all the surfactants tested when the concentrations were greater than their respective CMC. The growth test suggested that Tween 80 and biosurfactants were degradable, but preferential utilization of these surfactants as substrates was not the mechanism for explaining the inhibition of PHE biodegradation. Because of the hydrophobic property of B-UM, degradation inhibition of PHE by surfactants was probably due to the reduction of direct contact between bacterial cells and PHE.  相似文献   

12.
Burning of crop residues is a common agricultural practice that incorporates the resulting particulate matter (ash) of high adsorptivity into soils. To investigate the effect of ash on the biodegradation of pesticides in soils, we measured the sorption, desorption, and biodegradation of benzonitrile in a silt loam in the presence and absence of an ash resulting from burning of wheat (Triticum aestivum L.) residue. Biodegradation experiments were conducted by inoculating sorbent slurries with a pure culture of benzonitrile-degrading bacteria (Nocardia sp.). Both liquid- and sorbed-phase benzonitrile concentrations were quantified over time. The ash was approximately 2000 times more effective per unit mass than the soil in sorbing benzonitrile. Amendment of the soil with 1% ash (by weight) resulted in a 10-fold increase in sorption. Sorption of benzonitrile by the ash significantly decreased the solution-phase concentration in the slurries of ash and ash-amended soil. Desorption of benzonitrile from the ash required approximately 60 min to complete, whereas approximately 20 min were required for desorption from the soil. Benzonitrile in the extracts of various sorbents and soil slurry was completely degraded within 500 min. However, the degradation was substantially reduced in the presence of the ash. At 2000 min, only 20% of benzonitrile in ash slurry and only 44% in ash-amended soil slurry were degraded. An acclimation period of approximately 100 min was observed in extracts and slurries containing the ash. Substantial reduction in the biodegradation of benzonitrile in the presence of wheat ash was apparently due to sorption of benzonitrile by the ash, slow desorption from the ash, and the increased acclimation period. Our results suggest that the presence of crop-residue-derived ash may increase the persistence of pesticides in agricultural soils.  相似文献   

13.
Soil fumigation using shank injection creates high fumigant concentration gradients in soil from the injection point to the soil surface. A temperature gradient also exists along the soil profile. We studied the degradation of methyl isothiocyanate (MITC) and 1,3-dichloropropene (1,3-D) in an Arlington sandy loam (coarse-loamy, mixed, thermic Haplic Durixeralf) at four temperatures and four initial concentrations. We then tested the applicability of first-order, half-order, and second-order kinetics, and the Michaelis-Menten model for describing fumigant degradation as affected by temperature and initial concentration. Overall, none of the models adequately described the degradation of MITC and 1,3-D isomers over the range of the initial concentrations. First-order and half-order kinetics adequately described the degradation of MITC and 1,3-D isomers at each initial concentration, with the correlation coefficients greater than 0.78 (r2> 0.78). However, the derived rate constant was dependent on the initial concentration. The first-order rate constants varied between 6 and 10x for MITC for the concentration range of 3 to 140 mg kg(-1), and between 1.5 and 4x for 1,3-D isomers for the concentration range of 0.6 to 60 mg kg(-1), depending on temperature. For the same initial concentration range, the variation in the half-order rate constants was between 1.4 and 1.7x for MITC and between 3.1 and 6.1x for 1,3-D isomers, depending on temperature. Second-order kinetics and the Michaelis-Menten model did not satisfactorily describe the degradation at all initial concentrations. The degradation of MITC and 1,3-D was primarily biodegradation, which was affected by temperature between 20 and 40 degrees C, following the Arrhenius equation (r2 > 0.74).  相似文献   

14.
The goal of this research was to provide information for choosing appropriate materials for studying gas-phase concentrations of propargyl bromide (3BP) and 1,3-dichloropropene (1,3-D) in laboratory experiments. Several materials were tested and found to sorb both gas-phase chemicals in the following order: stainless steel (SS) < Teflon polytetrafluoroethylene (PTFE-FEP) approximately flexible polyvinyl chloride (PVC) approximately acrylic < low-density polyethylene (PE) < vinyl approximately silicone < polyurethane foam (PUF). Sorption of SS was insignificant and PUF sorbed all the fumigant that was applied. For the other materials, linear sorption coefficients (Kd) for 3BP ranged from 3.0 cm3 g(-1) for PVC to 215 cm3 g(-1) for silicone. Freundlich sorption coefficients for 1,3-D ranged from 11.5 to 371 cm3 g(-1). First-order desorption rate constants in an open system ranged from 0.05 to 1.38 h(-1) for 3BP and from 0.07 to 1.73 h(-1) for 1,3-D. In a closed system, less than 2% of sorbed fumigant desorbed from vinyl while up to 99% desorbed from PVC within 24 h when equilibrated at the highest headspace concentration. Sorption of both fumigants was linearly related to the square root of time except for vinyl and silicone. This may indicate non-fickian diffusion of fumigant into the polymer matrix. Vinyl, silicone, PE, and PUF should be avoided for quantitative study of organic gases, except possibly as a trapping medium. Use of PTFE, PVC, and acrylic may require correction for sorption-desorption and diffusion.  相似文献   

15.
16.
Soils under intensive livestock farming and heavily fertilized with animal manure may have elevated soil phosphorus (P) contents. We determined P desorption kinetics in batch experiments using soils from a pot experiment where grass was cropped on a P-rich noncalcareous sandy soil without P addition, to lower the soil P content. A diffusion model was used to describe P desorption kinetics from a spherical aggregate. The model was calibrated with data from the batch experiments. Simulation results show that in the pot experiment, P desorption from the solid phase of the inner layers was initially far from equilibrium with the rest of the aggregate, but desorption came closer to equilibrium as the soil P content decreased further. A simple tool is presented, referred to as the dynamic bioavailability index (DBI), to determine whether kinetics of P desorption limits plant uptake. This tool is the dimensionless ratio of the modeled maximal diffusive flux from soil aggregates to solution and the plant uptake rate measured in the pot experiment. The DBI was initially much larger than one; the maximal possible P desorption rate exceeded the uptake rate, so uptake was not limited by desorption. The DBI stabilized at a value somewhat larger than one after a while, due to soil transport limitations. This decrease coincided with a large decrease of the P content in the grass to a value (far) below what is considered as optimal; the supply rate of P from soil to the root cannot meet the demand needed for optimal P uptake. The DBI could be seen as a promising onset to a new dynamic approach of bioavailability.  相似文献   

17.
This paper investigated the biodegradation kinetics of 4-chlorophenol (4-CP) and 2,4-dichlorophenol (2,4-DCP) separately in batch reactors and mixed in sequencing batch reactors (SBRs). Batch reactor experiments showed that both 4-CP and 2,4-DCP began to inhibit their own degradation at 53 and 25 mg l(-1), respectively, and that the Haldane equation gave a good fit to the experimental data because r(2) values were higher than 0.98. The maximum specific degradation rates (q(m)) were 130.3 and 112.4 mg g(-1) h for 4-CP and 2,4-DCP, respectively. The values of the half saturation (K(s)) and self-inhibition constants (K(i)) were 34.98 and 79.74 mg l(-1) for 4-CP, and 13.77 and 44.46 mg l(-1) for 2,4-DCP, respectively. The SBR was fed with a mixture of 220 mg l(-1) of 4-CP, 110 mg l(-1) of 2,4-DCP, and 300 mg l(-1) of peptone as biogenic substrate at varying feeding periods (0-8h) to evaluate the effect of feeding time on the performance of the SBR. During SBR operation, in addition to self-inhibition, 4-CP degradation was strongly and competitively inhibited by 2,4-DCP. The inhibitory effects were particularly pronounced during short feeding periods because of higher chlorophenol peak concentrations in the reactor. The competitive inhibition constant (K(ii)) of 2,4-DCP on 4-CP degradation was 0.17 mg l(-1) when the reactor was fed instantaneously (0 h feeding). During longer feedings, increased removal/loading rates led to lower chlorophenol peak concentrations at the end of feeding. Therefore, in multi-substrate systems feeding time plus reaction time should be determined based on both degradation kinetics and substrate interaction. During degradation, the meta cleavage of 4-chlorocatechol resulted in accumulation of a yellowish color because of the formation of 5-chloro-2-hydroxymuconic semialdehyde (CHMS), which was further metabolized. Isolation and enrichment of the chlorophenols-degrading culture suggested Pseudomonas sp. and Pseudomonas stutzeri to be the dominant species.  相似文献   

18.
ABSTRACT: Four 10-ha plots in dense watermilfoil beds of Lake Seminole, Georgia, were each treated with either 2,4-D DMA or 2,4-D BEE at rates of 22.5 and 45 kg a.e./ha. Both formulations were shown to be rapidly converted to the 2,4-D acid form, with no detection of 2,4-D DMA or 2,4-D BEE in the water within less than 24 hours after treatment. The maximum detected 2,4-D concentrations in the high rate 2,4-D DMA and 2,4-D BEE plots were 3.6 and 0.68 mg/, respectively. However, all but seven samples at a 2,4-D BEE plot showed nondetectable herbicide levels by day 7, with all water samples showing nondetectable levels by day 13. Dimethylnitrosamine and 2,4-dichlorophenol, potentially toxic transformation products of the herbicide formulations, were at nondetectable levels in all water samples. Sediment samples showed no significant net accumulation of 2,4-D, 2,4-D BEE, or 2,4-dichlorophenol during the summer monitoring; dimethylnitrosamine remained at nondetectable levels. There was no accumulation of 2,4-D in fish collected from the two plots treated with 2,4-D DMA. Four of 24 game fish from the 2,4-D BEE treatment plots contained low levels of 2,4-D in muscle tissue, with a maximum value of 0.29 μg/g. In contrast, 18 of 20 gizzard shad collected from these plots through day 13 contained detectable 2,4-D in the muscle, with a maximum concentration of 6.9 μg/g. All fish collected after day 13 contained nondetectable levels of 2,4-D. Small decreases in dissolved oxygen and pH, associated with the complete watermilfoil control in all plots, had returned to normal summer values by day 28.  相似文献   

19.
Sorption and desorption characteristics of propiconazole (1-[[2-(2,4-dichlorophenyl)-4-propyl-1,3-dioxolan-2-yl]methyl]-1H-1,2,4-triazole) to different particle/aggregate-size fractions of agricultural runoff material were investigated. Emphasis was put on clay and colloidal size fractions to evaluate their role as potential sorbents and carriers for this pesticide. The runoff material was separated into size fractions ranging from 2 mm to ca. 15 nm by wet sieving, sedimentation, centrifugation, and membrane ultrafiltration. Each fraction was characterized by its organic C content and C/N ratio. Distinctive sorption properties of clay-sized particles and colloids were investigated. The obtained size fractions differed significantly in their organic C concentration, C/N ratio, and sorption properties to propiconazole. Organic matter was mainly associated in aggregates >2 microm. Binding of propiconazole to this coarse fraction made up 80% of the sorbed propiconazole. The distribution coefficient between solid and aqueous phases increased with decreasing particle size. The colloidal fraction (<0.16 microm) exhibited the highest sorbtivity, with a distribution coefficient of 113 L kg(-1), which was more than four times higher than that in the bulk sample (27 L kg(-1)). The fraction <2 microm represented 8% of the total sample weight, but contributed to 20% of the sorbed propiconazole. Strong hysteresis was observed for the sorption-desorption of propiconazole on the runoff material. Under dilution very little sorbed propiconazole will be released into the water phase. Due to its high sorbtivity and mobility and the strong sorption-desorption hysteresis, particles in the fraction <2 microm can be important carriers of propiconazole in runoff suspensions with high sediment load.  相似文献   

20.
植物激素对平菇茵丝生长及酶活性的影响   总被引:2,自引:0,他引:2  
采用固体平板和液体摇瓶培养方法,研究了赤霉素、2,4-D、吲哚乙酸和萘乙酸4种激素对平菇- 126菌丝生长及酶活性的影响.结果表明,吲哚乙酸虽然能提高发酵液胞外蛋白的含量和过氧化物酶活性,但对菌丝的生长起抑制作用,这与吲哚乙酸能引起平菇菌丝裂解和细胞膜渗漏有关;萘乙酸、低浓度2,4-D能促进菌丝的伸长;萘乙酸、赤霉素在低浓度下也能促进菌丝的分枝,对菌丝的生长整体上起促进作用.除吲哚乙酸外,其他3种激素对平菇菌丝生长影响都有两重性:低浓度下能促进菌丝的生长,浓度过高则会对菌丝生长产生毒害作用.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号