首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
Subsurface drainage is a beneficial water management practice in poorly drained soils but may also contribute substantial nitrate N loads to surface waters. This paper summarizes results from a 15-yr drainage study in Indiana that includes three drain spacings (5, 10, and 20 m) managed for 10 yr with chisel tillage in monoculture corn (Zea mays L.) and currently managed under a no-till corn-soybean [Glycine max (L.) Merr.] rotation. In general, drainflow and nitrate N losses per unit area were greater for narrower drain spacings. Drainflow removed between 8 and 26% of annual rainfall, depending on year and drain spacing. Nitrate N concentrations in drainflow did not vary with spacing, but concentrations have significantly decreased from the beginning to the end of the experiment. Flow-weighted mean concentrations decreased from 28 mg L(-1) in the 1986-1988 period to 8 mg L(-1) in the 1997-1999 period. The reduction in concentration was due to both a reduction in fertilizer N rates over the study period and to the addition of a winter cover crop as a "trap crop" after corn in the corn-soybean rotation. Annual nitrate N loads decreased from 38 kg ha(-1) in the 1986-1988 period to 15 kg ha(-1) in the 1997-1999 period. Most of the nitrate N losses occurred during the fallow season, when most of the drainage occurred. Results of this study underscore the necessity of long-term research on different soil types and in different climatic zones, to develop appropriate management strategies for both economic crop production and protection of environmental quality.  相似文献   

2.
Commercial foliage plant production requires the use of pesticides for controlling pests and pathogens that can reduce aesthetic qualities of crops, rendering them unwanted by consumers. Chlorothalonil is a common, broad-spectrum, foliar fungicide used for protecting plants from a variety of fungal diseases. This fungicide may also be acutely toxic to nontarget aquatic organisms due to its mode of action. This study evaluated the amount of chlorothalonil deposited on nontarget ground surfaces during normal sprayer applications at a commercial nursery using Teflon targets. One day following application, irrigation runoff events were initiated and runoff water samples were collected and analyzed for chlorothalonil. Discharge volumes were also measured to allow estimation of the total mass of chlorothalonil discharged during each event. Results indicated that 9.8 to 53.6% of the active ingredient applied landed on nontarget ground surfaces depending on plant size, spacing, and row lengths (short rows sprayed from one side vs. longer rows sprayed from both ends). On an entire production-area scale, 29.2% of the active ingredient applied was deposited on ground surfaces. Of the total nontarget deposition, 0.25 to 0.53% was detected in runoff water discharged from the production area. Concentrations ranged from 1.2 to 500 microg/L during the first runoff events following application.  相似文献   

3.
In areas under intensive livestock farming and with high application rates of animal manure, inorganic and organic phosphorus (P) may be leached from soils. Since the contribution of these P compounds to P leaching may differ, it is important to determine the speciation of P in these soils. We determined the effect of various fertilization regimes on the P speciation in NaOH-Na2EDTA (ethylenediaminetetraacetic acid) and water extracts of acidic sandy soil samples from the top 5 cm of grassland with wet chemical analysis and 31P nuclear magnetic resonance (NMR) spectroscopy. These soils had been treated for a period of 11 years with no fertilizer (control), N (no P application), N-P-K, or different animal manures. Inorganic P was highly elevated in the NaOH-Na2EDTA extracts of the soils amended with N-P-K or animal manures, while organic P increased only in the soil treated with pig slurry. Water-extractable P showed a similar trend. As indicated by 31P NMR, orthophosphate monoesters were the main organic P compounds in all soils. Our results suggest that long-term applications of large amounts of P fertilizer and animal manures caused an accumulation of inorganic P, resulting in an increase of the potential risk related to mobilization of inorganic P in the top 5 cm of these soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号