首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We develop a biologically correct cost system for production systems facing invasive pests that allows the estimation of population dynamics without a priori knowledge of their true values. We apply that model to a data set for olive producers in Crete and derive from it predictions about the underlying population dynamics. Those dynamics are compared to information on population dynamics obtained from pest sampling with extremely favorable results.  相似文献   

2.
Two types of demographic analyses, perturbation analysis and uncertainty analysis, can be conducted to gain insights about matrix population models and guide population management. Perturbation analysis studies how the perturbation of demographic parameters (survival, growth, and reproduction parameters) may affect the population projection, while uncertainty analysis evaluates how much uncertainty there is in population dynamic predictions and where the uncertainty comes from. Previously, both perturbation analysis and uncertainty analysis were conducted on the long-term population growth rate. However, the population may not reach its equilibrium state, especially when there is management by harvesting or hunting. Recently, there has been an increased interest in short-term transient dynamics, which can differ from asymptotic long-term dynamics. There are currently techniques to conduct perturbation analyses of short-term transient dynamics, but no techniques have been proposed for uncertainty analysis of such dynamics. In this study, we introduced an uncertainty analysis technique, the general Fourier Amplitude Sensitivity Test (FAST), to study uncertainties in transient population dynamics. The general FAST is able to identify the amount of uncertainty in transient dynamics and contributions by different demographic parameters. We applied the general FAST to a mountain goat (Oreamnos americanus) matrix population model to give a clear illustration of how uncertainty analysis can be conducted for transient dynamics arising from matrix population models.  相似文献   

3.
We develop a swamp water mosquito population model that is forced solely by environmental variability. Measured temperature and land surface wetness conditions are used to simulate Anopheles walkeri population dynamics in a northern New Jersey habitat. Land surface wetness conditions, which represent oviposition habitat availability, are derived from simulations using a dynamic hydrology model. Using only these two density-independent effects, population model simulations of biting Anoph. walkeri correlate significantly with light trap collections. These results suggest that prediction of mosquito populations and the diseases they transmit could be better constrained by inclusion of environmental variability.  相似文献   

4.
There is a growing awareness that cyclic population dynamics in vertebrate species are driven by a complex set of interactions rather than a single causal factor. While theory suggests that direct host-parasite interactions may destabilise population dynamics, the interaction between host and parasite may also influence population dynamics through indirect effects that result in delayed responses to either density or to life-history traits. Using empirical data on mountain hares (Lepus timidus) infected with a nematode parasite (Trichostrongylus retortaeformis), we developed an individual-based model (IBM) that incorporated direct effects and delayed life-history effects (DLHEs) of a macroparasite, alternative transmission mechanisms and seasonality in host population dynamics. The full model describes mean characteristics of observed mountain hare time series and parasite abundance, but by systematically removing model structure we dissect out dynamic influences of DLHEs. The DLHEs were weakly destabilising, increasing the propensity for cyclic dynamics and suggesting DLHEs could be important processes in host-parasite systems. Further, by modifying model structure we identify a strong influence of parasite transmission mechanism on host population stability, and discuss the implications for parasite aggregation mechanisms, host movement and natural geographical variation in host population dynamics. The effect of T. retortaeformis on mountain hares likely forms part of a complex set of interactions that lead to population cycles.  相似文献   

5.
Predictive population models designed to assist managers and policy makers require an explicit treatment of inherent uncertainty and variability. These are particular concerns when modelling non-native and reintroduced species, when data have been collected within one geographical or ecological context but predictions are required for another, or when extending models to predict the consequences of environmental change (e.g., climate or land-use). We present an aspatial, probabilistic framework of hierarchical process models for predicting population growth even when data are sparse or of poor quality. Insight into the factors affecting population dynamics in real landscapes can be provided and Kullback–Leibler distances are used to compare the relative output of models. This flexible yet robust framework gives easily interpretable results, allowing managers as well as modellers to invalidate anomalous models and apply others to real-life scenarios.We illustrate the framework’s power with a meta-analysis of European wild boar (Sus scrofa) data. We test hypotheses about the effect of geographic region, hunting and mast years on wild boar population growth, to build models of wild boar dynamics for the UK. The framework quantifies the importance of hunting pressure as a driver of population growth, and confirms that reproductive success is greatly decreased in poor mast years, suggesting that the key to predicting wild boar dynamics is to ascertain local hunting pressure and to better understand changing food availability. Geography had no significant effect, indicating that it is not a good proxy for modelling the impact of change in climate or land-use on wild boar populations at the European scale. We use the framework to predict population abundance 9 years after an isolated population of wild boar established in the UK; in a comparison with the only field data and two independent modelling exercises, our framework provides the most robust and informative results.  相似文献   

6.
《Ecological modelling》2005,186(3):326-344
We present a model framework for the simulation of growth and reproduction of Daphnia at varying conditions of food concentration and temperature. The core of our framework consists of an individual level model that simulates allocation of assimilated carbon into somatic growth, maintenance costs, and reproduction on the basis of a closed carbon budget. A fixed percentage of assimilated carbon is allocated into somatic growth and maintenance costs. Special physiological adaptations in energy acquisition and usage allow realistic model performance even at very low food concentrations close to minimal food requirements. All model parameters are based on physiological measures taken from the literature. Model outputs were thoroughly validated on data from a life-table experiment with Daphnia galeata. For the first time, a successful model validation was performed at such low food concentrations. The escalator boxcar train (EBT) was used to integrate this individual level model into a stage-structured population model. In advance to previous applications of the EBT to Daphnia we included an additional clutch compartment into the model structure that accounts for the characteristic time delay between egg deposition and hatching in cladocerans. By linking two levels of biological organisation, this model approach represents a comprehensive framework for studying Daphnia both at laboratory conditions and in the field. We compared outputs of our stage-structured model with predictions by two other models having analogous parameterisation: (i) another individual level Daphnia model (Kooijman–Metz model) and (ii) a classical unstructured population model. In contrast to our Daphnia model, the Kooijman–Metz model lacks the structure to account for the optimisation of energy acquisition and maintenance requirements by individual daphnids. The unstructured population model showed different patterns of population dynamics that were not in concordance with typical patterns observed in the field. Thus, we conclude our model provides a comprehensive tool for the simulation of growth and reproduction of Daphnia and corresponding population dynamics.  相似文献   

7.
A spatially explicit individual-based simulation model has been developed to represent aphid population dynamics in agricultural landscapes. The application of the model to Rhopalosiphum padi (L.) population dynamics is detailed, including an outline of the construction of the model, its parameterisation and validation. Over time, the aphids interact with the landscape and with one another. The landscape is modified by varying a simple pesticide regime, and the multi-scale spatial and temporal implications for a population of aphids is analysed. The results show that a spatial modelling approach that considers the effects on the individual of landscape properties and factors such as wind speed and wind direction provides novel insight into aphid population dynamics both spatially and temporally. This forms the basis for the development of further simulation models that can be used to analyse how changes in landscape structure impact upon important species distributions and population dynamics.  相似文献   

8.
《Ecological modelling》1999,114(2-3):287-304
Management of German roe deer (Capreolus capreolus) populations is a challenge for wildlife managers and foresters because population densities are difficult to estimate in forests and forest regeneration can be negatively affected when roe deer density is high. We describe a model to determine deer population densities compatible with forest management goals, and to assess harvest rates necessary to maintain desired deer densities. A geographic information system (GIS) was used to model wildlife habitat and population dynamics over time. Our model interactively incorporates knowledge of field biologists and foresters via a graphical user interface (GUI). Calibration of the model with deer damage maps allowed us to evaluate density dependence of a roe deer population. Incorporation of local knowledge into temporally dynamic and spatial models increases understanding of population dynamics and improves wildlife management.  相似文献   

9.
Aedes albopictus has been the fastest spreading invasive animal species in the world from the mid-1980s until the mid-2000s. In areas it infests, it disrupts native mosquito ecology and can potentially vector up to 21 viruses. To better understand the population dynamics of this species, we created a temperature dependent population model. A stage-structured model was chosen to allow each life-stage to have different temperature dependent mortality and development rates, and each stage was modeled with an ordinary differential equation. Model parameters and distributions were based upon literature values. Initially, a basic model was constructed. This model then had parameters that were forced based upon daily average temperatures. Several criteria were used to evaluate the model, including a comparison to field data from Lubbock, TX. In a stochastic version of the model, a 95% confidence limit contained 70.7% of the field data points. Based upon these results, we feel reasonably confident that we have captured the role of temperature in driving the population dynamics of Ae. albopictus.  相似文献   

10.
An individual-based model was developed to predict the population dynamics of Daphnia magna at laboratory conditions from individual life-history traits observed in experiments with different feeding conditions. Within the model, each daphnid passes its individual life cycle including feeding on algae, aging, growing, developing and – when maturity is reached – reproducing. The modelled life cycle is driven by the amount of ingested algae and the density of the Daphnia population. At low algae densities the population dynamics is mainly driven by food supply, when the densities of algae are high, the limiting factor is “crowding” (a density-dependent mechanism due to chemical substances released by the organisms or physical contact, but independent of food competition).  相似文献   

11.
《Ecological modelling》2007,201(1):27-36
Management of Canada geese (Branta canadensis) can be a balance between providing sustained harvest opportunity while not allowing populations to become overabundant and cause damage. In this paper, we focus on the Atlantic population of Canada geese and use stochastic dynamic programming to determine the optimal harvest strategy over a range of plausible models for population dynamics. There is evidence to suggest that the population exhibits significant age structure, and it is possible to reconstruct age structure from surveys. Consequently the harvest strategy is a function of the age composition, as well as the abundance, of the population. The objective is to maximize harvest while maintaining the number of breeding adults in the population between specified upper and lower limits. In addition, the total harvest capacity is limited and there is uncertainty about the strength of density-dependence. We find that under a density-independent model, harvest is maximized by maintaining the breeding population at the highest acceptable abundance. However if harvest capacity is limited, then the optimal long-term breeding population size is lower than the highest acceptable level, to reduce the risk of the population growing to an unacceptably large size. Under the proposed density-dependent model, harvest is maximized by maintaining the breeding population at an intermediate level between the bounds on acceptable population size; limits to harvest capacity have little effect on the optimal long-term population size. It is clear that the strength of density-dependence and constraints on harvest significantly affect the optimal harvest strategy for this population. Model discrimination might be achieved in the long term, while continuing to meet management goals, by adopting an adaptive management strategy.  相似文献   

12.
Enchytraeids are regarded as keystone soil organisms in forest ecosystems. Their abundance and biomass fluctuate widely. Predicting the consequences of anthropogenic disturbances requires an understanding of the mechanisms underlying enchytraeid population dynamics. Here I develop a simple model, which predicts that the type of dynamics is controlled by resource input rate. If fungal resource input is a discrete event once a year, an exponential growth phase is followed by starvation and sharp decline of enchytraeid abundance. Model simulations with three different forcing functions were compared to field data. Initial parameter values were obtained from various independent sources, and parameters were estimated by minimizing the residual sum of squares. The best fitting model with resource addition once a year explained 39% of the variation in enchytraeid biomass over an 8-year study period. Further, variation in rainfall explained 59% of the variation in R2 of the exponential phase models, which is also an index of the stability of population size-structure. The results emphasize the importance of resource limitation for enchytraeid population dynamics and support the hypothesis that the mortality during the decline phase is size-dependent.  相似文献   

13.
Nitrogen fertilization and winter pruning are commonly used to control crop production in peach [Prunus persica (L.) Batsch] orchards. They are also known to affect the dynamics of Myzus persicae (Sulzer) (Homoptera: Aphididae) aphid populations via bottom-up regulation processes. Interactions between crops and pests can cause complex system behaviour in response to management practices. An integrated approach will therefore improve the understanding of the effects of these two cultural practices on aphid and peach performances.We developed a simulation model that describes the cultural control of interacting peach tree and aphid population dynamics. It uses the principles of common trophic models while gathering available knowledge and explicit assumptions on peach and aphid functioning and the effects of cultural practices.The model was able to qualitatively reproduce the system behaviour observed in the field. It accounted for actions and feedback such as stimulation of foliar growth by winter pruning, consecutive aphid population increase, subsequent damage to foliage, and partial compensatory growth of foliage. The model also reproduced low losses in fruit production due to aphid infestations. However, it called for further integration of ‘long-term’ effects. Analysis of the model showed the complexity of peach tree and aphid responses to leaf N × winter pruning interactions. Simulations indicated that fruit production losses remained low within a range of realistic values of leaf N and pruning intensity, whereas manipulating peach and aphid dynamics, their interactions and their relationships to practices could result in higher losses.The model is useful to evaluate the relevance of cultural practices for a bottom-up regulation of aphid dynamics in crop-pest management. After considering other control methods and fruit quality, it can be used to find a combination of practices that optimises trade-offs between fruit production and environmental conservation goals. A modelling approach that links crop growth and pest population dynamics and integrates management practice effects has strong potential for improving crop-pest management in an integrated crop production context.  相似文献   

14.
Optimal harvesting strategies for an ungulate population are estimated using stochastic dynamic programming. Data on the Llano Basin white-tailed deer (Odocoileus virginianus) population were used to construct a 2-variable population dynamics model. The model provided the basis for estimating optimal harvesting strategies as a feedback function of the current values of the state variables (prefawning older deer and juveniles). Optimal harvest strategies were insensitive to assumptions about the probability distributions of the stochastic variable (rainfall). The response of the population components to harvesting and the returns obtained from applying optimal strategies were explored through simulation. Mean annual harvest is about 15% of the population. Simplified harvesting strategies based on age-ratios as well as a simplified version based on optimal strategies—but assuming persisting equilibrium juvenile deer density—were compared to optimal strategies through examining values of information. Simplified harvesting strategies lead to a lower harvest over a 50-year simulation period.  相似文献   

15.
To aid in the management and conservation of Southwestern Willow Flycatcher (Empidonax traillii extimus, hereafter “Flycatcher”), we developed numerous models of flycatcher breeding habitat at Roosevelt Lake, AZ. For model development and testing, we compiled 10 years of flycatcher territory data that were obtained from intensive fieldwork between 1996 and 2005. We identified riparian vegetation annually in the project area from Landsat Thematic Mapper images, and extracted floodplain features from a digital elevation model. We created a novel class of temporal (i.e., multiyear) variables by characterizing the stability and variability in breeding habitat over a 6-year time interval. We used logistic regression to determine associations between environmental variables and flycatcher territory occurrence, and to test specific hypotheses. We mapped the probability of territory occurrence with a GIS and determined model accuracies with a classification table and a 10-year population database. Environmental features that were associated with breeding flycatchers included floodplain size, proximity to water, and the density, heterogeneity, age and stability of riparian vegetation. Our best model explained 79% of the variability in the flycatcher breeding population at Roosevelt Lake. The majority of predicted flycatcher habitat formed between 1996 and 2004 on an exposed lakebed ~3 years after water levels receded during a prolonged drought. A high correlation between annual reservoir levels and predicted breeding habitat (r = ?0.82) indicates that we can create and manage habitat for conservation purposes. Our predictive models quantify and assess the relative quality of flycatcher breeding habitat remotely, and can be used to evaluate the effectiveness of habitat restoration activities. Numerous techniques we developed can be used to characterize riparian vegetation and patch dynamics directly off of satellite imagery, thereby increasing its utility for conservation purposes.  相似文献   

16.
Cyclic population dynamics of forest insects with periods of more than two generations have been discussed in relation to a variety of extrinsic and intrinsic forces. In the present study, we employed the selection pressure of density dependent competitive interactions according to Witting's equations (Witting, 2000) as driver for a discrete spatiotemporal model of the green oak leaf roller (Tortrix viridana). The model was successfully parameterised to rebuild the cyclic population dynamics of an empirical data set of a 30-year leaf roller monitoring in Russia. Our analysis focussed on the role of herbivore mortality and host plant food quality, which have a significant effect on T. viridana population dynamics. An additional egg or larvae mortality lowers population density and can lead to selection pressures that favour individuals with higher growth rate. This increased population growth rate can not only compensate the additional mortality, but also can lead to higher average moth abundances in subsequent generations. Furthermore, we analysed the effect of inter- and intraspecific variation in host plant quality on herbivore population dynamics and the spatial distribution of abundance and defoliation patterns. We found significant effects of the qualitative composition of a trees neighbourhood on the herbivore population of the respective tree. Also, the patchy damage patterns observable in reality have been reproduced by the present model. The applicability of the model approach and the putative genetic processes underlying Witting's model are discussed.  相似文献   

17.
Life cycle changes that allow populations of the toxic dinoflagellate Gonyaulax tamarensis Lebour to inhabit the benthos and the plankton alternately are important factors regulationg the initiation and decline of blooms in restricted embavments. When the dynamics of these estuarine populations were monitored during “bloom” and “non bloom” years, it was shown that: (1) each year, germination of benthie cysts inoculated the overlying waters during the vernal warming period, but a large residual population remained in the sediments throughout the blooms; (2) the resulting planktonic population began growth under suboptimal temperature conditions; (3) the populations developed from this inoculum through asexual reproduction until sexuality (and cyst formation) were induced; (4) encystment was not linked to any obvious environmental cue and occurred under apparently optimal conditions; and (5) an increase in the number of non-mitotic swimming cells (planozygotes, the precursors to dormant cysts) accompanied the rapid decline of the planktonic population. Thus encystment, in combination with hypothesized losses due to advection and grazing, contributed substantiatly to the decline of the vegetative cell population. We conclude that the encystment/excystment cycle temporally restricts the occurrence of the vegetative population and may not be optimized for rapid or sustained vegetative growth and bloom formation in shallow embayments. The factors that distinguish “bloom” from “non-bloom” years thus appear to be operating on the growth of the planktonic population.  相似文献   

18.
Conservation planning and biodiversity assessments need quantitative targets to optimize planning options and assess the adequacy of current species protection. However, targets aiming at persistence require population‐specific data, which limit their use in favor of fixed and nonspecific targets, likely leading to unequal distribution of conservation efforts among species. We devised a method to derive equitable population targets; that is, quantitative targets of population size that ensure equal probabilities of persistence across a set of species and that can be easily inferred from species‐specific traits. In our method, we used models of population dynamics across a range of life‐history traits related to species’ body mass to estimate minimum viable population targets. We applied our method to a range of body masses of mammals, from 2 g to 3825 kg. The minimum viable population targets decreased asymptotically with increasing body mass and were on the same order of magnitude as minimum viable population estimates from species‐ and context‐specific studies. Our approach provides a compromise between pragmatic, nonspecific population targets and detailed context‐specific estimates of population viability for which only limited data are available. It enables a first estimation of species‐specific population targets based on a readily available trait and thus allows setting equitable targets for population persistence in large‐scale and multispecies conservation assessments and planning.  相似文献   

19.
Irruptive population dynamics appear to be widespread in large herbivore populations, but there are few empirical examples from long time series with small measurement error and minimal harvests. We analyzed an 89-year time series of counts and known removals for pronghorn (Antilocapra americana) in Yellowstone National Park of the western United States during 1918-2006 using a suite of density-dependent, density-independent, and irruptive models to determine if the population exhibited irruptive dynamics. Information-theoretic model comparison techniques strongly supported irruptive population dynamics (Leopold model) and density dependence during 1918-1946, with the growth rate slowing after counts exceeded 600 animals. Concerns about sagebrush (Artemisia spp.) degradation led to removals of >1100 pronghorn during 1947-1966, and counts decreased from approximately 700 to 150. The best models for this period (Gompertz, Ricker) suggested that culls replaced intrinsic density-dependent mechanisms. Contrary to expectations, the population did not exhibit enhanced demographic vigor soon after the termination of the harvest program, with counts remaining between 100 and 190 animals during 1967 1981. However, the population irrupted (Caughley model with a one-year lag) to a peak abundance of approximately 600 pronghorn during 1982-1991, with a slowing in growth rate as counts exceeded 500. Numbers crashed to 235 pronghorn during 1992-1995, perhaps because important food resources (e.g., sagebrush) on the winter range were severely diminished by high densities of browsing elk, mule deer, and pronghorn. Pronghorn numbers remained relatively constant during 1996-2006, at a level (196-235) lower than peak abundance, but higher than numbers following the release from culling. The dynamics of this population supported the paradigm that irruption is a fundamental pattern of growth in many populations of large herbivores with high fecundity and delayed density-dependent effects on recruitment when forage and weather conditions become favorable after range expansion or release from harvesting. Incorporating known removals into population models that can describe a wide range of dynamics can greatly improve our interpretation of observed dynamics in intensively managed populations.  相似文献   

20.
Twombly S  Wang G  Hobbs NT 《Ecology》2007,88(3):658-670
Understanding the processes that control species abundance and distribution is a major challenge in ecology, yet for a large number of potentially important organisms, we know little about the biotic and abiotic factors that influence population size. One group of aquatic organisms that defies traditional demographic analyses is the Crustacea, particularly those with complex life cycles. We used likelihood techniques and information theoretics to evaluate a suite of models representing alternative hypotheses on factors controlling the abundance of two copepod crustaceans in a small, tropical floodplain lake. Quantitative zooplankton samples were collected at three stations in a Venezuelan floodplain lake from June through December 1984; the average sampling interval was two days. We constructed a series of models with stage structure that incorporated six biotic and abiotic covariates in various combinations to account for temporal changes in abundance of these target species and in their population growth rates. Our analysis produced several novel insights into copepod population dynamics. We found that multiple forces affected the abundance of particular stages, that these factors differed between species as well as among stages within each species, and that biotic processes had the largest effects on copepod population dynamics. Density dependence had a large effect on the survival of Oithona amazonica copepodites and on population growth rate of Diaptomus negrensis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号