首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
W K Choy  W Chu 《Chemosphere》2001,44(2):211-215
Various clean-up technologies have been developed for the removal and/or destruction of trichloroethene (TCE) in the subsurface. Surfactant-aided soil washing followed by photodegradation could be a promising approach to such a task. The modelling of TCE photodegradation by UV in Brij 35 surfactant micelles is therefore investigated. Two stages of TCE degradation are observed in surfactant Brij 35 systems. A lag phase is observed at the commencement of the degradation, but the duration of the lag phase is significantly reduced as the initial pH increases. As the overall decay of TCE is also found to be faster at higher pH levels, it is suggested that the free radical reaction is dominant at high pH levels, and the formation of lag phases is mainly due to the deficiency of free radicals at lower pH levels. Since the period of the lag phase gradually decreases with the increase of initial pH level, and the two pseudo first-order reaction constants (one for the lag phase and one for the subsequent fast decay) for TCE decay in both stages are also pH dependent, a non-steady-state mathematical model is developed for the prediction of TCE photodegradation in Brij 35 solutions, in which the remaining fraction of TCE (C/C0) in the system can be determined at any instant by using a simple parameter of the initial system pH.  相似文献   

2.
Chu W  Choy WK 《Chemosphere》2000,41(8):1199-1204
The photodegradation of trichloroethene (TCE) in surfactant micelles was investigated. The decay of TCE was studied in the Rayonet RPR-200 merry-go-round photoreactor, at 253.7 nm monochromatic ultraviolet (UV) lamps, in the presence of surfactants. Surfactants are used as additional hydrogen sources to improve the photodegradation rates of TCE. About three times the rate increment is observed in the presence of Brij 35 surfactant micelles than in water alone. The increasing concentrations of H+ and Cl- indicate that they are the final products of TCE photodegradation (i.e. photodechlorination is the dominant mechanism in this system). A lag phase is observed at the beginning of the degradation, but the duration of the lag phase is apparently reduced as the initial pH increases. Because the overall decay of TCE is also found faster at higher pH levels, it is suggested that the free radical reaction is dominant at high pH levels, and the formation of lag phases is mainly due to the deficiency of free radicals at lower pH levels. The photodecomposition of TCE in surfactant micelles is also proven to be a clean and effective process. It generates no chlorinated by-products or intermediates during the process, and TCE is fully decomposed within a reasonable time.  相似文献   

3.
S M Tsui  W Chu 《Chemosphere》2001,44(1):17-22
The photodegradation of hydrophobic disperse dyes with different chromophores in the presence of acetone (ACE) was investigated. In this study, the photodecay of dyes was carried out in the Rayonet RPR-200 merry-go-round photoreactor, with 253.7 nm monochromatic ultraviolet (UV) lamps. A typical azo disperse dye (CI disperse yellow 7--DY7) and an anthraquinone disperse dye (CI disperse orange--DO11) were used as the probe compounds. The results demonstrate that the addition of acetone increases the solubility of hydrophobic disperse dyes and enhances the photosensitization reaction simultaneously. More than ten times of quantum yield enhancement is observed in the presence of ACE photosensitizer than in water alone. The photodegradation of DY7 and DO11 is dominated by photoreduction, which follows pseudo first-order decay, and the rate constants strongly depend on the solvent system (i.e., ACE/H2O ratios) and the initial pH levels. The decay quantum yields of dyes are normally observed with the increase of the ACE/H2O ratio. The optimum quantum yields of DY7 and DO11 were determined at 0.5 (v/v) and 0.25 (v/v), respectively, in alkaline conditions. A further increase in the ACE/H2O ratio reduces the quantum yields, possibly due to light attenuation by excess acetone.  相似文献   

4.
Lim TH  Kim SD 《Chemosphere》2004,54(3):305-312
The effects of trichloroethylene (TCE) gas flow rate, relative humidity, TiO(2) film thickness, and UV light intensity on photodegradation of TCE have been determined in an annular flow type photoreactor. Phosgene and dichloroacetyl chloride formation could be controlled as a function of TCE gas flow rate and photodegradation of TCE decreased with increasing relative humidity. The optimum thickness of TiO(2) film was found to be approximately 5 mum and the photocatalytic reaction rate of TCE increased with square root of UV light intensity. In addition, the effects of the initial TCE concentration, phase holdup ratio of gas and solid phases (epsilon(g)/epsilon(s)), CuO loading on the photodegradation of TCE have been determined in an annulus fluidized bed photoreactor. The TCE photodegradation decreased with increasing the initial TCE concentration. The optimum conditions of the phase holdup ratio (epsilon(g)/epsilon(s)) and CuO wt.% for the maximum photodegradation of TCE was found to be 2.1 and 1.1 wt.%, respectively. Therefore, an annulus fluidized bed photoreactor is an effective tool for TCE degradation over TiO(2)/silica gel with efficient utilization of photon energy.  相似文献   

5.
Modeling the quantum yields of herbicide 2,4-D decay in UV/H2O2 process   总被引:7,自引:0,他引:7  
Chu W 《Chemosphere》2001,44(5):935-941
The photodecay of herbicide 2,4-D in a hydrogen peroxide-aided photolysis process was studied and modeled. The decay rate of 2,4-D was known to be low in the natural environment, but rate improvement was achieved in an H2O2/UV system. The 2,4-D decay quantum yields under ultraviolet (UV) light at 253.7 nm increased from 4.86 x 10(-6) to 1.30 x 10(-4) as the ratio of [H2O2]/[2,4-D] increased from 0.05 to 12.5. Apparently, in the presence of UV light, the decay rate of 2,4-D could be greatly improved as the concentration of hydrogen peroxide increased. However, the efficiency of 2,4-D photodecay was retarded if the concentration of H2O2 was overdosed, because the excess hydrogen peroxide consumes the hydroxyl radicals (HO*) in the solution, resulting in a much weaker oxidant HO2*. The decay of 2,4-D was also pH dependent. A ranking of acid (highest), base (middle) and neutral (lowest) was observed owing to the property change of reactants and the shifting of dominant mechanisms among photolysis, photohydrolysis and chemical oxidation. Two mathematical models were proposed to predict the quantum yield for various [H2O2]/[2,4-D] ratios and initial pH levels, in which very good correlation was found for the ranges of regular application.  相似文献   

6.
The non-ionic surfactant Brij 35 was effectively removed from concentrated aqueous solution by the peroxymonosulfate/Co(II) system, using oxone (2KHSO5·KHSO4·K2SO4) as a source of peroxymonosulfate. At pH = 2.3 and initial Brij 35 concentration in the range 680-2410 mg L−1, 86-94% removal was achieved after 24 h, using Co(II) = 15 μM and oxone = 5.9 mM. The effectiveness of removal did not change when initial pH was in the range 2.3-8.2. After five subsequent additions of Co(II) and oxone to the solution, COD and TOC removals increased up to 64% and 33%, respectively. Radical quenching tests confirmed that sulfate radical was the dominant radical species in the system. The main identified by-products from surfactant degradation were: (a) low molecular weight organic acids; (b) aldehydes and formates with shorter ethoxy chain than Brij 35; (c) alcohol ethoxylates carrying hydroxyl groups bonded to ethoxy chain. By-products identification allowed to hypothesize the pathways of Brij 35 degradation.  相似文献   

7.
This research focused on the optimization of TCE dissolution in a physical two-dimensional model providing a realistic representation of a heterogeneous granular aquifer. TCE was infiltrated in the sand pack where it resided both in pools and in zones of residual saturation. Surfactant was initially injected at low concentration to minimize TCE remobilization at first contact but was incrementally increased later during the experiment. Xanthan gum was added to the injected surfactant solution to optimize the sweep efficiency through the heterogeneous medium. Photographs and digital image analysis illustrated the interactions between TCE and the injected fluids. During the polymer flood, the effects of heterogeneities inside the sand pack were greatly reduced by the increased fluid viscosity and the shear-thinning effects of the polymer. The polymer also improved the contact between the TCE ganglia and the surfactant-polymer solution, thereby promoting dissolution. Surfactants interacted with the polymer reducing the overall viscosity of the solution. At first contact with a 0.5%(mass) surfactant solution, the TCE pools drained and some remobilization occurred. However, no TCE bank was formed and TCE did not penetrate into any previously uncontaminated areas. As a result, TCE surface area was increased. Subsequent surfactant floods at higher surfactant concentrations did not trigger more remobilization. TCE was mainly dissolved by the solution with the highest surfactant concentration. Plugging from bacterial growth or microgel formation associated to the polymer at the inflow screen prevented the full completion of the experiment. However, more than 90% of TCE was recovered with the circulation of less than 6 pore volumes of surfactant-polymer solution.  相似文献   

8.
A methodology to study the trichloroethylene (TCE) and dodecane removal in porous media by surfactant foams (SF) was presented by using etched-glass micromodels. The purpose of this work was to systematically evaluate the impact of various physicochemical factors such as gas fraction (GF), surfactant concentration, pore structure and nonaqueous phase liquid (NAPL) types on NAPL removal during SF flooding. The TCE displacement by SF was dependent on the gas fraction of SF. Low GFs (50% and 66%) were more efficient for TCE removal and sweep efficiencies than a high GF (85%). An increase in TCE removal was observed with increasing surfactant concentration at a fixed GF. TCE removal by SF flooding appeared to be dependent more to the value of Capillary number rather than to the concentration of surfactant solution. The effect of the pore heterogeneity was evaluated by employing two different types of micromodels. The Capillary number is an important parameter in the determination of sweep efficiency or gas saturation of SF in a nonhomogeneous porous medium. However, the TCE removal from a nonhomogeneous porous medium may not be associated with sweep efficiency. The initial configuration of residual TCE blobs in a nonhomogeneous porous medium would also be influential in displacing TCE. Sweep efficiencies and pressure responses of two NAPL systems (TCE and dodecane) were monitored to evaluate foam stability when the foam contacts the NAPLs. Stable foam contacting with TCE is implied, while it appears that dodecane cause the SF to collapse. All results indicate that the Capillary number (a ratio of viscous forces to capillary forces) is the most important parameter for TCE removal by SF flooding. Micromodel visualizations of water, surfactant and SF floods were showed and also discussed.  相似文献   

9.
Sorption onto five saturated soils of the homologs within the commercial surfactant mixture Brij 35 (registered trademark of ICI Americas) was investigated. Brij 35 is a mixture of linear ethoxylated alcohols, having an average of 23 ethoxy (EO) groups per molecule and alcohol chain of primarily 12 carbons in length (C12H25(OCH2CH2)23OH). In experiments, saturated soils were exposed to various concentrations of the surfactant mixture for specified times, the slurries were centrifuged to separate the phases, the aqueous phases were extracted with 1,2-dichloroethane, and the residual homologs were derivatized with 3,5-dinitrobenzoyl chloride and analyzed by normal phase HPLC. Homologs containing 4–43 EO groups were chromatographically separated at near baseline. At aqueous Brij 35 concentrations below the critical micelle concentration (cmc), the proportion of each homolog sorbed to each of the soils increased with increasing EO chain length through the homologous series. As a result, in experiments where a significant proportion of the surfactant adsorbed, significant shifts in the aqueous phase compositions occurred to mixtures with lower mean EO numbers. A sharp break in the adsorption isotherms occurs at the cmc.  相似文献   

10.
Li Z 《Chemosphere》2004,54(3):419-423
Oxidative dechlorination of chlorinated solvents by permanganate is an emerging technology for remediation of groundwater contaminated with dissolved chlorinated contaminants. In this study, the enhancement of trichloroethylene (TCE) degradation by permanganate in aqueous solution in the presence of surfactant was evaluated through a continuous stir batch reactor system with the presence of permanganate as the limiting reagent and free phase TCE. The TCE degradation was determined by continuous monitoring the amount of chloride produced, which was then reverted to the rate of permanganate consumption. It was found that the chloride production, an indication of TCE degradation, followed a pseudo-first-order reaction kinetics with respect to KMnO(4) in the presence of free phase TCE. When no surfactants were present, the observed pseudo-first-order rate constant (k(obs)) was 0.08-0.19 min(-1) and the half-life (t(1/2)) was 4-9 min for MnO(4)(-). When the surfactant concentration was less than its critical micelle concentration (CMC), the k(obs) values increased to 0.42-0.46 min(-1) and the t(1/2) reduced to 1.5-1.7 min for MnO(4)(-). As the surfactant concentration was greater than the CMC, the k(obs) values increased to 0.56-0.58 min(-1) and the t(1/2) reduced to 1.2-1.3 min. The preliminary results showed that combination of permanganate with a proper type of surfactant can speed up contaminant removal.  相似文献   

11.
Jeon JH  Kim SD  Lim TH  Lee DH 《Chemosphere》2005,60(8):1162-1168
The effects of initial trichloroethylene (TCE) concentration, recirculating liquid flow rate and gas velocity on photodegradation of TCE have been determined in an internally circulating slurry bubble column reactor (0.15m-ID x 0.85 m-high). Titanium dioxide (TiO2) powder was employed as a photocatalyst and the optimum loading of TiO2 in the present system is found to be approximately 0.2 wt%. The stripping fraction of TCE by air flow increases but photodegradation fraction of TCE decreases with increasing the initial TCE concentration, recirculating liquid flow rate and gas velocity. The average removal efficiency of TCE is found to be approximately 97% in an internally circulating slurry bubble column reactor.  相似文献   

12.
The potential of five nonionic surfactants, Triton X-100, Brij35, Ethylan GE08, Ethylan CD127, and Ethylan CPG660 for enhancing release of carbaryl and ethion from two long-term contaminated soils was evaluated using the batch method. Incorporation of the surfactants into soils enhanced the release of both pesticides to various extents, which could be related to the type of pesticides and type and the amount of surfactants added. Release of ethion was dramatically enhanced by aqueous concentrations of surfactants above their critical micelle concentration values. This was attributed to solubility enhancement through incorporation of the highly hydrophobic compound within surfactant micelles. A concentration of 10 g L(-1) of various surfactants released >70% of the total ethion from the soil irrespective of the surfactant. For carbaryl, the surfactants were effective at low concentrations and dependence on concentration was lower than in the case of ethion. The ethylan surfactants (GE08, CD127, and CPG660) had a higher potential than Triton X-100 and Brij35 for releasing the pesticides. However, there was still a significant portion of carbaryl (11% of the total) and ethion (17% of the total) left in the soil. Our study also showed that there must be an optimal concentration of each surfactant to maximize the mass transfer of pesticides. At some threshold concentration level, additional surfactant started to inhibit the mass transfer of solute from the soil into the water. The results suggested that surfactants could help remediation of soils polluted by pesticides. The choice of surfactant should be made based on the properties of pesticides.  相似文献   

13.
Chu W  Chan KH  Graham NJ 《Chemosphere》2006,64(6):931-936
In this study, the degradation of atrazine (ATZ) by ozone (O3) oxidation and its associated processes (i.e. UV, UV/O3) in the presence and absence of surfactant was investigated and compared. A non-ionic surfactant, Brij 35, was selected. It was found that the presence of a low concentration of surfactant could improve the removal of ATZ by increasing the dissolution of ozone and the indirect generation of hydroxyl radicals. The saturated ozone level and the reaction rate constants were increased with increasing the concentration of surfactant and then decreased at higher surfactant doses at pH level of 2.5. A similar trend was observed at pH level of 7.0 in the presence of bicarbonate ion, because it is capable of deactivating the hydroxyl radicals generating at higher pH level. However, when the radical reactions become dominant in the ozonation (at pH 7.0 without bicarbonate), the saturated ozone level was higher than that with bicarbonate and the kinetic rate constants were increased first and levelled off with increasing of the dose of surfactant. Through the examining of a proposed unit performance index, the low concentration of surfactant is surely beneficial to the ozonation process. Besides, the direct photolysis and photo-assisted ozonation were compared to the ozonation. A significant enhancement on the decay rate of ATZ was resulted exclusively by adding the surfactant. An enhancement index for quantifying the improvement of the various processes was developed.  相似文献   

14.
Zhu L  Feng S 《Chemosphere》2003,53(5):459-467
Water solubility enhancements of naphthalene (Naph), acenaphthylene (Acen), anthracene (An), phenanthrene (Phen) and pyrene (Py) by micellar solutions of single and mixed anionic-nonionic surfactants were measured and compared. Effects of typical inorganic ions, such as NH(4)(+), Na(+) and Mg(2+) coexisted with the organic pollutants (in soils) on water solubilities of polycyclic aromatic hydrocarbons (PAHs) in the presence of single and mixed surfactants were also investigated. Solubilities of PAHs in water are greatly enhanced in a linear fashion by each of Triton X-100 (TX100), Triton X-305 (TX305), Brij 35, and sodium dodecyl sulfate (SDS). Solubility enhancement efficiencies of surfactants above the critical micelle concentration (CMC) follow the order of TX100>Brij 35>TX305>SDS. PAHs are solubilized synergistically in mixed anionic-nonionic surfactant solutions, especially at low surfactant concentrations. The synergistic power of the mixed surfactants is SDS-TX305>SDS-Brij 35>SDS-TX100. Synergistic effect of a given mixed-surfactant solution on different PAHs also appears to be linearly related to the solute logK(ow). The noted synergism for the mixed surfactants is attributed to the formation of mixed micelles, the lower CMC of the mixed-surfactant solutions, and the increase of the solute's molar solubilization ratio or micellar partition coefficients (K(mc)) because of the lower polarity of the mixed micelles. Suitable quantity of inorganic cations can enhance the solubilization capacities of anionic-nonionic mixed surfactants, the effect being Mg(2+)>NH(4)(+)>Na(+). The water solubility of pyrene was slightly increased by anthracene and significantly increased by 1,2,3-TCB in the presence of SDS-Brij 35. Mixed surfactants may improve the performance of surfactant-enhanced remediation of soils and sediments by decreasing the applied surfactant level and thus the remediation cost.  相似文献   

15.
An innovative process that combines soil electrokinetic remediation and liquid electrochemical oxidation for the degradation of organic compounds present in a polluted soil was developed and evaluated by using benzo[a]pyrene spiked kaolin. In order to increase benzo[a]pyrene solubility during electrokinetic treatment, the addition of a co-solvent or surfactant, such as ethanol or Brij 35, as flushing solution was tested. The research carried out demonstrated the influence of the desorption agent employed on benzo[a]pyrene remediation from the kaolin matrix. Thus, if the flushing solution was ethanol at 40%, there was no presence of contaminant in either chamber. On the contrary, when a solution of surfactant Brij 35 was used, benzo[a]pyrene was transported towards the cathode chamber, where it was collected. Moreover, the extent of this recovery depends on the pH profile on the soil. When no pH control was used, around 17% of initial contaminant was detected in the cathode chamber; however, when pH control was applied, the recovery of benzo[a]pyrene could be higher than 76%, when the pH control in the anode chamber was set at 7.0.In order to obtain the total degradation of mobilised benzo[a]pyrene from the contaminated soil, the liquid collected by electrokinetic remediation was oxidised by electrochemical treatment. This oxidation was accomplished via an electrochemical cell with a working volume of 0.4 L, and graphite as electrode material. The benzo[a]pyrene was almost totally degraded in 1 d, reaching a degradation of about 73% in 16 h.  相似文献   

16.
The photo-Fenton process using potassium ferrioxalate as a mediator was investigated for the photodegradation of dichloracetic acid (DCA) and 2,4-dichlorophenol (DCP) in aqueous medium using solar light as source of irradiation. The influence of the solution depth, the light intensity and the effect of stirring the solution during irradiation process were evaluated using DCA as a model compound. A negligible influence of stirring the solution was observed when the concentration of ferrioxalate (FeOx) was 0.8 mM and solution depth was 4.5 or 14 cm. The optimum FeOx concentration determined for solution depths between 4.5 and 14 cm was 0.8 mM considering total organic carbon (TOC) removal during DCA irradiation. The high efficiency of the photo-Fenton process was demonstrated on summer days, when only 10 min of exposition (around noon) were sufficient to completely destroy the organic carbon of a 1.0 mM DCA solution in the presence of 0.8 mM FeOx and 6.0 mM H2O2 using a solution depth of 4.5 cm. It was observed that the photodegradation efficiency increases linearly with the solar light intensity up to values around 15 Wm(-2) but this linear relationship does not hold above this value showing a square root dependence. The photodegradation of a solution of DCP/FeOx showed a lower TOC removal rate than that observed for DCA/FeOx, achieving approximately 90% after 35 min irradiation under 19 W m(-2), while under this light intensity, the same TOC removal of DCA/FeOx was achieved in only 10 min irradiation.  相似文献   

17.
The ability of two biodegradable surfactants, polyoxyethylene (20) sorbitan monooleate (Tween 80) and sodium dihexyl sulfosuccinate (Aerosol MA), to recover a representative dense non-aqueous-phase liquid (DNAPL), trichloroethene (TCE), from heterogeneous porous media was evaluated through a combination of batch and aquifer cell experiments. An aqueous solution containing 3.3% Aerosol MA, 8% 2-propanol and 6 g/l CaCl(2) yielded a weight solubilization ratio (WSR) of 1.21 g TCE/g surfactant, with a corresponding liquid-liquid interfacial tension (IFT) of 0.19 dyn/cm. Flushing of aquifer cells containing a TCE-DNAPL source zone with approximately two pore volumes of the AMA formulation resulted in substantial (>30%) mobilization of TCE-DNAPL. However, a TCE mass recovery of 81% was achieved when the aqueous-phase flow rate was sufficient to displace the mobile TCE-DNAPL toward the effluent well. Aqueous solutions of Tween 80 exhibited a greater capacity to solubilize TCE (WSR=1.74 g TCE/g surfactant) and exerted markedly less reduction in IFT (10.4 dyn/cm). These data contradict an accepted empirical correlation used to estimate IFT values from solubilization capacity, and indicate a unique capacity of T80 to form concentrated TCE emulsions. Flushing of aquifer cells with less than 2.5 pore volumes of a 4% T80 solution achieved TCE mass recoveries ranging from 66 to 85%, with only slight TCE-DNAPL mobilization (<5%) occurring when the total trapping number exceeded 2 x 10(-5). These findings demonstrate the ability of Tween 80 and Aerosol MA solutions to efficiently recover TCE from a heterogeneous DNAPL source zone, and the utility of the total trapping number as a design parameter for a priori prediction of DNAPL mobilization and bank angle formation when flushing with low-IFT solutions. Given their potential to stimulate microbial reductive dechlorination at low concentrations, these surfactants are well-suited for remedial action plans that couple aggressive mass removal followed by enhanced bioremediation to treat chlorinated solvent source zones.  相似文献   

18.
Degradation of di-butyl-phthalate by soil bacteria   总被引:2,自引:0,他引:2  
Chao WL  Lin CM  Shiung II  Kuo YL 《Chemosphere》2006,63(8):1377-1383
Twelve Gram-positive phthalate ester degraders were isolated from soil. Using Biolog GP2 plates, eight of them were identified as belonging to the Corynebacterium-Mycobacterium-Nocardia group, while the remaining four were unidentifiable. When cultured in the presence of di-butyl-phthalate (DBP) in basal salts solution, five of these isolates accomplished more than 90% of DBP degradation within 48 h (fast group), three were placed in the medium group, and the remaining four were placed in the slow group which caused less than 30% of DBP degradation within the same period of time. A 420 bp DNA fragment was amplified from six isolates and none of them fell within the slow group. When compared with the large subunit of phthalate dioxygenase gene (phtA) of Arthrobacter keyseri, 83% and 91% similarities were evident in the nucleotide and amino acid sequences, respectively. However, no correlation between cell surface hydrophobicity and phthalate degradation ability was evident. Six surfactants (Brij 30, Brij 35, Tergitoltype NP-10, Triton N-101, Triton X-100 and SDS) were tested for their abilities to increase degradation rate. When added at the critical micellar concentration (CMC), they all displayed strong growth inhibition against the three bacteria tested, with Brij 30 been the least toxic to isolates G2 and G11, and Brij 35 had the least inhibitory effect for G1. When half the CMC of Brij 30 was incorporated into the basal salts, the inhibitory effect on DBP degradation remained. Soil helped to minimize surfactant toxicity of surfactant and increase the degradation potential of some of the test bacteria. When DBP-amended soil had been aged for three months, decreases in bioavailability were observed but the effect varied tremendously between different organisms. For isolates G1, G2, G5, G7 and G17 the aging effects were almost non-exist. The present study indicates that selection of a suitable degrader may minimize the undesired effect of aging on bioremediation process.  相似文献   

19.
With an aim to select the most appropriate surfactant for remediation of DDT-contaminated soil, the performance of nonionic surfactants Tween80, TX-100, and Brij35 and one anionic surfactant sodium dodecyl benzene sulfonate (SDBS) in enhancement of DDT water solubility and desorption of DDT from contaminated soil and their adsorption onto soil and ecotoxicities were investigated in this study. Tween80 had the highest solubilizing and soil-washing ability for DDT among the four experimental surfactants. The adsorption loss of surfactants onto soil followed the order of TX-100 > Tween80 > Brij35 > SDBS. The ecotoxicity of Tween80 to ryegrass (Lolium perenne L.) was lowest. The overall performance considering about the above four aspects suggested that Tween80 should be selected for the remediation of DDT-contaminated soil, because Tween80 had the greatest solubilizing and soil-washing ability for DDT, less adsorption loss onto soil, and the lowest ecotoxicity in this experiment.  相似文献   

20.
Nonionic surfactant-modified clay is a useful absorbent material that effectively removes hydrophobic organic compounds from soil/groundwater. We developed a novel material by applying an immobilized fungal laccase onto nonionic surfactant-modified clay. Low-water-solubility polycyclic aromatic hydrocarbons (PAHs) (naphthalene/phenanthrene) were degraded in the presence of this bioactive material. PAH degradation by free laccase was higher than degradation by immobilized laccase when the surfactant concentration was allowed to form micelles. PAH degradation by immobilized laccase on TX-100-modified clay was higher than on Brij35-modified clay. Strong laccase degradation of PAH can be maintained by adding surfactant monomers or micelles. The physical adsorption of nonionic surfactants onto clay plays an important role in PAH degradation by laccase, which can be explained by the structure and molecular interactions of the surfactant with the clay and enzyme. A system where laccase is immobilized onto TX-100-monomer-modified clay is a good candidate bioactive material for in situ PAHs bioremediation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号