首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
An epoxy-based thermoplastic polyester, poly(hydroxy ester ether), was incubated under aerobic conditions in a laboratory-scale compost system for 168 days to evaluate its potential for biodegradation. Radiolabeled test polymer [uniformly 14C ring-labeled, poly(hydroxy ester ether)] was incorporated into a mature compost and a sludge-amended compost at a loading of 3 mg test polymer/g compost. 14C-Cellulose was used as the positive control and a biologically inhibited control reactor was used to assess abiotic degradation of the test polymer. Degradation of the test polymer was assessed by measuring the amount of 14C-CO2 from each of the test reactors. In addition, at selected time intervals subsamples of the compost were collected and serially extracted with water, methanol, and dimethylformamide to monitor degradation of the 14C-test polymer and provide a partial characterization of the degradation intermediates. Extensive degradation of 14C-poly(hydroxy ester ether) was observed in the test reactors with degradation half-life of the parent polymer (t 1/2) of approximately 32 days. By the end of the study, only 2% of the total 14C activity in the test reactors was attributed to intact polymer, with most of the measurable 14C activity converted to either 14C-CO2 (26% of total 14C activity) or nonextractable products (accounting for 60% of the total activity). In contrast to the test reactors, only 3% of the 14C-poly(hydroxy ester ether) added to the biologically inhibited control reactor was mineralized to 14C-CO2. The results obtained from the microbially active and biologically inhibited compost systems indicate that the poly(hydroxy ester ether) polymer was degraded, at least in part, by a biologically mediated process.  相似文献   

2.
Chromium is a heavy metal used in various industrial sectors. Improper handling and storage of chromium-laden effluents or wastes can lead to the pollution of the environment. The most toxic form is the more mobile one: hexavalent chromium Cr(VI). The reduction of Cr(VI) results in the immobilisation of chromium into its less toxic trivalent form Cr(III). This phenomenon may prevent the contamination of groundwater when the soil in the vadose zone is contaminated. Many bacteria have been isolated from contaminated soils and described to reduce Cr(VI) into Cr(III). A new Cr(VI)-reducing strain, identified as a Streptomyces thermocarboxydus,has been isolated and studied in our laboratories for its ability to reduce Cr(VI). This aerobic bacterium, in contrast to other genera described which mediate reduction via enzymes, produces reducing agents into the culture supernatants. Cr(VI) reduction by these substances is accelerated by the presence of small concentration of cupric ions (Cu2+). The reducing agent(s) can be easily recovered from the bacterial cultures and used as cell-free solution to treat contaminated soils by an in situ or ex situ processes.  相似文献   

3.
Polyethylene glycol (PEG) 3400-degrading aerobic bacteria were isolated from tap water and wetland sediments and then characterized. Only one Sphingomonas strain was obtained in enrichment cultures from each inoculum source whereas a total of 15 bacterial strains were isolated on agar plates. Nine of the 15 isolates were confirmed as PEG 3400 degraders. Three of the 9 PEG 3400 degraders were Gram-negative bacteria belonging to the genus Pseudomonas and genus Sphingomonas. The remaining six isolates were Gram-positive bacteria belonging to genera Rhodococcus, Williamsia, Mycobacterium and Bacillus. PEG 3400 was quantified at 194 nm spectrophotometrically and, at the same time, the growth of two Gram-negative (isolates P1 and P7) and five Gram-positive (isolates P2, P3, P4, P5 and P6) PEG 3400-degrading bacteria were assayed in liquid media and on agar plates amended with PEG 3400, and also on Nutrient Agar plates and pure agar plates without PEG 3400 addition. No growth was observed on the pure agar plates for all the tested strains for a period of 31 days. All tested PEG 3400 degraders showed much lower viability in liquid culture than on the corresponding agar plates in the presence of PEG 3400. Two Gram-negative isolates P1 and P7 did not show significant growth advantage over the Gram-positive isolates both on the agar plates and in the liquid medium amended with PEG 3400. Our results suggest that diversity of PEG degrading bacteria is high in the environments and culturing techniques affect the successful isolation of the bacteria responsible for degradation.  相似文献   

4.
Many biodegradation studies have focused on survival of isolated bacteria to increase the bacteria population and subsequently enhance the efficiency of polycyclic aromatic hydrocarbon (PAH) biodegradation. However, there is limited research on enhancing the performance of isolated bacteria through reinoculation. Thus, this study was designed to evaluate the effects of reinoculation on the performance of Sphingobacterium spiritivorum in degradation of phenanthrene contaminated sand. Experiments were performed in three different reactors. Inoculation was performed once (day 0) in reactor 1. In reactor 2, inoculation was performed twice (day 0 and day 5). The bacteria was isolated from reactor 2 and inoculated into reactor 3. The study results show reactor 3 having the highest degradation rate (13.61 mg/kg/day) and percentage removal (95.36 percent). In contrast, without reinoculation in reactor 1, 68.93 percent of phenanthrene was removed. Thus, the performance of S. spiritivorum in phenanthrene degradation can be enhanced through reinoculation. © 2014 Wiley Periodicals, Inc.  相似文献   

5.
The reduction and stabilization of biodegradable waste were studied using three operational stages in an aerobic stabilization system. The system used for mechanical/biological treatment utilized two-shaft screws in multiple box reactors. In the first operational stage, 50-kg batches of biodegradable waste were charged in each of the three reactors, with peat moss used as a bulking agent. Analysis revealed that peat moss can be used at this initial stage, based on the observed increase in temperature and carbon dioxide levels. The second stage of operation involved adding 100 kg/day of biodegradable waste to the first reactor. It was confirmed that a continuous reaction is possible by the addition of more waste. In the third stage of operation, 20 kg/day of the 100 kg/day of biodegradable waste feed was replaced with material fed back from the third reactor. At this stage, final product was also removed from the third reactor. The temperature was not controlled, and up to 8%–9% carbon dioxide was formed, enabling normal activation of decomposition. This three-stage operational test confirmed the expected decomposition of organic matter and biodegradable materials. The rate of mass reduction calculated for the final product compared with the input amount was 94.3%, which confirmed that this system would be a useful means for the reduction and stabilization of biodegradable waste. This study also measured the water content of the material in the reactors: the water content decreased as the reaction progressed. This indicated that the activation of microorganisms did not occur sufficiently in the second and third reactors. Future studies of methods to control the internal water content of each reactor should improve the decomposition efficiency.  相似文献   

6.
A laboratory study was conducted for the selection of appropriate remedial technologies for a partially anaerobic aquifer contaminated with chlorinated volatile organics (VOCs). Evaluation of in situ bioremediation demonstrated that the addition of electron donors to anaerobic microcosms enhanced biological reductive dechlorination of tetrachloroethene (PCE), trichloroethene (TCE), and 1,1,1‐trichloroethane (1,1,1‐TCA) with half‐lives of 20, 22, and 41 days, respectively. Nearly complete reductions of PCE, TCE, 1,1,1‐TCA, and the derivative cis‐dichloroethene were accompanied by a corresponding increase in chloride concentrations. Accumulation of vinyl chloride, ethene, and ethane was not observed; however, elevated levels of 14CO2 (from 14C‐TCE spiked) were recovered, indicating the occurrence of anaerobic oxidation. In contrast, very little degradation of 1,2‐dichloropropane (1,2‐DCP) and 1,1‐dichlorethane (1,1‐DCA) was observed in the anaerobic microcosms, but nutrient addition enhanced their degradation in the aerobic biotic microcosms. The aerobic degradation half‐lives for 1,2‐DCP and 1,1‐DCA were 63 and 56 days, respectively. Evaluation of in situ chemical oxidation (ISCO) demonstrated that chelate‐modified Fenton's reagent was effective in degrading aqueous‐phase PCE, TCE, 1,1,1‐TCA, 1,2‐DCP, etc.; however, this approach had minimal effects on solid‐phase contaminants. The observed oxidant demand was 16 g‐H2O2/L‐groundwater. The oxidation reaction rates were not highly sensitive to the molar ratio of H2O2:Fe2+:citrate. A ratio of 60:1:1 resulted in slightly faster removal of chemicals of concern (COCs) than those of 12:1:1 and 300:1:1. This treatment resulted in increases in dissolved metals (Ca, Cr, Mg, K, and Mn) and a minor increase of vinyl chloride. Treatment with zero‐valent iron (ZVI) resulted in complete dechlorination of PCE, and TCE to ethene and ethane. ZVI treatment reduced 1,1,1‐TCA only to 1,1‐DCA and chloroethane (CA) but had little effect on reducing the levels of 1,2‐DCP, 1,1‐DCA, and CA. The longevity test showed that one gram of 325‐mesh iron powder was exhausted in reaction with > 22 mL of groundwater. The short life of ZVI may be a barrier to implementation. The ZVI surface reaction rates (ksa) were 1.2 × 10?2 Lm?2h?1, 2 × 10?3 Lm?2h?1, and 1.2 × 10?3 Lm?2h?1 for 1,1,1‐TCA, TCE, and PCE, respectively. Based upon the results of this study, in situ bioremediation appeared to be more suitable than ISCO and ZVI for effectively treating the groundwater contamination at the site. © 2004 Wiley Periodicals, Inc.  相似文献   

7.
The biodegradability and the biodegradation rate of two kinds biodegradable polymers; poly(caprolactone) (PCL)-starch blend and poly(butylene succinate) (PBS), were investigated under both aerobic and anaerobic conditions. PCL-starch blend was easily degraded, with 88% biodegradability in 44 days under aerobic conditions, and showed a biodegradation rate of 0.07 day−1, whereas the biodegradability of PBS was only 31% in 80 days under the same conditions, with a biodegradation rate of 0.01 day−1. Anaerobic bacteria degraded well PCL-starch blend (i.e., 83% biodegradability for 139 days); however, its biodegradation rate was relatively slow (6.1 mL CH4/g-VS day) compared to that of cellulose (13.5 mL CH4/g-VS day), which was used as a reference material. The PBS was barely degraded under anaerobic conditions, with only 2% biodegradability in 100 days. These results were consistent with the visual changes and FE-SEM images of the two biodegradable polymers after the landfill burial test, showing that only PCL-starch blend had various sized pinholes on the surface due to attack by microorganisms. This result may be use in deciding suitable final disposal approaches of different types of biodegradable polymers in the future.  相似文献   

8.
Stable isotopic signatures of landfill leachates are influenced by processes within municipal solid waste (MSW) landfills mainly depending on the aerobic/anaerobic phase of the landfill. We investigated the isotopic signatures of δ13C, δ2H and δ18O of different leachates from lab-scale experiments, lysimeter experiments and a landfill under in situ aeration. In the laboratory, columns filled with MSW of different age and reactivity were percolated under aerobic and anaerobic conditions. In landfill simulation reactors, waste of a 25 year old landfill was kept under aerobic and anaerobic conditions. The lysimeter facility was filled with mechanically shredded fresh waste. After starting of the methane production the waste in the lysimeter containments was aerated in situ. Leachate and gas composition were monitored continuously. In addition the seepage water of an old landfill was collected and analysed periodically before and during an in situ aeration.We found significant differences in the δ13C-value of the dissolved inorganic carbon (δ13C-DIC) of the leachate between aerobic and anaerobic waste material. During aerobic degradation, the signature of δ13C-DIC was mainly dependent on the isotopic composition of the organic matter in the waste, resulting in a δ13C-DIC of ?20‰ to ?25‰. The production of methane under anaerobic conditions caused an increase in δ13C-DIC up to values of +10‰ and higher depending on the actual reactivity of the MSW. During aeration of a landfill the aerobic degradation of the remaining organic matter caused a decrease to a δ13C-DIC of about ?20‰. Therefore carbon isotope analysis in leachates and groundwater can be used for tracing the oxidation–reduction status of MSW landfills.Our results indicate that monitoring of stable isotopic signatures of landfill leachates over a longer time period (e.g. during in situ aeration) is a powerful and cost-effective tool for characterising the biodegradability and stability of the organic matter in landfilled municipal solid waste and can be used for monitoring the progress of in situ aeration.  相似文献   

9.
Residual cellulose acetate (CA) films with initial degree of substitution (DS) values of 1.7 and 2.5 (CA DS-1.7 and DS-2.5) were recovered from a simulated thermophilic compost exposure and characterized by gel permeation chromatography (GPC), proton nuclear magnetic resonance (1H NMR), and scanning electron microscopy (SEM) to determine changes in polymer molecular weight and DS and to study microbial colonization and surface morphology, respectively. During the aerobic degradation of CA DS-1.7 and CA DS-2.5 films exposed for 7 and 18 days, respectively, the number-average molecular weight (M n) of residual polymer decreased by 30.4% on day 5 and 20.3% on day 16, respectively. Furthermore, a decrease in the degree of substitution from 1.69 to 1.27 (4-day exposure) and from 2.51 to 2.18 (12-day exposure) was observed for the respective CA samples. In contrast, CA films (DS-1.7 and DS-2.5) which were exposed to abiotic control vessels for identical time periods showed no significant changes inM n and DS. SEM photographs of CA (DS-1.7 and DS-2.5) film surfaces after compost exposures revealed severe erosion and corresponding microbial colonization. Similar exposure times for CA films in abiotic control vessels resulted in only minor changes in surface characteristics by SEM observations. The conversion of CA DS-1.7 and DS-2.5 to CO2 was monitored by respirometry. In these studies, powdered CA was placed in a predigested compost matrix which was maintained at 53°C and 60% moisture content throughout the incubation period. A lag phase of 10- and 25-day duration for CA DS-1.7 and DS-2.5, respectively, was observed, after which the rate of degradation increased rapidly. Mineralization of exposed CA DS-1.7 and DS-2.5 powders reported as the percentage theoretical CO2 recovered reached 72.4 and 77.6% in 24 and 60 days, respectively. The results of this study demonstrated that microbial degradation of CA films exposed to aerobic thermophilic laboratory-scale compost reactors not only results in film weight loss but also causes severe film pitting and a corresponding decrease in chainM n and degree of substitution for the residual material. Furthermore, conversions to greater than 70% of the theoretical recovered CO2 for CA (DS 1.7 and 2.5) substrates indicate high degrees of CA mineralization.Guest Editor: Dr. Graham Swift, Rohm & Haas.  相似文献   

10.
A set of microcosm experiments was performed to understand the behaviour of special degraders in bioaugmentation experiments. In the experiments the following chlorobenzene degraders were used: the genetically modified Pseudomonas putida F1CC, and the two wild-type strains Pseudomonas putida GJ31 and Pseudomonas aeruginosa RHO1. These strains were used at an initial cell density of 105 cells mL–1 groundwater which had been spiked with 1,2-dichlorobenzene (1,2-DCB), 1,4-dichlorobenzene (1,4-DCB) and, as main contaminant, chlorobenzene (CB). The population dynamics and behaviour of the three special degraders within the groundwater microcosms were studied by single-strand conformation polymorphism (SSCP) analysis of 16S rDNA fragments amplified from directly extracted community DNA and fluorescent in situ hybridization (FISH) with species-specific probes. RHO1 disappeared after 4 days as detected by FISH in contrast to SSCP-detection where RHO1 could be found during the whole incubation time. Whereas GEM F1CC and wild-type strain GJ31 survived the whole incubation for 20 days. With both methods we were able to detect all strains with high specificity among the indigenous microbial community. The data sets obtained from SSCP analysis and FISH were highly correlated. Specific band intensity within the SSCPfingerprints and the cell counts determined by FISH gave a quantitative overview about the introduced strains.  相似文献   

11.
Biological and physicochemical approaches were utilized in a treatment train for acid mine dis charge (AMD) waters. Anaerobic bioreactors, chemical precipitation reactors, and biopolymer chelation reactors, operated in static, semicontinuous, and continuous flow modes, removed significant quantities of metals and sulfates associated with AMD water. Static tests indicated accept able copper removal via precipitation by generation of hydrogen sulfide in anaerobic reactors. However, low pH affected the biopolymer coating in the chelation reactor, resulting in loss of bed surface. Corrections of AMD to pH > 7 resulted in some metal precipitationprior to biopolymer treatment. A series of static semicontinuous tests at pH 5.0 provided improved metal and sulfate removal. Copper (Cu+) was reduced to trace concentrations, while manganese (Mn+), although reduced, proved to be the most recalcitrant of the metals. © 2006 Wiley Periodicals, Inc.  相似文献   

12.
Dialdehyde starch (DAS) and zein, a hydrophobic corn protein, were investigated to produce biodegradable plastics with improved water resistance and mechanical properties. In the study, dialdehyde starch and zein ratio, plasticizers, and degree of starch oxidation were examined. Increased molding temperature and level of starch oxidation decreased water absorption of the plastic. Tensile strength and Young's modulus increased with starch oxidation. The biodegradation of starting materials and ground plastic specimens was studied in aerobic soil reactors maintained at 25°C for 180 days. Biodegradation of corn starch, zein, and dialdehyde starch for 180 days produced CO2 equivalent to 64, 63, and 10% of theoretical carbon, respectively. Specimens of molded DAS and zein (3 : 1) plastic showed accelerated CO2 evolution compared to DAS and other raw materials alone. By 180 days, specimens made with starch of low oxidation (1 and 5% oxidized) demonstrated a 60% biodegradation, and specimens with highly oxidized starch (90% oxidized) achieved 37% biodegradation.Paper presented at the Bio/Environmentally Degradable Polymer Society—Third National Meeting, June 6–8, 1994, Boston, Massachusetts.Journal Paper J-15927 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Project No. 3258.  相似文献   

13.
The efficiency of waste degradation can be expressed by the rate of waste decomposition in individual phases. This article presents the durations of degradation phases of pretreated and untreated waste stabilized in anaerobic laboratory reactors. In this investigation, the quantities of organic and nitrogen contaminants emitted from the waste during the study are presented. The study confirmed the beneficial effects of aerobic pretreatment of waste before landfilling on reducing the duration of hydrolysis and acid phases, and speeding up the start of the stable methane phase. In the pretreated waste reactor, the stable methane phase began about 19 weeks earlier than in the untreated waste. The total amounts of contaminants removed from the aerobic pretreatment waste were lower than from untreated waste, with values of COD, TOC, BOD5, and VFA corresponding to 21, 18, 6, and 23 %, respectively, and values of TKN and NH4 of 7 and 50 %, respectively.  相似文献   

14.
A laboratory-scale (40 l) reactor was designed to investigate dry anaerobic digestion. The reactor is equipped with an intermittent paddle mixer, enabling complete mixing in the reactor. Three consecutive batch dry digestion tests of municipal solid waste were performed under mesophilic conditions and compared to operation results obtained on a pilot-scale (21 m3) with the same feedstock. Biogas and methane production at the end of the tests were similar (around 200 m3 CH4STP/tVS), and the dynamics of methane production and VFA accumulation concurred. However, the maximal levels of VFA transitory accumulation varied between reactors and between runs in a same reactor. Ammonia levels were similar in both reactors. These results show that the new reactor accurately imitates the conditions found in larger ones. Adaptation of micro-organisms to the waste and operating conditions was also pointed out along the consecutive batches.  相似文献   

15.
This study examined the effects of an increased load of nitrogen-rich organic material on anaerobic digestion and methane production. Co-digestion of fish waste silage (FWS) and cow manure (CM) was studied in two parallel laboratory-scale (8 L effective volume) semi-continuous stirred tank reactors (designated R1 and R2). A reactor fed with CM only (R0) was used as control. The reactors were operated in the mesophilic range (37 °C) with a hydraulic retention time of 30 days, and the entire experiment lasted for 450 days. The rate of organic loading was raised by increasing the content of FWS in the feed stock. During the experiment, the amount (volume%) of FWS was increased stepwise in the following order: 3% – 6% – 13% – 16%, and 19%. Measurements of methane production, and analysis of volatile fatty acids, ammonium and pH in the effluents were carried out. The highest methane production from co-digestion of FWS and CM was 0.400 L CH4 gVS?1, obtained during the period with loading of 16% FWS in R2. Compared to anaerobic digestion of CM only, the methane production was increased by 100% at most, when FWS was added to the feed stock. The biogas processes failed in R1 and R2 during the periods, with loadings of 16% and 19% FWS, respectively. In both reactors, the biogas processes failed due to overloading and accumulation of ammonia and volatile fatty acids.  相似文献   

16.
Significant microbial reductive dechlorination of [1,2 14C] cis‐dichloroethene (DCE) was observed in anoxic microcosms prepared with unamended, fractured rock aquifer materials, which were colonized in situ at multiple depths in two boreholes at the Naval Air Warfare Center (NAWC) in West Trenton, New Jersey. The lack of significant reductive dechlorination in corresponding water‐only treatments indicated that chlororespiration activity in unamended, fractured rock treatments was primarily associated with colonized core material. In these unamended fractured rock microcosms, activity was highest in the shallow zones and generally decreased with increasing depth. Electron‐donor amendment (biostimulation) enhanced chlororespiration in some but not all treatments. In contrast, combining electron‐donor amendment with KB1 amendment (bioaugmentation) enhanced chlororespiration in all treatments and substantially reduced the variability in chlororespiration activity both within and between treatments. These results indicate (1) that a potential for chlororespiration‐based bioremediation exists at NAWC Trenton but is limited under nonengineered conditions, (2) that the limitation on chlororespiration activity is not entirely due to electron‐donor availability, and (3) that a bioaugmentation approach can substantially enhance in situ bioremediation if the requisite amendments can be adequately distributed throughout the fractured rock matrix. © 2012 Wiley Periodicals, Inc.*  相似文献   

17.
Zinc metal and zinc sulfide were recovered by oxidative dissolution using Thiobacillus ferrooxidans, which is aerobic, autotrophic, and acidophilic bacteria. Thiobacillus ferrooxidans derive energy from oxidation of ferrous iron and elemental sulfur using molecular oxygen as an electron acceptor. From the 10, 000 mg/L of initial zinc concentration, 97% solubilization of zinc metal was obtained from coarse FeS2 due to microbial action. Also, about 70% metal solubilization occurred with fine sized materials in 58 days. The general trend observed for the ZnS systems was a decrease in pH with time. The pH drop is an indication that microorganisms are acclimating and producing acidic by-products. The iron oxidation state changes due to substrate containing coarse particle size FeS2 was shown. The shard drop of ratio of Fe(II)/Fe(Total) and sharp increase of ratio of Fe(III)/Fe(Total) was observed in 20 days after inoculation. Thus, microbial activity began more rapidly for the coarse particle size substrate than for the fine FeS2.  相似文献   

18.
A cross-linked polyacrylate polymer, referred to as absorbent gelling material (AGM), has been developed for use in hygiene paper products, such as infant diapers (nappies). The fate and effects of this polymer were studied in laboratory models of landfill and aerobic composting. Radiolabelled (14C) AGM was used to facilitate determination of fate and mass balance. Tests were conducted in 1201 reactors containing a mixture of solid waste and compost or solid waste only, and panty diaper pads. Controlled temperature and leachate recycle were used to accelerate the biological processes. AGM caused no adverse effects and most of the material remained associated with the diaper pad and surrounding waste. Very little AGM (less than 1%) biodegraded to CO2/CH4 under landfill conditions, while 2-4% appeared in leachate. The leachate was highly biodegradable aerobically. More of the AGM (6.4%) biodegraded to CO2/CH4 under aerobic composting conditions, while less than 1% appeared in leachate.  相似文献   

19.
Effluents from three liquid anaerobic digesters, fed with municipal sewage sludge, food waste, or dairy waste, were evaluated as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover in mesophilic reactors. Three feedstock-to-effluent (F/E) ratios (i.e., 2, 4, and 6) were tested for each effluent. At an F/E ratio of 2, the reactor inoculated by dairy waste effluent achieved the highest methane yield of 238.5 L/kgVSfeed, while at an F/E ratio of 4, the reactor inoculated by food waste effluent achieved the highest methane yield of 199.6 L/kgVSfeed. The microbial population and chemical composition of the three effluents were substantially different. Food waste effluent had the largest population of acetoclastic methanogens, while dairy waste effluent had the largest populations of cellulolytic and xylanolytic bacteria. Dairy waste also had the highest C/N ratio of 8.5 and the highest alkalinity of 19.3 g CaCO3/kg. The performance of solid-state batch anaerobic digestion reactors was closely related to the microbial status in the liquid anaerobic digestion effluents.  相似文献   

20.
Permeable barriers are structures installed in situ to treat contaminated groundwater. Pollutants are removed as contaminated groundwater flows through a barrier material. A compost/sand barrier and a plant covered permeable barrier with soil/sand and peat/sand were tested in pilot-scale to treat creosote-contaminated groundwater by sorption and biological removal in situ. Outlet concentrations of the barriers were consistently low during the 29 months of operation. Although sorption sites were filled up with polycyclic aromatic hydrocarbons, they seemed to be regenerated because of biodegradation under aerobic conditions. The vegetated section was least efficient, probably because of lack of oxygen, hence it could not be determined if the plants had a positive effect. As long as biodegradation is efficient the barrier is expected to function for several more years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号