首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
袁媛  郭明辉 《环境科学学报》2016,36(11):4245-4252
利用改性木质素制备的木质材料其生产过程对生态环境有重要的影响.为探讨该环保型木质材料的可行性,利用Ga Bi 6.0软件,对基于复配改性木质素磺酸铵的环保型木质材料(HMIL/WF)进行生命周期评价,比较分析生命周期各生产环节的非生物资源耗竭、酸化效应、富营养化、全球变暖潜值、臭氧层破坏潜能以及光化学臭氧生成潜力等主要环境影响类型.结果表明:在HMIL/WF材料生命周期的3个子系统中,纤维制造子系统对各环境影响贡献值最大,此次是产品成型子系统,后期加工子系统对环境影响最小.全球变暖潜值是HMIL/WF材料环境影响的主要类型,占总环境影响值的73.09%,环境影响大小依次为全球变暖潜值、酸化效应、光化学臭氧生成潜力、富营养化、非生物资源耗竭和臭氧层破坏潜能.热能消耗的环境影响最为严重,占HMIL/WF材料生命周期总环境影响的44.77%.各生产环节的环境影响大小顺序依次为热能消耗、电能消耗、H_2O_2生产、木质素磺酸铵(AL)制备和运输阶段.热能消耗环节的全球变暖潜值、酸化效应、光化学臭氧生成潜力、富营养化和非生物资源耗竭的影响值为HMIL/WF材料生产各环节的最高值;运输阶段产生了最高的臭氧层破坏潜能.与传统中密度纤维板的生命周期环境影响潜值总值(4.71×10~(-9))相比,HMIL/WF材料的环境影响总值(4.22×10~(-9))减少了10.4%.  相似文献   

2.
Most of the hazardous pollutants are phenolic in nature and persists in the environment. The ability of laccases to oxidize phenolic compounds and reduce molecular oxygen to water has led to intensive studies of these enzymes. Therefore the fungal strains with high laccase activity and substrate affinity that can tolerate harsh environmental conditions have a potential for biotechnological applications. Salt tolerant laccase secreting fungi can be utilized in treatment of saline and phenolic rich industrial effluents such as coir effluent and textile effluent that needed to be diluted several fold before microbial treatment. This is the first study describing the isolation and optimization of a salt tolerant strain of Trichoderma sp. potential for industrial applications. The fungus was identified based on morphological characteristics and was subsequently confirmed with molecular techniques and deposited at National Fungal Culture Collections of India (NFCCI) under the Accession No. Trichoderma viride NFCCI 2745. In contrast to other laccase secreting fungi, light conditions did not exert much influence on laccase production of this strain and salinity enhanced its laccase secretion. The fungus effectively removed the phenolic content of the textile effluent, coir-ret liquor and wood processing effluent within 96 hr of incubation. The tolerance of the fungus to high salinity and phenolic compounds makes this strain ideal for treating saline and phenolic rich industrial effluents.  相似文献   

3.
Specific fossil carbon (C) emissions and primary energy useassociated with the manufacture of different wood product groups inFinland are estimated and expressed as emissions or energy use per amountof wood-based C in raw material and per amount in end product. Thecalculation includes both emissions from supplied fuels within the forestindustries, and from electricity and district heat purchased from externalsources. The results are compared to fossil C emissions from the wholelifecycle of harvested wood products. The results of the study show, forinstance, that the emission of fossil C per wood-based C in end products(MgC/MgC) is of the order of 0.07 for sawn wood and 0.3–0.6 for paperin the manufacturing stage. The primary energy use per wood-based C inend product is of the order of 2 MWh/MgC for sawn wood, whereas forvirgin paper grades the figure is between 17 and 19 MWh/MgC. Theprimary energy content is highest in papers based on chemical pulping, butaround 60% of the energy used is produced in this case from by-productwood wastes (black liquor, bark etc.). The specific fossil C emission andprimary energy divided by the estimated service life of the wood productare measures for the relative burden of maintaining the corresponding woodproduct pool. These figures should be kept in mind when considering woodproducts as a potential C sink option.  相似文献   

4.
中密度纤维板项目发展迅速,其带来的环境污染问题也不容忽视。该类项目的环境影响评价应当根据项目的特点从各个生产环节识别其环境影响,提出合理的污染防治措施;重视物料平衡分析:可从整个生产物料、生产辅料或某种单一物料的变化情况进行分析;风险评价等级的确定要注意从项目建设地区、甲醛储存量、所使用甲醛的物料特性三方面进行判断;卫生防护距离的计算应注意该类项目甲醛气体有多处无组织排放源的特点,对各个有甲醛无组织排放的生产区域分别计算其卫生防护距离,最后以整个厂区各方向计算出的最远距离确定为该方向需设立的卫生防护距离。  相似文献   

5.
Pulp industry plays an important role in the structure of European economy and society. Paper pulp manufacture, the industrial utilization of plant biomass, is increasing every year. In Spain, Eucalyptus is the dominant raw material and the Kraft cooking and total chlorine free (TCF) bleaching processes lead the procedures of Eucalyptus paper pulp production. This paper aims to identify and quantify the environmental impacts associated to Eucalyptus TCF pulp manufacture by using Life Cycle Assessment (LCA) as an analytical tool. The system has been defined using a cradle-to-gate perspective, that is to say from forest activities to the exit gate of the pulp mill. The production of chemicals consumed in the cooking and bleaching stages as well as the on-site energy production system is the elements that contribute the most to all impact categories analyzed (more than 50% of total contributions), except for the eutrophication potential where forest activities and waste treatment play an important roles (about 52% of total). Specific actions associated to the recovery boiler, lime kiln and digestion stage could considerably reduce the environmental impact and improve the environmental performance of the Spanish paper pulp industry.  相似文献   

6.
为了研究不同温湿度条件下人造板甲醛的释放规律,利用环境舱模拟人造板在室内特征温湿度下甲醛的散发过程,测量甲醛的逐时散发浓度。结果表明,温度升高,木板中甲醛的释放浓度增大,环境舱内木板甲醛释放达到稳定的时间越长;相对湿度增加,木板中甲醛释放浓度随之增加。改变温湿度对环境舱内板材甲醛的释放趋势影响小。夏季工况的温湿度均高于冬季和过渡季,所以甲醛释放浓度为夏季>过渡季>冬季,其峰值浓度高于其他两季约3~5倍。  相似文献   

7.
This study investigates the global impact of wood as a building material by considering emissions of carbon dioxide to the atmosphere. Wood is compared with other materials in terms of stored carbon and emissions of carbon dioxide from fossil fuel energy used in manufacturing. An analysis of typical forms of building construction shows that wood buildings require much lower process energy and result in lower carbon emissions than buildings of other materials such as brick, aluminium, steel and concrete. If a shift is made towards greater use of wood in buildings, the low fossil fuel requirement for manufacturing wood compared with other materials is much more significant in the long term than the carbon stored in the wood building products.As a corollary, a shift from wood to non-wood materials would result in an increase in energy requirements and carbon emissions.The results presented in this paper show that a 17% increase in wood usage in the New Zealand building industry could result in a 20% reduction in carbon emissions from the manufacture of all building materials, being a reduction of about 1.5% of New Zealand’s total emissions. The reduction in emissions is mainly a result of using wood in place of brick and aluminium, and to a lesser extent steel and concrete, all of which require much more process energy than wood. There would be a corresponding decrease of about 1.5% in total national fossil fuel consumption. These figures have implications for the global forestry and building industries. Any increases in wood use must be accompanied by corresponding increases in areas of forest being managed for long term sustained yield production.  相似文献   

8.
In this study a method is suggested to compare the net carbon dioxide (CO2) emission from the construction of concrete- and wood-framed buildings. The method is then applied to two buildings in Sweden and Finland constructed with wood frames, compared with functionally equivalent buildings constructed with concrete frames. Carbon accounting includes: emissions due to fossil fuel use in the production of building materials; the replacement of fossil fuels by biomass residues from logging, wood processing, construction and demolition; carbon stock changes in forests and buildings; and cement process reactions. The results show that wood-framed construction requires less energy, and emits less CO2 to the atmosphere, than concrete-framed construction. The lifecycle emission difference between the wood- and concrete-framed buildings ranges from 30 to 130 kg C per m2 of floor area. Hence, a net reduction of CO2 emission can be obtained by increasing the proportion of wood-based building materials, relative to concrete materials. The benefits would be greatest if the biomass residues resulting from the production of the wood building materials were fully used in energy supply systems. The carbon mitigation efficiency, expressed in terms of biomass used per unit of reduced carbon emission, is considerably better if the wood is used to replace concrete building material than if the wood is used directly as biofuel.  相似文献   

9.
为了证实漆酶对从造纸厂二沉池出水提取出的木素的催化聚合作用,研究了白腐菌采绒革盖菌Coriolus versicolor漆酶对木素聚合的影响。在有氧条件下,通过添加漆酶和少量ABTS介体到水样中,用紫外分光光度计测定了其中木素浓度变化,利用凝胶色谱法分析了酶催化聚合木素前后的分子量的变化。结果表明:酶处理6h以后,废水中木素浓度从93.1mg/L下降到17.2mg/L。酶处理2h以后,从造纸厂污水分离的木素的分子量从31251上升到58610。造纸废水中木素及其衍生物被聚合后通过絮凝沉淀除去,从而实现废水色度与COD降低,进而为造纸废水回用提供可能。  相似文献   

10.
细菌降解木质素的研究进照   总被引:7,自引:1,他引:6  
细菌是自然界中降解木质素的主要作用者之一,能够产生木质素过氧化物酶、锰过氧化物酶、漆酶等参与木质素降解的生物催化剂,通过改性、增溶等作用降解木质素为低分子量的聚合木素片断.就细菌在木质素降解中的作用、微观过程、作用机理以及生物学、生理学方面来概述细菌降解木质素的研究进展.  相似文献   

11.
木质素降解酶研究进展与外生菌根真菌   总被引:1,自引:1,他引:0  
综述了木质素降解酶系统的组成、分子生物学研究和主要影响因子的研究进展,以及国内外在外生菌根真菌产木质素降解酶方面的研究,阐述了其在有机污染土壤修复中的优势。木质素降解酶系统能够降解多环芳烃、氯代芳烃、硝基有机物和染料等多种环境污染物。许多外生菌根真菌都具有木质素降解酶系统。  相似文献   

12.
细菌降解木质素的研究进展   总被引:4,自引:1,他引:4  
细菌是自然界中降解木质素的主要作用者之一,能够产生木质素过氧化物酶、锰过氧化物酶、漆酶等参与木质素降解的生物催化剂,通过改性、增溶等作用降解木质素为低分子量的聚合木素片断。就细菌在木质素降解中的作用、微观过程、作用机理以及生物学、生理学方面来概述细菌降解木质素的研究进展。  相似文献   

13.
A cradle-to-grave life cycle assessment was done to identify the environmental impacts related to alkaline copper quaternary (ACQ)-treated lumber used for decking and to determine how the impacts compare to the primary alternative product, wood plastic composite (WPC) decking. A model of ACQ-treated lumber life cycle stages was created and used to calculate inputs and outputs during the lumber production, treating, use, and disposal stages. Lumber production data are based on published sources. Primary wood preservative treatment data were obtained by surveying wood treatment facilities in the United States. Product use and disposal inventory data are based on published data and professional judgment. Life cycle inventory inputs, outputs, and impact indicators for ACQ-treated lumber were quantified using functional units of 1000 board feet and per representative deck (assumed to be 320 square feet (30 square meters) of surface decking material) per year of use. In a similar manner, an inventory model was developed for the manufacture, use, and disposal of the primary alternative product, WPC. Impact indicator values, including greenhouse gas (GHG) emissions, fossil fuel use, water use, acidification, smog forming potential, ecological toxicity, and eutrophication were quantified for each of the two decking products. National normalization was done to compare the significance of a representative deck surface per year of use to a family’s total annual impact footprint.If an average U.S. family adds or replaces a deck surfaced with ACQ-treated lumber, their impact “footprint” for GHG emissions, fossil fuel use, acidification, smog forming potential, ecological toxicity, and eutrophication releases each is less than one-tenth of a percent of the family’s annual impact. ACQ-treated lumber impacts were fourteen times less for fossil fuel use, almost three times less for GHG emissions, potential smog emissions, and water use, four times less for acidification, and almost half for ecological toxicity than those for WPC decking. Impacts were approximately equal for eutrophication.  相似文献   

14.
嗜碱细菌复合碳源条件下对麦草木质素的降解   总被引:18,自引:0,他引:18  
在碱性液体培养条件下(pH≈10.5), 研究复合碳源共代谢最佳综合条件下嗜碱性木质素降解细菌6号菌株产酶、降解能力及菌株的生长状况.结果显示,虫漆酶(Laccase)在培养的第4天酶活达到最高值2915.37U/L、锰依赖过氧化物酶(MnP)在培养的第8天酶活达到最高值1152.88U/L,培养10d麦草中木质素降解49.84%.同时通过扫描电镜分析探讨了6号菌株降解木质素的微观过程,证明了6号菌株优先降解木质素的特性和降解方式.  相似文献   

15.
现代建筑材料多数使用钢材、混凝土、木材等高能耗产品,这些材料在生产和运输的过程中会消耗较大的能量,对建筑绿色度和的影响非常大,同时也不利于降低工程预算。通过对建筑资源能源消耗和造价进行调查分析,并对建筑材料对建筑环境负荷影响和建筑工程造价进行了研究,提出基于环境因素设置的工程造价模型。通过实际操作发现,相对于传统的工程造价模型,该模型对工程造价的变化趋势反应的更为直观准确,可以大幅度提高工程造价工作的效率。  相似文献   

16.
聚氯乙烯生产过程生命周期评价   总被引:2,自引:0,他引:2  
文章运用生命周期评价方法,对我国东南某大型石化集团聚氯乙烯生产过程的资源消耗及环境影响进行量化与估算。结果表明:生产1t聚氯乙烯的总能量消耗为6102.24MJ,环境影响负荷为0.49标准人当量。聚氯乙烯生产的主要环境影响为大气颗粒物污染、光化学臭氧合成、酸化和全球变暖。  相似文献   

17.
水性涂料代表了低污染涂料未来发展的主要方向.生命周期评价已经成为企业进行清洁生产以及设计环境友好型产品的重要工具.文章选取水性涂料作为研究对象,利用LCA方法对其进行在原材料生产、产品加工制造和运输过程引起的环境影响进行定量评价,为进一步改进水性涂料产品的环境行为提供依据.结果表明,生命周期评价作为一种定量分析工具对产...  相似文献   

18.
The conventional additives in metalworking fluids (MWFs) have effects in improving the machining conditions. However, many additives can lead to environmental contamination and health problems. In this paper, lignin obtained from wood is considered as a new “green” additive in MWFs. Lignin has been used as additives in other areas like pasted lead electrodes and polypropylene/coir composites but has never been applied in cutting fluids. In this paper, lignin is dissolved in 5% conventional MWF aqueous solutions in 8 different concentrations through injection and atomization methods. Then, experiments are conducted to evaluate the effectiveness of lignin containing MWFs in micro-milling operations. The performance is compared with that of 5% conventional cutting fluid in terms of machining forces, tool wears, and burr formations. The results show that the concentration of 0.015% lignin leads to the least cutting forces, tool wear and burrs. The results also show that an appropriate concentration of lignin in MWFs can help to improve the cooling and lubrication performances during machining. The results of this paper thus indicate that lignin has a potential to be used as an additive in metalworking fluids.  相似文献   

19.
Paper pulp manufacturing is the main non-food industrial utilization of plant biomass. Non-wood and agricultural residues are potential raw materials in the production of specialty papers. This chapter aims to quantify the environmental impacts associated with non-wood high quality paper pulp manufacture via soda-anthraquinone (AQ) cooking process by means of the application of LCA methodology in a cradle-to-gate analysis. Hemp (Cannabis sativa) and Flax (Linum usitatissimum) were evaluated as raw materials for the production of high quality non-porous pulp. A specialty paper pulp mill was analysed in detail and process chain was divided in six subsystems: agricultural activities, chemicals production, electricity production, transport, pulp production and waste treatment. Inventory data came from interviews and surveys (on-site measurements). When necessary, the data were completed with bibliographic resources.Abiotic resources depletion (AD), global warming (GW), ozone layer depletion (OLD), human toxicity (HT), ecotoxicity, photochemical oxidant formation (POF), acidification (A) and eutrophication (E) were the impact categories analysed in this study. According to the results, the environmental impact is mainly caused by the production of chemicals, electricity and fibres (agricultural activities) due to greenhouse gases emissions, phosphorous and nitrogen compounds emissions. The activities inside the pulp mill present minor contribution to almost all impact categories, excluding GW (15%) and E (6%) as well as OLD (25%). This study provides useful information for non-wood based industries related not only to pulp manufacture but also to panels or biorefineries with the aim of increasing their sustainability.  相似文献   

20.
漆酶去除造纸废水中木素及多酚类化合物应用   总被引:6,自引:1,他引:5  
漆酶是一种多酚氧化酶,参与木素的降解或聚合,具有氧化木素的能力。制浆造纸废水中含有大量的木素衍生物及多酚类化合物,这些化合物中有许多物质有较大毒性的,这给废水的生物处理带来了不利影响。木素和多酚类化合物又是废水COD、BOD及色度的主要来源。在漆酶的存在下曝气,可使此类化合物聚合或降解,进而通过絮凝沉淀或深度氧化除去。文章综述了近年来漆酶在制浆造纸废水处理中的应用与研究现状。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号