首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sorption capability of bedrock components from a fractured chalk province was evaluated using ametryn, phenanthrene, m-xylene, 2,4,6-tribromophenol, and 1,2-dichloroethane. Sorption isotherms for the four aromatic compounds were nonlinear on gray (unoxidized) chalk. Over the studied solution ranges, the distribution coefficient decreased by factor of 3 for phenanthrene and m-xylene, a factor 4 for ametryn, and by an order of magnitude for 2,4,6-tribromophenol. In contrast, 1,2-dichloroethane displayed a linear isotherm. The importance of polar interactions for ametryn sorption was evaluated by normalizing sorption to an "inert" solvent, n-hexane. n-Hexane-normalized sorption of ametryn was much greater than that of phenanthrene, presumably due to ametryn participation in hydrogen bonding interactions. In sharp contrast to sorption to gray chalk, sorption to white (oxidized) chalk is 100- to 1000-fold lower at any given solution concentration. The much greater sorption on gray chalk cannot be explained by specific surface area, clay content, or organic matter content; thus, the nature of the organic matter is considered to control sorption in the chalk samples. Gray chalk sorption capacity estimates for ametryn and 2,4,6-tribromophenol are similar, which, together with evidence of competition for sorption sites, suggests that the limited capacity sorption domain for both compounds is similar.  相似文献   

2.
We determined the maximum amounts of added phenanthrene, chrysene, and 2,5-dichlorobiphenyl sorbed onto high-energy adsorption sites in a sediment on bi-solute experiments. The bi-solute pairs were phenanthrene/chrysene and phenanthrene/2,5-dichlorobiphenyl. On the bi-solute sorption experiments, one solute was introduced and equilibrated with sediment prior to addition of the second solute. The values for the maximum amounts adsorbed onto high-energy sites revealed that, after equilibration of the first solute, still some high-energy sites could be occupied by the second solute. Phenanthrene, chrysene, and 2,5-dichlorobiphenyl seem to share about 30% of the accessible high-energy adsorption sites in the sediment employed.  相似文献   

3.
Sorption of ametryn and imazethapyr in 25 soils from Pakistan and Australia was investigated using the batch method. The soils varied widely in their intrinsic capacities to sorb these herbicides as shown by the sorption coefficients, Kd, which ranged from 0.59 to 47.6 for ametryn and 0.02 to 6.94 for imazethapyr. Generally the alkaline soils of Pakistan had much lower Kd values of both herbicides than the soils of Australia. Both soil pH and soil organic carbon (SOC) were correlated significantly with the sorption of ametryn, whereas only soil pH was strongly correlated with imazethapyr sorption. No correlation was found between Kd values of the herbicides and the clay contents of the soils. Multiple regression analysis showed that Kd values were better correlated (r2=0.94 and 0.89 for ametryn and imazethapyr, respectively) if SOC and pH were simultaneously taken into account. The study indicated that sorption of these herbicides in the alkaline soils of Pakistan was low and consequently there is considerable risk of groundwater contamination.  相似文献   

4.
Yu Z  Huang W  Song J  Qian Y  Peng P 《Chemosphere》2006,65(11):2493-2501
The objective of this study was to quantify sorption properties for kerogen/black carbon (BC)-bearing sediments. Single-solute sorption isotherms were measured for five pristine marine sediments using phenanthrene, naphthalene, 1,3,5-trichlorobenzene, and 1,4-dichlorobenzene as the sorbates. The results showed that the sorption isotherms were nonlinear and that the organic carbon normalized single point KOC values were comparable to those reported in the literature for the purified keorgen and BC, but are much higher than the data reported for HA and kerogen/BC-containing terrestrial soils and sediments. It is likely that koergen and BC associated with these pristine marine sediments may not be encapsulated with humic acids or Fe and Mn oxides and hydroxides as often do in terrestrial soils and sediments. As a result, they may be fully accessible to sorbing molecules, exhibiting higher sorption capacities. The study suggests that competition from background HOCs and reduced accessibility when kerogen and BC are associated with terrestrial sediments may dramatically increase variability of sorption reactivities of geosorbents. Such variability may lead to large uncertainties in the prediction of sorption from the contents of kerogen and/or BC along with TOC.  相似文献   

5.
Tremblay L  Kohl SD  Rice JA  Gagné JP 《Chemosphere》2005,58(11):302-1620
The impact of the lipid fraction of natural geosorbents on the sorption of a polycyclic aromatic hydrocarbon was assessed using several experiments. In the first set of experiments phenanthrene was sorbed on a coastal sediment as well as on its humin and humic acid fractions before and after lipid extraction. Before lipid extraction, sorption shows dominantly partitioning characteristics. However, the extraction of lipids from sediment and humin drastically increases, by up to one order of magnitude, their sorption affinity for phenanthrene at low sorbate concentrations, resulting in increased isotherm nonlinearity. This effect is less pronounced for humic acids. One mechanism proposed for the increasing sorption is that lipids, despite their very low relative abundance in the sediments, can compete with phenanthrene for specific high affinity sorption sites (e.g., matrix pores and adsorption sites). This competition is not surprising considering the similar hydrophobic nature of lipids and phenanthrene. Lipids, or any non-polar molecules, could also act like plasticizers by swelling rigid domains and disrupting high affinity sites. In both cases, the removal of lipids (and extraction solvents) makes those sites available for phenanthrene. These provide alternative explanations to the previously proposed “solvent conditioning effect” believed to occur when geosorbents are treated with non-polar solvents modifying the matrix structure, an effect yet to be proven at molecular scale. To further investigate the impact of lipids on sorption, other independent experiments were performed. In a second experiment, re-addition of lipids to the extracted sediment restored the sorption isotherm linearity observed in the native material supporting the absence of irreversible extraction artifacts. However, high addition of lipids (i.e., after saturation of high affinity sites) seems to also enlarge the low affinity partitioning domain. These results are consistent with dual-mode, hole-filling, sorption models involving diffusion. In the final set of experiments, solid-state 19F-NMR using F-labeled lipids sorbed onto the sediments confirmed that lipids may be in different domains (mobile or rigid) that interact or not with phenanthrene. The possible effects of lipid removal on sorption have been overlooked and should be considered when geosorbents are pretreated.  相似文献   

6.
Wang X  Cook R  Tao S  Xing B 《Chemosphere》2007,66(8):1476-1484
Sorption behavior of hydrophobic organic contaminants (HOCs) (i.e., pyrene, phenanthrene and naphthalene) by native and chemically modified biopolymers (lignin, chitin and cellulose) was examined. Lignins (native and treated) showed nonlinear sorption for all compounds studied, emphasizing their glassy character. Chitins and celluloses had linear isotherms for phenanthrene and naphthalene, illustrating the dominance of partitioning, while pyrene yielded nonlinear isotherms. Sorption capacity (K(oc)) of HOCs was negatively correlated with the polarity [(O+N)/C] of the biopolymers. Aromatic and alkyl+aromatic C percentages, rather than alkyl C content, demonstrated a better correlation with K(oc) values, indicating the importance of aromatic structures for HOC affinity. Hydrophobicity (K(ow))-normalized K(oc) values decreased sharply with increasing percentage of O-alkyl C versus total aliphatic C (O-alkyl C/total aliphatic C) or with polar C/(alkyl+aromatic C) ratio of the biopolymers until their values reached 80% and 4, respectively, illustrating the effect of surrounding polar groups on reducing affinity for HOCs. Overall, the results of this study highlight the role of spatial arrangement of domains within biopolymers in sorption of HOCs, and point to sorbent properties, such as functionality, polarity and structure, jointly regulating the sorption of HOCs in biopolymers.  相似文献   

7.
To better understand interaction mechanisms of pine needles with persistent organic pollutants, single-solute and bi-solute sorption of phenanthrene and pyrene onto isolated cuticular fractions of pine needle were investigated. The structures of cuticular fractions were characterized by elemental analysis, Fourier transform infrared spectroscopy and solid-state 13C NMR. Polymeric lipids (cutin and cutan) exhibited notably higher sorption capabilities than the soluble lipids (waxes), while cellulose showed little affinity with sorbates. With the coexistence of the amorphous cellulose, the sorption of cutan (aromatic core) was completely inhibited, so the cutin components (nonpolar aliphatic moieties) dominated the sorption of bulk needle cuticle. By the consumption of the amorphous cellulose under acid hydrolysis, sorption capacities of the de-sugared fractions were dramatically enhanced, which controlled by the exposed aromatic cores and the aliphatic moieties. Furthermore, the de-sugared fractions demonstrated nonlinear and competitive sorption due to the specific interaction between aromatic cores and polycyclic aromatic hydrocarbon.  相似文献   

8.
Sorption of naphthalene and phenanthrene by soil humic acids   总被引:26,自引:0,他引:26  
Humic acids are a major fraction of soil organic matter (SOM), and sorption of hydrophobic organic chemicals by humic acids influences their behavior and fate in soil. A clear understanding of the sorption of organic chemicals by humic acids will help to determine their sorptive mechanisms in SOM and soil. In this paper, we determined the sorption of two hydrophobic organic compounds, naphthalene and phenanthrene by six pedogenetically related humic acids. These humic acids were extracted from different depths of a single soil profile and characterized by solid-state CP/MAS 13C nuclear magnetic resonance (NMR). Aromaticity of the humic acids increased with soil depth. Similarly, atomic ratios of C/H and C/O also increased with depth (from organic to mineral horizons). All isotherms were nonlinear. Freundlich exponents (N) ranged from 0.87 to 0.95 for naphthalene and from 0.86 to 0.92 for phenanthrene. The N values of phenanthrene were consistently lower than naphthalene for a given humic acid. For both compounds, N values decreased with increasing aromaticity of the humic acids, such an inverse relationship was never reported before. These results support the dual-mode sorption model where partitioning occurs in both expanded (flexible) and condensed (rigid) domains while nonlinear sorption only in condensed domains of SOM. Sorption in the condensed domains may be a cause for slow desorption, and reduced availability and toxicity with aging.  相似文献   

9.
Xiao B  Huang W 《Chemosphere》2011,83(7):1005-1013
The goal of this study was to investigate the effects of both concentration levels and loading sequence or contamination history of each pollutant on the equilibrium sorption of mixed organic pollutants on soils. We measured binary sorption equilibria for a soil using ten concentration levels for both phenanthrene and naphthalene. Both solutes were either simultaneously loaded or sequentially loaded (i.e., the second sorbate was loaded after the sorption of the first sorbate had attained equilibrium) on soil. The results showed different competitive sorption equilibria between phenanthrene and naphthalene. In the presence of phenanthrene and regardless of loading sequence, naphthalene exhibited consistently lower sorption capacities and the ideal adsorbed solution theory (IAST) slightly underestimates the naphthalene sorption equilibria. Conversely, the sorption equilibria of phenanthrene in the presence of naphthalene depended upon the loading sequence of the two sorbates on the soil. Little competition from naphthalene on the sorption equilibria of phenanthrene was observed when phenanthrene was loaded either simultaneously with or sequentially after naphthalene, but appreciable competition from naphthalene was observed when the soil had been pre-contaminated with phenanthrene. IAST slightly underestimates the phenanthrene sorption equilibria observed in the latter system, but it cannot estimate the phenanthrene sorption equilibria in the former two systems. We proposed that adsorption on internal surfaces of ink-bottle shaped pores within relatively flexible sorbent matrix may have caused the competitive sorption phenomena observed in this study. The study suggests that contamination history may have strong influence on the equilibrium sorption of organic pollutant mixtures.  相似文献   

10.
Laboratory column flushing experiments were conducted to remove phenanthrene from contaminated soils by Triton X-100 (TX100) with an aim to investigating the effect of surfactant sorption on the performance of surfactant-enhanced remediation process. The effluent concentration of phenanthrene from soil columns showed strong dependence on the sorption breakthrough curves of TX100. The removal of phenanthrene from contaminated soils was enhanced only when the sorption breakthrough of TX100 occurred and the influent concentration of TX100 was greater than the critical enhanced flushing concentration (CEFC). The sorption of surfactant onto soils and the subsequent partitioning of contaminants into soil-sorbed surfactant had a significant effect on the solute equilibrium distribution coefficient (KD) and thus the flushing efficiency for phenanthrene. A model was developed to predict KD and CEFC values for simulating the performance of surfactant-enhanced flushing for contaminated soils. These results are of practical interest in developing effective and safe surfactant-enhanced remediation technologies.  相似文献   

11.
In order to contain the movement of organic contaminants in groundwater, a subsurface sorption barrier consisting of sand or clay minerals coated with a cationic surfactant has been proposed. The effectiveness of such a sorption barrier might be affected by the presence of dissolved organic matter (DOM) in the groundwater. To study the impact of DOM on barrier performance, a series of batch experiments were performed by measuring naphthalene and phenanthrene sorption onto sand coated with cetylpyridinium chloride (CPC) and bentonite coated with hexadecyltrimethylammonium bromide (HDTMA) in the presence of various concentrations of DOM. The overall soil-water distribution coefficient (K*) of naphthalene and phenanthrene onto CPC-coated sand decreased with increasing DOM concentration, whereas the K* of the compounds onto HDTMA-coated bentonite slightly increased with increasing DOM concentration. To describe the overall distribution of polycyclic aromatic hydrocarbons (PAHs) in the systems, a competitive multiphase sorption (CMS) model was developed and compared with an overall mechanistic sorption (OMS) model. The modeling studies showed that while the OMS model did not explain the CPC-coated sand experimental results, a model that included competitive sorption between DOM and PAH did. The experimental results and the modeling study indicated that there was no apparent competition between DOM and PAH in the HDTMA-coated bentonite system, and indicated that in groundwater systems with high DOM, a barrier using HDTMA-coated bentonite might be more effective.  相似文献   

12.
We report on sorption isotherm of phenanthrene (Phe) for river floodplain soil associated with carbonaceous materials, with particular attention being devoted to the natural loading of Phe. Our sorption experiments with original soil samples, size, and density sub-fractions showed that the light fraction had the highest sorption capacity comparable to low rank coals. In addition, the light fraction contributed most for the sorption of Phe in total soil samples. Koc values for all fractions were in the same range, thus indicating that coal and coal-derived particles in all samples are responsible for the enhanced sorption for Phe. Sorption was strongly nonlinear and the combined partitioning and pore-filling model gave a better fit than the Freundlich sorption model. In addition, the spiked PAHs did not show the same behavior as the naturally aged ones, therefore the accessibility of indigenous background organic contaminants was reduced when coal and coal-derived particles are associated with the soils.  相似文献   

13.
Sorption is a fundamental process controlling the transformation, fate, degradation, and biological activity of hydrophobic organic contaminants in the environment. We investigated the kinetics, isotherms, and potential mechanisms for the sorption of two phthalic acid esters (PAEs), dibutyl phthalate (DBP) and dioctyl phthalate (DOP), on aged refuse. A two-compartment first-order model performed better than a one-compartment first-order model in describing the kinetic sorption of PAEs, with a fast sorption process dominating. Both the Freundlich and Dubinin–Astakhov (DA) models fit the sorption isotherms of DBP and DOP, with the DA model being of a better fit over the range of apparent equilibrium concentrations. The values of the fitting parameters (n, b, E) of the PAEs suggest nonlinear sorption characteristics. Higher predicted partition coefficient values and saturated sorption capacity existed in refuse containing larger quantities of organic matter. The sorption capacity of DOP was significantly higher than that of DBP. PAE sorption was dependent on liquid phase pH. Desorption hysteresis occurred in PAE desorption experiments, especially for the long-chain DOP. PAEs may therefore be a potential environmental risk in landfill.  相似文献   

14.
A biomass-generated soot was sequentially treated by HCl-HF solution, organic solvent, and oxidative acid to remove ash, extractable native organic matter (EOM), and amorphous carbon. The compositional heterogeneity and nano-structure of the untreated and treated soot samples were characterized by elemental analysis, thermal gravimetric analysis, BET-N2 surface area, and electron microscopic analysis. Sorption properties of polar and nonpolar organic pollutants onto the soot samples were compared, and individual contributions of adsorption and absorption were quantified. The sorption isotherms for raw sample were practically linear, while were nonlinear for the pretreated-soot. The removal of EOM enhanced adsorption and reduced absorption, indicating that EOM served as a partitioning phase and simultaneously masked the adsorptive sites. By drastic-oxidation, the outer amorphous carbon and the inner disordered core of the soot particles were completely removed, and a fullerene-like nanoporous structure (aromatic shell) was created, which promoted additional π-π interaction between phenanthrene and the soot.  相似文献   

15.
To enhance the removal efficiency of polycyclic aromatic hydrocarbons (PAHs) by natural biosorbent, sorption of phenanthrene and pyrene onto raw and modified tea leaves as a model biomass were investigated. Tea leaves were treated using Soxhlet extraction, saponification, and acid hydrolysis to yield six fractions. The structures of tea leaf fractions were characterized by elemental analysis, Fourier transform infrared (FTIR) spectroscopy, and scanning electron microscopy (SEM). The amorphous cellulose components regulated the sorption kinetics, capacity, and mechanism of biomass fractions. The adsorption kinetics fit well to pseudo-second-order model and isotherms followed the Freundlich equation. By the consumption of the amorphous cellulose under acid hydrolysis, both the aliphatic moieties and aromatic domains contributed to total sorption, thus sorption capacities of the de-sugared fractions were dramatically increased (5–20-fold for phenanthrene and 8–36-fold for pyrene). All de-sugared fractions exhibited non-linear sorption due to strong specific interaction between PAHs and exposed aromatic domains of biosorbent, while presenting a relative slow rate because of the condensed domain in de-sugared samples. The availability of strong sorption phases (aromatic domains) in the biomass fractions were controlled by polar polysaccharide components, which were supported by the FTIR, CHN, and SEM data.  相似文献   

16.
Yang K  Zhu L  Lou B  Chen B 《Chemosphere》2005,61(1):116-128
The estimation of solute sorptive behaviors is essential when direct sorption data are unavailable and will provide a convenient way to assess the fate and the biological activity of organic solutes in soil/sediment environments. In this study, the sorption of 2,4-dichlorophenol (2,4-DCP) on 19 soil/sediment samples and the sorption of 13 organic solutes on one sediment were investigated. All sorption isotherms are nonlinear and can be described satisfactorily by a simple dual-mode model (DMM): q(e)=KpCe+Q0 . bCe/(1+bCe), where Kp (mlg(-1)) is the partition coefficient; Ce (microgml(-1)) is the equilibrium concentration; Q0 (microgg(-1)) is the maximum adsorption capacity; Q0 . b (mlg(-1)) is the Langmuir-type isotherm slope in the low concentration (Henry's law) range and b (mlmicrog(-1)) is a constant related to the affinity of the surface for the solute. Based on these nonlinear sorption isotherms and similar other nonlinear isotherms, it is observed that, for both polar 2,4-DCP and nonpolar phenanthrene, Kp, Q0 and Q0 . b are linearly correlated with soil/sediment organic carbon content (f(oc) in the range of 0.118-53.7%). The results indicate that the nonlinear sorption of organic solutes results primarily from interactions with soil/sediment organic matter. The K*oc K*oc=Kp/f(oc)), Qoc (Qoc=Q0/f(oc)), Loc (Loc=Q0 . b/f(oc)) and b for a given organic solute with different soils/sediments are largely invariant. Furthermore, logK*oc, logb and logLoc for various organic solutes are correlated significantly with the solute logKow or logSw (logKow in the range of 0.9 to 5.13 and logSw in the range of -6.176 to -0.070). A fundamental empirical equation was then established to calculate approximately the nonlinear sorption from soil/sediment f(oc) and solute Sw for a given solute equilibrium concentration.  相似文献   

17.
The two-dimensional distribution of flow patterns and their dynamic change due to microbial activity were investigated in naturally fractured chalk cores. Long-term biodegradation experiments were conducted in two cores ( approximately 20 cm diameter, 31 and 44 cm long), intersected by a natural fracture. 2,4,6-tribromophenol (TBP) was used as a model contaminant and as the sole carbon source for aerobic microbial activity. The transmissivity of the fractures was continuously reduced due to biomass accumulation in the fracture concurrent with TBP biodegradation. From multi-tracer experiments conducted prior to and following the microbial activity, it was found that biomass accumulation causes redistribution of the preferential flow channels. Zones of slow flow near the fracture inlet were clogged, thus further diverting the flow through zones of fast flow, which were also partially clogged. Quantitative evaluation of biodegradation and bacterial counts supported the results of the multi-tracer tests, indicating that most of the bacterial activity occurs close to the inlet. The changing flow patterns, which control the nutrient supply, resulted in variations in the concentrations of the chemical constituents (TBP, bromide and oxygen), used as indicators of biodegradation.  相似文献   

18.
Pan B  Xing B  Liu W  Xing G  Tao S 《Chemosphere》2007,69(10):1555-1562
Although linear binding isotherms of hydrophobic organic chemicals (HOCs) with dissolved organic matter (DOM) are widely reported, several studies showed nonlinear HOC-DOM interactions. This study pointed out that fluorescence static quenching modeling (FSQM), which often uses a Stern-Volmer type plot to process the data from fluorescence quenching experiments, is conceptually different from the classic Stern-Volmer equation. We also emphasized that although linear Stern-Volmer plots are generally observed in literature, it does not necessarily indicate a linear HOC-DOM interaction. According to both mathematical simulation and laboratory sorption experiments in this study, nonlinear interactions could be concealed by the use of Stern-Volmer plot. Moreover, this study tested the two assumptions for applying FSQM to process binding data. Our results showed that binding coefficient (K(DOC)) for phenanthrene is neither independent of free solute concentration, nor DOM concentration, which is a critical limitation for using FSQM in a form of Stern-Volmer equation to examine HOC-DOM interactions. Therefore, the true characteristics of HOC-DOM interactions need to be examined using different ways of experimental design and data processing.  相似文献   

19.
Huang YY  Wang SL  Liu JC  Tzou YM  Chang RR  Chen JH 《Chemosphere》2008,70(7):1218-1227
Humic acids (HAs) are a major component of soil organic matter which strongly affects the sorption behavior of organic contaminants in soils. To assess the sorption-desorption characteristics of organic compounds on HAs, the organic adsorbent is usually isolated using an acid-base extraction method followed by air-drying or freeze-drying. In this study, a peat soil from the Yangming mountain area of Taiwan was sampled and repeatedly extracted followed by either air-drying or a non-drying treatment (denoted DHAs and NDHAs, respectively). The sorption of 2,4,6-TCP on HAs was evaluated using the batch method. Kinetic sorption results indicated that DHAs exhibited a two-step first-order sorption behavior, involving a rapid sorption followed by a slow sorption. The slow sorption may be attributed to the diffusion of 2,4,6-TCP through the condensed aromatic domains of HAs. On the contrary, the sorption of 2,4,6-TCP on NDHAs was extremely rapid, and the sorption data did not fit existing kinetic models. Each HA sample exhibited a nonlinear sorption isotherm. Sorption nonlinearity (represented by Freundlich N values) and K(oc) had a positive relationship with aliphaticity for DHAs; however, nonlinearity and K(oc) correlated positively with aromaticity when NDHAs adsorbents were used. We conclude that the air-drying technique may artificially create a more condensed area, which strongly affects the sorption characteristics of HAs. Thus, an incorrect evaluation of the sorption capacity and its relationship with the chemical composition of HAs would arise following use of the air-drying method.  相似文献   

20.
Cosolvent effects on sorption isotherm linearity   总被引:3,自引:0,他引:3  
Sorption-desorption hysteresis, slow desorption kinetics, and other nonideal phenomena have been attributed to the differing sorptive characteristics of the natural organic polymers associated with soils and sediments. In this study, aqueous and mixed solvent systems were used to investigate the effects of a cosolvent, methanol, on sorption isotherm linearity with natural organic matter (NOM), and to evaluate whether these results support, or weaken, the rubbery/glassy polymer conceptualization of NOM. All of the sorption isotherms displayed some nonlinear character. Our data indicates that all of the phenanthrene and atrazine isotherms were nonlinear up to the highest equilibrium solution concentration to solute solubility in water or cosolvent ratios (Ce/Sw,c) used, approximately 0.018 and 0.070, respectively. Isotherm linearity was also observed to increase with volumetric methanol content (fc). This observation is consistent with the NOM rubbery/glassy polymer conceptualization: the presence of methanol in NOM increased isotherm linearity as do solvents in synthetic polymers, and suggests that methanol is interacting with the NOM, enhancing its homogeneity as a sorptive phase so that sorption is less bimodal as fc increases. When the equilibrium solution concentration was normalized for solute solubility in water or methanol-water solutions, greater relative sorption magnitude was observed for the methanol-water treatments. This observation, in conjunction with the faster sorption kinetics observed in the methanol-water sediment column systems, indicates that the increase in relative sorption magnitude with fc may be attributed to the faster sorption kinetics in the methanol-water systems, and hence, greater relative sorptive uptake for the rubbery polymer fraction of NOM at similar time scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号