首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为进一步加强煤与瓦斯(甲烷)突出等矿山重大灾害预测预报的工作,开展煤与瓦斯突出全过程热动力现象研究。将煤样破碎后在煤与瓦斯突出相似模拟试验台内加压成型,开展不同粒径煤样的吸附、解吸及突出试验,获取试验过程中的煤体温度变化数据。结果表明:煤与瓦斯突出过程中煤体温度随时间的演化关系近似符合自然对数函数;煤样粒径对煤体温度变化有显著影响,煤样粒径越小,在吸附解吸瓦斯时温度变化量就越大、变化速度也更迅速。通过分析煤与瓦斯突出试验结果及能量关系得出,煤的粒径很大程度上决定了瓦斯吸附能力及瓦斯内能,瓦斯内能又很大程度上决定了煤与瓦斯突出强度。  相似文献   

2.
基于扩散理论和热力学基本原理建立了瓦斯解吸过程温度变化公式,以及温度变化与瓦斯膨胀能、瓦斯解吸量的关系式,在此基础上研究了煤粒粒度、瓦斯压力、吸附常数a、扩散系数对解吸过程温度变化的影响及温度变化与煤与瓦斯突出的关系.结果表明:随煤粒粒度减小,瓦斯压力、瓦斯含量增大,扩散能力增强,瓦斯解吸引起的温度下降幅度增大.随解吸过程中温度降低,瓦斯解吸量、瓦斯膨胀能呈明显增大趋势,由此可见,解吸过程中温度下降幅度越大,煤层煤与瓦斯突出危险性越大.  相似文献   

3.
根据鹤壁矿区实测煤层瓦斯含量和瓦斯压力结果,从力能角度分析了地应力、瓦斯、煤体结构对煤与瓦斯突出的影响,确定了地应力为鹤壁矿区煤与瓦斯突出的主控因素。受区域地质构造的控制,南部矿井构造应力大,瓦斯含量高,煤岩体弹性潜能、瓦斯膨胀能大;且构造煤普遍发育,煤体破碎功小。基于力能角度分析,南部矿井在埋藏较浅处,突出动力能量即大于突出阻力能量,是其始突深度较浅的主要原因,鹤壁矿区始突深度呈现南浅北深的特点。在地应力控制作用的基础上,结合三矿实测瓦斯压力、瓦斯突出能量分析,确定三矿在煤层底板标高-510 m以深为突出危险区。  相似文献   

4.
瓦斯压力对煤与瓦斯射流突出能量的影响   总被引:1,自引:0,他引:1  
瓦斯压力是煤与瓦斯突出的主要动力源,其与突出能量的关系尚不明确。将煤与瓦斯突出视为煤-瓦斯气固两相射流突出,在分析煤与瓦斯射流突出过程的基础上,建立了煤与瓦斯射流突出数值模型,给出了突出能量表达式。通过理论分析、数值模拟相结合,得到了瓦斯压力对煤与瓦斯突出能量、突出强度、瓦斯涌出量等参数的影响规律。结果表明,突出发生时,突出能量具有波动性,即以突出口为界存在能量集聚骤升区和能量释放衰减区。能量集聚骤升发生在突出孔洞至突出口段,瓦斯-煤两相流突出速度成倍增大;能量释放主要发生在突出口附近和巷道中,瓦斯-煤两相流突出速度逐渐减小。煤与瓦斯射流突出产生强烈涡旋,在顶板、底板处尤为显著,与现场观察到的突出后顶板有摩擦和划痕、底板突出煤粉有分选现象一致。瓦斯压力与突出能量间呈线性增加关系,与突出强度和瓦斯涌出量均呈幂指数增加关系。计算得到的煤与瓦斯射流突出能量量级与前人结论基本吻合,结果可为煤与瓦斯突出能量预测提供参考。  相似文献   

5.
自主设计了煤粒瓦斯吸附-放散试验系统,以郑煤集团告成煤矿普遍存在的中等变质程度贫瘦软硬煤为研究对象,对比分析了贫瘦煤软硬煤前120 min瓦斯解吸规律,试验结果表明,瓦斯解吸初期软煤的解吸速度都大于硬煤的解吸速度,软煤在前30 min解吸量占总解吸累积量的84.07%以上,而硬煤仅为67.76%;对比了多种描述瓦斯解吸-扩散过程的经验公式,发现孙重旭式和文特式拟合效果最好,且相关指数的变化范围较小。  相似文献   

6.
煤层瓦斯含量是煤与瓦斯突出矿井区域措施效果检验的重要参数之一,目前我国测定煤层瓦斯含量的周期较长、测定步骤复杂,基于煤的瓦斯解吸扩散数学物理模型得到瓦斯含量快速测定模型并将模型内置于CWY50煤中瓦斯含量测定仪中。研究表明,煤层瓦斯含量与瓦斯解吸动力学特征参数有较好的线性相关关系,采用瓦斯含量直接测定与快速测定相结合的方法确定出线性回归系数,并在贵州大湾煤矿X11101工作面进行应用。实践表明:与DGC型井下直接测定结果相比,煤层瓦斯含量快速测定仪最大误差为5.84%,能够满足高瓦斯突出煤层瓦斯含量测定需求。  相似文献   

7.
为研究煤与瓦斯突出的力学机理和能量来源,根据理想气体状态方程,推导了采场围岩瓦斯突出过程中的瓦斯压力、瓦斯含量与对外做功的关系,基于弹塑性力学,阐明了岩体弹塑性状态转化前后应变能释放机理。研究结果表明:煤与瓦斯突出是瓦斯势能与煤岩体弹性能共同作用并转化为煤岩体动能的结果;瓦斯势能释放值与释放路径无关,而与瓦斯压力和瓦斯含量相关,与煤壁前方塑性区扩展规模相关;将其应用至1次特大型煤与瓦斯突出事故中,核算的突出煤量、瓦斯含量和煤体抛出速度基本吻合于实际结果;基于理论分析提出了煤与瓦斯突出的3项防治措施,一是通过钻孔卸压或瓦斯抽放减小瓦斯压力,二是增加极限平衡区距离或减小截深,三是避免高瓦斯巷道或工作面出现蝶形塑性破坏。  相似文献   

8.
煤层注水抑制瓦斯解吸效应试验研究   总被引:4,自引:0,他引:4  
煤层注水宏观上具有疏松煤体、卸压排放瓦斯的效应,这是人们对煤层防突机理的初步认识。为进一步认清煤层防突机理,采用实验室试验和现场测试相结合的方法,在实验室中使干燥煤样在煤样罐中预先吸附瓦斯来模拟原始煤层,然后向试验煤样高压注入水分,注水后再测试瓦斯解吸等温特性曲线、瓦斯解吸速度及残存瓦斯含量。测验结果表明,注水后瓦斯解吸等温特性曲线上移,初始瓦斯解吸速度变小且衰减速度变慢,残存瓦斯含量增加,现场测试钻屑瓦斯解吸指标值降低。通过分析测试结果认为,注水后,水分进入并留存在煤体的微孔隙中,对煤层瓦斯具有抑制解吸效应,而抑制解吸效应可以降低瓦斯初始解吸速度,使瓦斯解吸过程变缓,避免瓦斯突然快速解吸。这是煤层注水防治煤与瓦斯突出的一项重要机理。  相似文献   

9.
构造煤孔隙结构与瓦斯耦合特性研究   总被引:2,自引:0,他引:2  
利用压汞法、低温氮吸附法、瓦斯等温吸附和解吸试验对平煤八矿构造煤和共生原生结构煤进行综合分析,探讨了构造煤孔隙结构与瓦斯耦合特性.结果表明,构造煤以微孔为主,中孔和大孔相对发育且含较多细颈瓶孔,孔隙连通性差.与共生原生结构煤相比,构造煤各孔径阶段的孔容和孔比表面积都有所增加.构造煤比表面积的增加具有阶段性,即孔径< 1.2 nm时为慢增加阶段,孔径=1.2 ~ 4.9nm时为快增加阶段,孔径>4.9 nm时为稳定阶段.构造煤极限瓦斯吸附量a的增大与比表面积快增加阶段关系密切,但小于其BET比表面积的增幅.瓦斯解吸初期0~2 min内构造煤瓦斯解吸速度和解吸量明显大于共生原生结构煤,与中孔和大孔的变化一致,2 min以后瓦斯解吸迅速衰减.低煤体强度、高瓦斯含量的构造煤以气-煤共溶体形式储集更多弹性潜能,突然卸压时瓦斯膨胀能迅速释放,煤层中发育的构造煤增加了煤与瓦斯突出的危险性.  相似文献   

10.
为了更好地认识和防治煤与瓦斯突出,利用扫描电子显微镜和静态液氮吸附仪研究一种构造软煤的微孔结构特征,同时利用自主搭建的大型石门揭煤相似模拟试验系统,研究石门揭露构造软煤过程中瓦斯压力的变化规律。在试验研究的基础上,分析构造软煤的微孔特性对瓦斯赋存的影响,以及瓦斯在石门揭露构造软煤诱发煤与瓦斯突出中的作用。通过试验得出:构造软煤的结构破坏严重,微孔发育并且为特殊瓶颈的不透气孔,为瓦斯的赋存提供了极为有利的条件;瓦斯在突出的启动和发展过程中起重要作用,即在瓦斯压力突然降低、释放膨胀潜能时,瓦斯压力作为动力来源,加速了煤体向采掘空间抛出的过程。  相似文献   

11.
为深入研究突出危险煤瓦斯解吸特征,以块状型煤为研究对象,开展瓦斯等温吸附和解吸试验,分析解吸试验过程中最小平衡压力对解吸过程吸附常数的影响,探讨瓦斯吸附和解吸过程的可逆性、合理的解吸试验压力条件及其数据处理方法。结果表明:最小平衡压力对解吸过程吸附常数拟合结果影响较大;突出危险型煤在实验室条件下,等温吸附/解吸瓦斯过程有典型的可逆性,解吸过程有滞后性;等温解吸曲线仍服从Langmuir方程;为使解吸试验结果可靠性更高,拟合中应考虑解吸完全时的状态,即解吸平衡压力为0 MPa、残余吸附量为0 m L/g时的数据;解吸试验过程中,最小平衡压力不宜高于0.51 MPa。  相似文献   

12.
为探究冷冻取芯过程煤芯瓦斯解吸特性,基于模拟试验的相似性,依托自主研发的含瓦斯煤冷冻取芯响应特性测试平台,开展不同变质程度煤样(长焰煤、贫瘦煤、无烟煤)及不同吸附平衡压力(1.0,2.0,3.0,4.0 MPa)下冷冻取芯过程煤芯瓦斯解吸特性试验研究。研究结果表明:冷冻取芯过程中,煤芯瓦斯解吸量与吸附平衡压力及煤变质程度呈正相关关系;在煤芯瓦斯解吸过程中存在倒吸现象,煤与瓦斯初始吸附平衡压力越大,煤的变质程度越高,倒吸开始时间越迟;冷冻取芯过程中,瓦斯解吸速度与吸附平衡压力及煤变质程度呈正相关关系,且瓦斯解吸速度随吸附平衡压力及煤变质程度变化曲线符合幂函数关系。  相似文献   

13.
为了研究软硬煤瓦斯解吸规律,搭建了大质量瓦斯解吸实验系统,进行了不同变质程度软硬煤的瓦斯解吸实验,对比分析了软硬煤的孔隙结构特征,查明了软硬煤的瓦斯解吸规律及影响因素。研究结果表明:软煤相对于硬煤,具有更多的瓦斯解吸总量和更快的解吸速度,采用幂函数可以较好的描述软硬煤的解吸规律,煤的破坏类型和变质程度是影响瓦斯解吸量的主要因素;软硬煤瓦斯解吸规律的差异性主要受煤的孔隙结构影响,软煤总孔容是硬煤的1.18~2.14倍,且软煤中孔及大孔更为发育,这为瓦斯解吸提供了更优质的通道;软煤相对硬煤在同等条件下变质程度更高,煤吸附甲烷的能力更强,这有利于软煤瓦斯解吸量的增加及解吸速度的加快。研究成果为准确测试煤层瓦斯含量和钻屑解吸指标提供了理论依据。  相似文献   

14.
GRNN模型在煤与瓦斯突出及瓦斯含量预测中的应用   总被引:2,自引:1,他引:1  
煤与瓦斯突出的作用机理非常复杂,是诸多因素如地应力、煤层瓦斯、煤体物理力学性质等共同作用的结果。在分析广义回归神经网络(GRNN)的基本原理和算法的基础上,建立煤与瓦斯突出等级以及基于构造复杂程度定量评价的瓦斯含量GRNN模型。然后用收集到的工程实例样本训练和检验该模型。结果表明,GRNN模型具有很好的预测能力和泛化能力,能较好揭示瓦斯含量和诸影响因素间的关系,可用于煤与瓦斯突出判别以及瓦斯含量预测。同时可以看出,光滑因子的合理选取对于提高GRNN模型的预测精度非常重要,因此,在以后的实际应用中需要不断尝试,找出最合理的光滑因子。  相似文献   

15.
为了研究微波场连续-间断辐照作用对颗粒煤瓦斯解吸特性的影响,通过自制的实验装置,分析研究了微波连续-间断作用10 ,20 ,40 s及无微波作用下的构造煤颗粒瓦斯解吸量及解吸速率变化规律,并采用水浴加热装置模拟微波产生的热效应,研究了微波热效应在促进煤粒瓦斯解吸中的影响。实验结果表明:在微波连续作用时间内,瓦斯解吸量和解吸速率均迅速增大,然而随着时间的延长衰减较快,最终瓦斯解吸量趋向于一定值,微波连续-间断辐照作用下的瓦斯解吸量是无微波加载作用下的1.83~3.93倍;微波产生的热效应对瓦斯解吸影响较为显著,权重达82%以上,然而其非热效应的影响也不可忽视。实验方法与结果可望为促进构造瓦斯解吸、降低煤层突出危险性提供参考。  相似文献   

16.
随着深部开采的推进,煤与瓦斯(甲烷)突出已成为安全高效采矿的重大隐患,煤中瓦斯赋存运移微细观作用机制试验研究至关重要。采用核磁共振T_2谱技术,以阜新盆地孙家湾矿高瓦斯高突煤层为例,试验研究煤样瓦斯吸附解吸核磁共振谱,模拟煤层瓦斯赋存和运移全过程。结果表明,吸附态、游离态和自由态瓦斯核磁共振T_2谱范围可由不同T_2截止阈值定量划分;吸附过程和解吸过程中,吸附态瓦斯量与瓦斯压力的关系符合朗格缪尔方程,而游离态瓦斯量与瓦斯压力成线性关系;吸附态瓦斯解吸过程表现出一定滞后性,且存在5.5 MPa临界滞后压力,游离态瓦斯解吸过程无明显滞后性。  相似文献   

17.
为研究不同煤体结构煤在瓦斯吸附解吸与放散规律方面的差异性,对寺家庄矿15#煤层煤样进行等温吸附/解吸试验与恒温瓦斯放散试验,研究了构造煤与原生煤的吸附/解吸参数以及在不同吸附压力下的瓦斯放散特征。研究结果表明:构造煤的瓦斯吸附能力稍大于原生结构煤,吸附常数a值较原生煤提高6.3%左右;构造煤与原生煤的瓦斯放散曲线有较大差异,尤其体现于瓦斯放散初期,构造煤瓦斯放散速度更大,就达到极限解吸量所需时间而言,构造煤所需时间更短;瓦斯放散曲线拟合结果表明,孙重旭式与乌斯基诺夫式能够分别准确描述原生煤与构造煤的瓦斯放散过程。  相似文献   

18.
为了深入探讨水分对煤中瓦斯解吸特性的影响,采用试验和理论分析相结合的方法,按照原煤的固有粒度配比加工制作型煤,充分干燥后使其吸附平衡以模拟原始煤体,然后利用自制的试验装置实现水分自然进入含瓦斯煤,再测试水分润湿含瓦斯煤过程中样品缸内的瓦斯压力变化情况。结果表明:水分润湿含瓦斯煤过程中样品缸内瓦斯压力不断升高,水分能置换出煤中吸附瓦斯;相同吸附平衡压力下,煤样含水率越高,水分占据的有效吸附位越多,累计瓦斯解吸量越大,当煤样含水率达到煤的极限吸水率时,累计瓦斯解吸量达到极限值;同一含水率条件下,随吸附平衡压力增长,煤样吸附饱和度逐渐增加,水分越难进入煤体内部细微孔隙,造成累计瓦斯解吸量逐渐增加,但增幅逐渐减小,随吸附平衡压力不断升高,极限瓦斯解吸量趋于一定值。  相似文献   

19.
为揭示煤与瓦斯突出冲击波在挡板缓冲条件下能量耗散规律,利用流体动力学理论建立突出冲击波在挡板缓冲下的传播特征分析的数学模型,分析突出冲击波沿巷道衰减的影响因素,基于不同的突出压力条件下煤与瓦斯突出物理模拟试验和数值模拟结果,研究沿着直巷道突出冲击波在挡板缓冲下能量的削弱机制和传播规律。研究结果表明:矿井突出冲击波能量的衰减程度主要与突出压力、输运煤粉做功和巷道横截面积有关,突出压力与冲击波传播超压成正相关关系,巷道横截面积是人为削弱冲击波能量最有效的途径;根据不同的突出压力,突出冲击波超压沿巷道主要表现为急剧增大,然后压力逐渐降低;挡板缓冲下反射冲击波与突出入射冲击波叠加的二次加速作用,导致挡板装置断面前后空间局部能量变大,但总体能量是减弱的,降低了突出冲击波的传播距离;通过理论分析、物理试验和数值模拟所得结果基本一致。  相似文献   

20.
为研究取芯管取芯过程中压力与温度对损失瓦斯量的影响,以及t法的偏差,利用自主研发的取芯管取芯过程模拟测试装置,基于模拟试验的相似性,开展不同加热功率下取芯过程模拟试验与室温(30 ℃)对比,以及变温条件下不同吸附压力取芯过程模拟试验。结果表明:前30 min煤芯瓦斯解吸曲线符合Qt=a+b/[1+(t/t0)c]。吸附压力一定时,取芯过程模拟测试的煤芯瓦斯解吸率均大于室温下的对比测试,3~16 min(退钻过程)温度对损失量的影响大于0~3 min(取芯过程);随着加热功率的增加,煤芯瓦斯解吸量增大,煤芯损失瓦斯量的模拟值亦增大;t法推算值与模拟值的绝对误差随加热功率的增大而增大,相对误差在65.08%~70.79%;加热功率一定时,随着吸附压力的增加,煤芯瓦斯解吸量愈大,煤芯损失瓦斯量t法推算值增大,模拟值亦增大;t法推算值与模拟值的绝对误差随吸附压力的增大而增大,相对误差在68.21%~72.13%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号