首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为研究抛光铝粉的爆炸危险和ABC粉体的抑爆特性,在对实验粉体粒径分布进行分析的基础上,采用20 L粉尘爆炸特性实验装置,分别对不同铝粉尘浓度、不同抑爆剂浓度条件下的爆炸特性参数进行测试。研究结果表明:在实验条件下,铝粉的爆炸下限为45 g/m3<C<60 g/m3;随铝粉浓度增加,爆炸烈度呈现出先增强后减弱的变化趋势,在浓度为400 g/m3时爆炸烈度最大。ABC抑爆剂能够有效抑制铝粉爆炸超压和爆炸反应进程,随着惰性粉体浓度的增加,抑制效果愈加明显,爆炸逐渐减弱。当ABC惰性粉体的质量占比增加到50%时,相较单一铝粉爆炸,反应过程时间由72 ms增加至785 ms,爆炸最大压力、最大压力上升速率分别下降了61.7%,89.5%;当ABC粉体质量占比为53%时,铝粉被完全惰化,未发生爆炸。  相似文献   

2.
为了研究障碍物条件下纳米SiO_2粉体对瓦斯爆炸的抑制特性,采用自行搭建的150 mm×150 mm×500 mm可视化瓦斯爆炸试验系统,分别对不同质量浓度和粒径的纳米SiO_2粉体抑爆特性进行了试验研究。结果表明:在障碍物条件下,纳米SiO_2粉体对瓦斯爆炸具有良好的抑制效果,0.10 g/L的30 nm SiO_2粉体可使9.5%瓦斯气体的最大火焰传播速度降低35%,爆炸超压降低34%;然而,纳米SiO_2粉体并非质量浓度越大抑爆效果越好,而是存在最佳抑爆质量浓度,即随纳米SiO_2粉体质量浓度上升,其抑爆性能先增大后减小,最佳抑爆质量浓度约为0.10 g/L;此外,纳米SiO_2粉体的抑爆性能与其粒径相关,且存在最佳抑爆粒径,相同质量浓度下30 nm SiO_2粉体比15nm和50 nm SiO_2粉体的抑爆效果好。  相似文献   

3.
煤粉爆炸传播特性的试验研究对于深入了解和预防矿井煤尘爆炸事故有重要意义。利用自制的长29.6 m,内径199 mm的试验管道,对煤粉-空气混合物爆炸压力波传播过程进行试验研究。采用压电传感器测量压力信号,得到爆炸压力波沿管道传播过程中不同测点处的压力时间历程曲线,探讨煤粉粒度和浓度对其爆炸超压的影响规律。结果表明:煤粉-空气混和物在弱点火条件下能够实现粉尘火焰的形成和传播。煤粉爆炸压力波传播过程中速度为400~430 m/s,峰值超压为68~72 kPa。煤粉爆炸峰值超压随着煤粉粒度的减小而增大,但煤粉粒度对其爆炸峰值超压的影响程度随着浓度的增加将逐渐减弱。  相似文献   

4.
为了探明外部条件对玉米淀粉粉尘爆炸特性参数的影响,利用20 L球形爆炸装置进行试验测试,探讨了点火能量及粉尘含水量对粉尘爆炸特性的影响,对比研究了CaCO_3和Al(OH)_3两种惰性介质的抑爆效果。结果表明:随点火能量增加,粉尘最大爆炸压力和最大升压速率呈线性上升,在高质量浓度下,粉尘爆炸压力受点火能量的影响更显著;添加CaCO_3和Al(OH)_3能够降低玉米淀粉的爆炸压力,相对于CaCO_3的物理抑爆,Al(OH)_3的物理-化学抑爆效果更佳;玉米淀粉粉尘的最大爆炸压力及爆炸升压速率随粉尘含水量降低而不断增大。  相似文献   

5.
为研究弯管对铝粉爆炸及二次爆炸传播和后果的影响,基于实验室粉尘爆炸及抑爆系统,测试并分析粉尘爆炸及其抑爆的关键参数。利用弯管中丙烷爆炸产生的激波引起铝粉二次扬尘爆炸,并针对铝粉二次爆炸进行抑爆测试。结果表明:激波吹起的铝粉引起的二次爆炸压力明显高于纯丙烷,铝粉质量浓度为500 g/m3时粉尘爆炸压力最高,加入抑爆剂后,粉尘爆炸的火焰传播时间及火焰强度明显减小,且磷酸二氢铵的抑爆效果优于碳酸钙,爆炸压力随着抑爆剂浓度的增加而降低,加入质量分数为10%的磷酸二氢铵能完全抑爆。  相似文献   

6.
为了解CO2-超细水雾对瓦斯/煤尘爆炸抑制特性,用自行搭建的实验系统,从超压、火焰传播速度和火焰结构3个方面研究了CO2-超细水雾形成的气液两相介质对9.5%瓦斯/煤尘复合体系爆炸的抑爆效果、影响因素与原因。研究结果表明:随着CO2体积分数和超细水雾质量浓度的增加,爆炸火焰最大传播速度、爆炸超压峰值均出现明显下降,火焰到达泄爆口时间显著延迟;尤其当CO2体积分数达到14%与超细水雾的共同抑爆效果凸显,瓦斯/煤尘复合体系爆炸超压的“震荡平台”消失,同时火焰结构呈现“整体孔隙化”。所得结论为煤矿井下高效防爆抑爆技术进行了完善和增强。  相似文献   

7.
为探究抑爆介质对玉米淀粉-空气混合物爆炸的抑制效果,以超细碳酸氢钠粉体为抑爆介质,利用自主研制的抑爆装置,在容积为3 m3的受限空间内开展玉米淀粉-空气混合物爆炸抑制试验,研究抑爆介质用量、抑爆装置触发时间及布设方式等参数对玉米淀粉-空气混合物爆炸压力的影响。结果表明:增加抑爆介质喷射量、缩短抑爆装置触发时间和增加抑爆装置数量均能有效降低爆炸压力的峰值,延迟到达爆炸压力峰值的时间,表明抑爆介质有助于增强受限空间内粉尘爆炸的抑制效果;增加抑爆装置数量还可避免复燃现象的发生,预防二次爆炸。  相似文献   

8.
抑爆粉剂的参数指标是影响隔抑爆装置抑制瓦斯爆炸效果的重要因素之一。通过20 L球形爆炸特性实验装置对多种不同抑爆粉剂浓度及粒度条件下的瓦斯爆炸特性参数进行了测试。研究表明:随着抑爆剂浓度的逐渐增加,瓦斯爆炸最大压力降低,最大压力上升速率降低,压力到达峰值时间延迟;在20 L密闭环境,粉剂粒度<15 μm的条件下,当抑爆粉剂浓度增加到225 g/m3时,瓦斯混合气体被完全惰化,失去爆炸性;在15~80 μm抑爆粉剂粒度范围内,随着粒度的减小,抑爆性能先减弱后增强,在抑爆粉剂浓度为200 g/m3时,15 μm 与70~80 μm粉剂粒度最大爆炸压力分别下降了19.8%,17.8%,而40~50 μm粒度爆炸压力下降了6.4%。  相似文献   

9.
针对地下储库受限空间的特点和油气爆炸抑制的需要.在前期所完成的系统油气爆炸试验和理论研究的基础上,采用超细冷气溶胶抑爆新技术,建立地下受限空间油气爆炸及其抑爆模拟试验系统,研制出新型超细冷气溶胶粉体抑爆剂,并对其进行可行性与有效性研究.对地下受限空间油气爆炸抑制的影响因素进行研究,分析了抑爆剂作用机理.结果表明:超细冷气溶胶是一种高效的抑制地下储库油气爆炸的抑爆剂;在相同试验条件下,迎着火焰传播方向喷射抑爆剂的抑爆效果优于垂直火焰传播方向喷射抑爆剂;喷射压力存在临界值,较小较大都不利于油气爆炸抑制,在本文试验条件下.最佳抑爆效果的喷射压力临界值约为0.8 Mpa;抑爆剂用量不能低于临界抑爆浓度,实验得到的抑爆刑临界浓度为0.232 ks/m3;布置方式对抑爆效果具有明显的影响.分散布置比集中布置具有更好的抑爆效果.本文的研究对后续抑爆装置的研制提供了重要的理论参考和关键设计参数.  相似文献   

10.
为了将本质安全原理中的缓和原则与粉尘爆炸事故的风险控制联系起来,利用Swiek20 L球形爆炸装置考察了烟煤粉、甘薯粉和镁粉的最大爆炸压力、最大爆压上升速率和爆炸下限等特性,重点考察了点火能量、环境压力以及添加惰化剂等因素的影响。结果表明:降低点火能量能有效缩减粉尘可燃浓度范围,提高粉尘爆炸下限;爆炸危害正相关于环境压力;碳酸钙和碳酸氢钠能有效抑制烟煤尘爆炸,且碳酸钙抑爆效果更好;氯化钾对镁尘爆炸动力学特性的抑制效果更好,而碳酸钙对镁尘爆炸热力学特性的抑制效果更好,且小粒径的惰化剂表现出更好的抑爆炸能力。降低点火能量、控制环境压力和添加惰化剂均可降低粉尘爆炸危害,有助于控制粉尘爆炸风险。  相似文献   

11.
为研究干粉组成及粒径对其抑制汽油蒸气与空气混合物爆炸效果的影响,以92号汽油为例,在220 L爆炸罐基础上建立一整套可燃气体(液体蒸气)抑爆研究装置。选取磷酸铵盐、超细磷酸铵盐和钠盐3种干粉为抑爆剂。通过时间继电器调节点火时间,在油气爆燃转爆轰阶段喷射干粉,比较抑爆前后汽油蒸气爆炸的峰值压力、压力上升速率和能量的变化。试验结果表明:铵盐对汽油蒸气的抑爆效果优于钠盐,适当降低磷酸铵盐的粒径有利于提高气体抑爆效果。超细铵盐抑制汽油蒸气爆炸的效果最佳,能降低58.5%的汽油爆炸压力和31.6%的爆炸能量,3种干粉的最佳抑爆质量浓度分别为:超细铵盐0.682 g/L,铵盐0.228 g/L,钠盐0.455 g/L。  相似文献   

12.
为了研究橡胶粉尘的爆炸特性以及惰性粉体对橡胶粉尘的抑爆,用20 L球形爆炸装置测试橡胶粉尘的爆炸特性,分析粉尘浓度和粒径对橡胶粉尘爆炸压力(pmax)和爆炸指数(Kst)的影响,并且探究聚磷酸铵、磷酸二氢铵、碳酸钙和碳酸氢钠4种不同惰性粉体对橡胶粉尘的抑爆效果及不同粒径的聚磷酸铵对橡胶粉尘爆炸压力的影响。结果表明:在爆炸极限范围内,橡胶粉尘的爆炸压力随粉尘质量浓度增加先增大后减小;橡胶粉尘粒径越小,其爆炸后果越严重;聚磷酸铵对橡胶粉尘的抑爆效果相对较好;且在一定质量浓度范围内粒径越小,抑爆效果越好。  相似文献   

13.
喷粉压力和点火延迟时间严重影响着粉体抑爆剂在空间内的分散状况,进而影响粉体抑爆剂的抑爆效果。为探究不同分散状况下粉体抑爆剂的抑爆效果,在自行搭建的5 L试验管道中,结合高速摄像和超压分析开展不同喷粉压力和点火延迟时间下不同质量的NaHCO_3抑制甲烷体积分数为9. 5%的甲烷-空气混合物爆炸试验。结果表明:评估不同质量粉体的抑爆效果所需的喷粉压力和点火延迟时间不同。管道底部喷粉和点火时,较小或较大的喷粉压力均无法使粉体分散均匀;粉体的总质量越大,所需的喷粉压力越高;在相同的喷粉压力下,总质量较大的粉体分散均匀时所需的时间较长;抑爆效果良好的粉体能使爆炸火焰的传播时间延缓数百毫秒,此时若仍选择粉体分散均匀时点火,火焰传播前期颗粒的沉降反会使管内粉体分散不均。因此,为合理评估不同质量粉体的抑爆效果,应选择粉体即将充满管道时的扬尘上升期作为点火时刻。  相似文献   

14.
利用20 L球形爆炸测试装置探寻甘薯粉尘在密闭空间内的爆炸特性.测得甘薯粉的爆炸下限质量浓度,研究质量浓度,粒度和点火能量对爆炸猛烈度(最大爆炸压力和最大压力上升速率)以及燃烧特续时间的影响.结果表明:粒径较小时,甘薯粉爆科较猛烈,燃烧持续时间较短;随着质量浓度的增加,燃烧持续时间减少,最大压力上升速率逐渐增大并趋于稳定,而最大爆压呈现先增后减,并且存在一个最佳浓度范围,使粉尘爆炸最猛烈;最大爆压和上升速率随点火能量的增强而增大,较强的点火能量能显著改善低质量浓度粉尘的“爆炸不良”效应.将甘薯粉的爆炸下限质量浓度爆炸猛烈度与锌粉、镁粉和烟煤粉进行对比,发现甘薯粉的爆炸风险远高于烟煤粉和锌粉.  相似文献   

15.
为了解含钾细水雾在综合管廊燃气泄漏场景下的抑爆能力,采用自制的爆炸试验系统,开展含添加剂细水雾位于甲烷-空气爆炸区域外的抑爆试验,分析纯水及草酸钾、碳酸钾、氯化钾3种含钾化合物细水雾对9.5%甲烷-空气爆炸超压与过火范围的影响。研究结果表明:纯水细水雾的临界抑爆雾化质量浓度区间为320~480 g/m3;含草酸钾条件下超压下降率随质量分数增加呈现正态累积分布函数(NormalCDF)变化,最佳抑爆质量分数为10%;当雾化质量浓度为480 g/m3、雾滴D32为61.7μm、化合物质量分数为10%时,对应抑爆能力均大于纯水细水雾条件,其中,含草酸钾抑爆能力最强,其次为碳酸钾与氯化钾,峰值超压下降率较纯水细水雾条件分别提高2.32、1.88与1.53倍,过火范围分别缩减46.7%、40%与13.3%。相较于碳酸钾与氯化钾条件,爆炸气体预混区域外含草酸钾细水雾能够吸收更多的爆炸热量、消耗更多的活性自由基。  相似文献   

16.
为探索一种瓦斯泄漏至硐室结构后发生爆炸的抑制方法,自行搭建管径为200 mm、总长为17 500 mm并含500 mm×500 mm×200 mm(长×宽×高)腔体的大型圆管爆炸试验系统,测试该尺寸腔体内含瓦斯和其内置ABC干粉的抑爆效果;利用数值模拟方法,分析上述尺寸腔体内含瓦斯时的爆炸传播特征。结果表明:无瓦斯腔体结构对瓦斯爆炸有较好抑制效果,而含瓦斯腔体结构则相反,其腔体后较腔体前爆炸火焰及冲击波峰值超压分别增大1. 68倍和1. 45倍;含瓦斯腔体结构内置ABC干粉量分别为400和300 g时,腔体后较腔体前的爆炸火焰大小及冲击波峰值超压由增加变为减小,当内置ABC干粉量为600 g时,火焰及冲击波抑制率较无内置ABC干粉时抑制率分别提高108. 4%和77. 46%。  相似文献   

17.
为探究狭长受限空间中油气爆炸失控时的发展状态,探索高效环保的油气爆炸抑制方法,利用长径比155的管道开展92号汽油-空气混合气爆炸发展规律和七氟丙烷主动抑爆技术研究。通过测量不同端部开口条件下油气爆炸超压、火焰传播速度、火焰强度等参数,对比研究空爆和抑爆工况下的油气爆炸变化规律,探讨长直管道中的油气爆炸特性,分析七氟丙烷抑爆效果。结果表明:大长径比管道中,端部开口泄爆对降低油气爆炸破坏能力的作用较小,开口与否对最大超压峰值的出现位置有影响;长直管道空爆时,油气爆炸由爆燃发展成爆轰,管道尾部的爆轰波速可达近2 000 m/s;密闭管道中,爆轰发生前火焰传播呈“已燃区-火焰锋面-待燃区-前驱激波-未燃区”的2波3区结构;主动抑爆方式下七氟丙烷抑爆效果良好,最大超压峰值降低幅度可达90%,火焰传播被及时阻断。  相似文献   

18.
固体惰性介质对煤粉爆炸压力的影响研究   总被引:1,自引:1,他引:1  
通过对固体惰性介质在减轻煤粉爆炸作用的实验研究,给出影响固体惰化剂作用效果的主要影响因素。实验分别选用来自加拿大和中国的3种煤粉和石灰石,对每种实验样品的成分、粒度都进行分析。用20L球形容器进行实验,测定煤粉中加入不同含量的石灰石后煤粉爆炸的Pmax和(dp/dt)max值。结果表明,石灰石能够起到减轻煤粉爆炸影响的作用,并且随着煤粉粒度的减小,要达到相同的抑爆效果需要的石灰石的用量将加大。  相似文献   

19.
为研究半煤岩巷道中岩粉质量分数和煤的挥发分与煤岩混合型粉尘云最低着火温度的关系,选取挥发分差异较大的5种煤样以相同比例配制煤岩混合型粉尘,利用粉尘云最小点火温度测定仪进行煤岩混合型粉尘试验。结果表明,当煤岩混合型粉尘中岩粉质量分数低于40%时,岩粉的混合会导致混合型粉尘云最低着火温度发生小幅度波动;当岩粉质量分数高于40%时,煤岩混合型粉尘最低着火温度会随岩粉质量分数的增加而大幅度升高;挥发分质量分数越小的煤粉,其混合型粉尘云最低着火温度越容易受岩粉质量分数的影响。  相似文献   

20.
为探索一种新型瓦斯抑爆技术,设计宽径比分别为1.5,2.5,4的矩形空腔体,并基于自行搭建的长36 m,管径为200 mm的大型瓦斯爆炸实验系统,通过在管网中铺设不同宽径比空腔体结构开展抑爆实验。此外依托支护简单的宽径比为2.5的空腔体,在腔体内填充不同质量水袋开展实验,以期进一步提高空腔体抑爆性能。结果表明:对于长径比为2.5、高径比为1的空腔体在实验宽径比范围内均能在一定程度上抑制瓦斯爆炸强度;随着腔体宽径比的增加,截面面积变化率增大,火焰及冲击波超压峰值衰减幅度越大,抑爆效果越佳;空腔耦合抑爆剂水能提高腔体的抑爆效果,在实验范围内较纯空腔可使火焰抑制率最大提高70%,超压峰值抑制率最大提高263%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号