首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 36 毫秒
1.
2.
Little is known about the predictive value of landscape complexity and farm specialisation for land-use intensity, although this is critical for regional agri–environmental schemes and conservation of biodiversity. Here, we analysed land-use intensity of annual crop fields of 30 farms in northern Germany that were located in 15 landscapes differing in structural complexity ranging from <15% to >65% non-crop habitats. The proportion of arable land per landscape was used as simple predictor of landscape complexity due to its close correlation with habitat-type diversity, and the proportion of arable land per farm acted as an indicator for farm specialisation due to its negative correlation with stock farming. Land-use intensity was quantified using questionnaires. Landscape complexity and farm specialisation were related to several but not all indicators of land-use intensity. Structurally simple landscapes were related to more nitrogen input and higher crop yields, and farms specialised on annual crops had reduced crop-species diversity, larger fields, higher crop yields and more pathogen species. In contrast to general expectations, pesticide use in annual crop fields was exceptionally high and not a function of landscape complexity or farm specialisation. Our results show that generalisations such as “farms specialised on annual crops and structurally simple landscapes show increased land-use intensity” may be misleading.  相似文献   

3.
In this study territory densities of field-breeding farmland birds were compared on pairwise-selected organic and conventional arable farms for two years. Differences in territory densities between the two farm types were explained examining the effects of three factors on territory densities: (1) non-crop habitats, (2) crop types and (3) within-crop factors. In both years, densities of most species did not differ between organic and conventional farms. Only skylark and lapwing were more abundant on organic farms, but only skylarks showed a consistent pattern over both years. Differences in crop types grown between the two systems were the only explaining factor for differences in densities of skylark. For lapwing, the difference was only partly due to differences in crop type, but differences in within-crop factors (probably as a result of crop management) were likely to have had an effect as well. There were no significant differences in abundance of non-crop habitats between the two farming systems, so this could not explain differences in territory densities.  相似文献   

4.
Organic farming is a whole-farm management approach believed to encourage biodiversity by excluding the input of agrochemicals and introducing specific management regimes for non-crop habitats. We examined the impact of the hedgerow management regime encouraged for organic farms on small mammal populations, since small mammal numbers influence a range of species at higher trophic levels and, in particular, are key to the conservation of a range of mammalian and avian predators. We compared differences in management and structure of non-crop habitats at the farm-scale between organic and conventional farms, and used within-farm variations in hedgerow size to predict the effect of hedgerow size on small mammals on both farm types. There were no significant differences in the proportion of non-crop habitats between organic and conventional farms, although management differences produced larger hedgerows on organic farms and greater diversity of hedgerow growth stages. However, a difference in hedgerow size between the farm types did not have a significant effect on small mammal abundance or diversity. We conclude that increased hedgerow size is not benefiting small mammal populations on organic farms: significant gains in small mammal numbers may be more effectively achieved by increasing the area of non-crop habitats rather than by improving management regimes.  相似文献   

5.
The aim of this study was to analyse the effects of differences in cropping pattern between organic and conventional arable farms on the breeding activity of skylarks and to assess the effects of arable crop management on skylark nest survival. Skylark nest density was seven times higher on organic farms than on conventional farms (0.63 vs. 0.09 nest per 10 ha). Skylarks showed a strong preference for spring cereals, lucerne and grass leys, all of which were mainly or exclusively grown on organic farms. On organic farms nests were initiated during the entire breeding season, but on conventional farms no nesting activity was found during the peak of the season (early May to early June). On organic farms 27% of all nests was successful. Increasing the availability of suitable breeding habitat during the peak of the breeding season on conventional farms might provide one means of enhancing breeding skylark populations. On organic farms, crop management should focus on reducing nest loss due to farming operations.  相似文献   

6.
Agricultural intensification, at local and landscape scales, has caused a decrease in plant diversity and changes in species composition in cereal fields. To better understand the role of landscape complexity and farming systems in shaping plant assemblages, it is of interest to focus on functional traits rather than on floristic composition, which may help to highlight trends in vegetation patterns. We analysed the relative abundance of various functional attributes (different life forms, growth forms, wind-pollinated species and wind-dispersed species) at three contrasted field positions (boundary, edge and centre) of 29 organic and 29 conventional cereal fields distributed in 15 agrarian localities of NE Spain. Agricultural intensification affected the biological attributes of the vegetation in dryland Mediterranean cereal fields; local factors (farming system and position) had a more prominent role in affecting plant functional composition than the surrounding landscape. Local factors were important for life form distribution, growth form and pollination type, whereas landscape complexity mainly affected the proportion of wind-dispersed species. Therefore, depending on the objective of the study, it is important to select functional attributes sensitive to the different scales of agricultural intensification, especially because landscape complexity and land-use intensity are commonly related.  相似文献   

7.
Agriculture is an important contributor to global emissions of greenhouse gases (GHG), in particular for methane (CH4) and nitrous oxide (N2O). Emissions from farms with a stock of ruminant animals are particularly high due to CH4 emissions from enteric fermentation and manure handling, and due to the intensive nitrogen (N) cycle on such farms leading to direct and indirect N2O emissions. The whole-farm model, FarmGHG, was designed to quantify the flows of carbon (C) and nitrogen (N) on dairy farms. The aim of the model was to allow quantification of effects of management practices and mitigation options on GHG emissions. The model provides assessments of emissions from both the production unit and the pre-chains. However, the model does not quantify changes in soil C storage.Model dairy farms were defined within five European agro-ecological zones for both organic and conventional systems. The model farms were all defined to have the same utilised agricultural area (50 ha). Cows on conventional and organic model farms were defined to achieve the same milk yield, so the basic difference between conventional and organic farms was expressed in the livestock density. The organic farms were defined to be 100% self-sufficient with respect to feed. The conventional farms, on the other hand, import concentrates as supplementary feed and their livestock density was defined to be 75% higher than the organic farm density. Regional differences between farms were expressed in the milk yield, the crop rotations, and the cow housing system and manure management method most common to each region.The model results showed that the emissions at farm level could be related to either the farm N surplus or the farm N efficiency. The farm N surplus appeared to be a good proxy for GHG emissions per unit of land area. The GHG emissions increased from 3.0 Mg CO2-eq ha−1 year−1 at a N surplus of 56 kg N ha−1 year−1 to 15.9 Mg CO2-eq ha−1 year−1 at a N surplus of 319 kg N ha−1 year−1. The farm N surplus can relatively easily be determined on practical farms from the farm records of imports and exports and the composition of the crop rotation. The GHG emissions per product unit (milk or metabolic energy) were quite closely related to the farm N efficiency, and a doubling of the N efficiency from 12.5 to 25% reduced the emissions per product unit by ca. 50%. The farm N efficiency may therefore be used as a proxy for comparing the efficiencies of farms with respect to supplying products with a low GHG emission.  相似文献   

8.
In this study, habitat surveys were undertaken on 50 grass-based farms in SE Ireland and data digitised onto aerial photography. Additional data i.e. stocking rates, and participation (or otherwise) in the Irish Rural Environment Protection Scheme (REPS) were collected and analysed as possible explanatory variables for farm habitat composition.Results indicated that approximately 14.3% of the land area of sampled farms comprised of semi-natural habitat types, a proportion substantially greater than has been reported for many other European countries. The most frequently recorded semi-natural habitats included, field boundaries, scrub, and deciduous and riparian woodlands.Multivariate analysis of farm habitat configuration showed a strong dichotomy between dairy and non-dairy farming systems. Habitats such as intensively managed grassland and built ground were closely associated with dairy-based enterprises. In contrast, the incidence of other habitat types was associated with non-dairy and/or REPS participating enterprises. The ecological quality of field boundaries as assessed by the Field Boundary Evaluation and Grading System (FBEGS) Index was significantly greater on dairy, compared with dry-stock farms.This dichotomy in farm habitat composition is not reflected within current Agri-Environment (AE) policy. Integration of locally important drivers of habitat diversity into the design and implementation of AE policy, is integral to the successful performance of AE schemes.  相似文献   

9.
Predatory carabids, staphylinids and spiders were monitored from 1981 to 1987 in a Dutch project concerning the development of arable farming systems. During this period epigeic predators in the conventional, integrated and organic systems were sampled using pitfall traps. The effects of crop type and farming system on species diversity, abundance and guild structure was analysed using trap data from wheat, pea, sugar beet, potato, onion and carrot fields. Predator abundance and species composition were found to be clearly affected by the farming system. However, in most cases the type of crop appeared to be of greater importance. Crops with a greater cover early in the season, like winter wheat and peas appeared to be more favourable than late and open crops like onions or carrots. Both system and crop effects were more apparent in carabids than in spiders or staphylinids. Only minor effects of farm management were found on species richness. Again, the crop itself seemed to be the main structuring factor. It is concluded that the presence and quality of predator populations is mainly determined by crop structure and crop-related factors. The role of favourable crops and field size in predator enhancement is discussed in relation to the agroecological infrastructure of the landscape.  相似文献   

10.
The processes of nutrient depletion and soil degradation that limit productivity of smallholder African farms are spatially heterogeneous. Causes of variability in soil fertility management at different scales of analysis are both biophysical and socio-economic. Such heterogeneity is categorised in this study, which quantifies its impact on nutrient flows and soil fertility status at region and farm scales, as a first step in identifying spatial and temporal niches for targeting of soil fertility management strategies and technologies. Transects for soil profile observation, participatory rural appraisal techniques and classical soil sampling and chemical analysis were sampled across 60 farms in three sub-locations (Emuhaia, Shinyalu, Aludeka), which together represent much of the variability found in the highlands of western Kenya. Five representative farm types were identified using socio-economic information and considering production activities, household objectives and the main constraints faced by farmers. Soil fertility management and nutrient resource flows were studied for each farm type and related to differences in soil fertility status at farm scale. Farm types 1 and 2 were the wealthiest; the former relied on off-farm income and farmed small pieces of land (0.6–1.1 ha) while the latter farmed relatively large land areas (1.6–3.8 ha) mainly with cash crops. The poorest farm type 5 also farmed small pieces of land (0.4–1.0 ha) but relied on low wages derived from working for wealthier farmers. Both farm types 1 and 5 relied on off-farm earnings and sold the least amounts of farm produce to the market, though the magnitude of their cash, labour and nutrient flows was contrasting. Farms of types 3 and 4 were intermediate in size and wealth, and represented different crop production strategies for self-consumption and the market. Average grain yields fluctuated around 1 t ha−1 year−1 for all farm types and sub-locations. Grain production by farms of types 4 and 5 was much below annual family requirements, estimated at 170 kg person−1 year−1. Household wealth and production orientation affected the pattern of resource flow at farm scale. In the land-constrained farms of type 1, mineral fertilisers were often used more intensively (ca. 50 kg ha−1), though with varying application rates (14–92 kg ha−1). The use of animal manure in such small farms (e.g. 2.2 t year−1) represented intensities of use of up to 8 t ha−1, and a net accumulation of C and macronutrients brought into the farm by livestock. In farms of type 5, intensities of use of mineral and organic fertilisers ranged between 0–12 kg ha−1 and 0–0.5 t ha−1, respectively. A consistent trend of decreasing input use from farm types 1–5 was generally observed, but nutrient resources and land management practices (e.g. fallow) differed enormously between sub-locations. Inputs of nutrients were almost nil in Aludeka farms. Both inherent soil properties and management explained the variability found in soil fertility status. Texture explained the variation observed in soil C and related total N between sub-locations, whereas P availability varied mainly between farm types as affected by input use.  相似文献   

11.
Longitudinal studies examining socio-demographic and other contextual factors are vital to understanding landscape change. Landscape structure, function, and change are assessed for the northern Ecuadorian Amazon by examining the composition and spatial organization of deforestation, agricultural extensification, and secondary plant succession at the farm level in 1990 and 1999 through the integration of data from a satellite time-series, a longitudinal household survey, and GIS coverages. Pattern metrics were calculated at the farm level through the generation of a hybrid land use and land cover (LULC) digital classification of Landsat Thematic Mapper (TM) data. Population, labor, and other household variables were generated from a scientific sample of survey farms or fincas interviewed in 1990 and resurveyed in 1999. Topography, soils, and distance and geographic accessibility measures were derived for sample farms through a GIS as well as qualitative assessments from household surveys. Generalized linear mixed models (GLMMs) were generated for 155 and 157 fincas in 1990 and 1999, respectively, using pattern metrics at the landscape level as dependent variables, and biophysical, geographical, and socio-economic/demographic variables as independent variables. The models were derived to explore the changing nature of LULC at the finca level by assessing the variation in the spatial structure or organization of farm landscapes in 1990 and 1999, and the extent to which this variation could be explained by the available data. Results indicate rapid population growth causing substantial subdivision of plots, which in turn has created a more complex and fragmented landscape in 1999 than in 1990. Key factors predicting landscape complexity are population size and composition, plot fragmentation through subdivision, expansion of the road and electrical networks, age of the plot (1990 only), and topography. The research demonstrates that the process of combining data from household surveys, satellite time-series images, and GIS coverages provide an ideal framework to examine population–environment interactions and that the statistical models presented are powerful tools to combine such data in an integrated way.  相似文献   

12.
A national interregional linear programming model of U.S. agriculture is used to evaluate and compare two conventional and three organic production alternatives. The objective is to estimate the effects on production, supply prices, land use, farm income, and export potential, of a complete transformation of U.S. agriculture to organic practices. Crop yields and production costs are estimated for 150 producing regions for seven crops under both conventional and organic methods. Results indicate that compared with conventional methods, widespread organic farming leads to a decrease in total production, lower export potential, higher supply prices, higher value of production, lower costs of production, and higher net farm income. The United States domestic crop demand can be met with organic methods, but would be more expensive. Some interregional shifts in crop production would also occur.  相似文献   

13.
Landscape structure and bird's diversity in the rural areas of Taiwan   总被引:2,自引:0,他引:2  
This study tries to discuss the relationship between landscape structure and organisms in the perspective of landscape architecture.The research hypotheses were then proposed as (1) there are relationships between landscape structure indexes and birds‘ diversity in the rural areas of Taiwan;(2)the relationships between landscape structure and birds‘ diversity will be different in different hierarchical levels.In order to increase the bird species,landscape planners could tries to increase the density of water bodies,but decrease the farms and human planted woods.Decrease the density of constructed and human planted grasslands.Increase the area of un-worked acres,natural grasslands,and the area of water bodies and circular the water bodies and natural forest.In order to increase birds‘ diversity,landscape planners could decrease the concentration of paved areas.Concentrate the human planted trees to increase the core areas of woodlands.Increase the area of natural grassland circular.In order to increase the total number of birds in the planning areas,landscape planners could scattered the paved areas and lengthen the constructed areas.Decreases the core region of the constructed areas.Increase the area of un-worked acres and water bodies.Decrease the disturbance of both the interior area of natural and human planted woodlands and try to increase the density of water bodies.The analysis results showed that the small grain size indexes are more suitable for the rural areas of Taiwan to capture the influential factors of bird communities.The high fragmentation of land usages in Taiwan lessens the influences of the regional landscape pattern.  相似文献   

14.
The phosphorus load originating from crop production and animal husbandry is a major contributor to the eutrophication of lakes, rivers and coastal waters. The P losses to surface waters may, however, differ drastically due to the diversity of agricultural production systems practised under contrasting environmental conditions. To assess the most problematic types of agriculture, we need information on the P load from different alternative farming practices. Such information cannot, however, be obtained solely from field runoff experiments, as the number of treatment combinations required to account for all relevant farming systems and environmental conditions far exceeds our research capabilities. To facilitate the comparison of P loads, we therefore need reasonably simple models. A key factor controlling the P load from agriculture is the past and present use of nutrients in fertilizers and manure in relation to a crop's uptake, i.e. the soil-surface balance of P. Here, we present a simple empirical model that relates the P surplus (or deficit) in a farm to the edge-of-field losses of algal-available P. Based on long-term fertilizer trials, the model first estimates the change in soil-test P of top soil with the aid of the soil-surface balance of P. Soil-test P is then used to approximate the concentration of dissolved reactive P in surface runoff and drainage flow, as adjusted for different P application types. The loss of particulate P is obtained from typical erosion rates. The model can be applied in life-cycle analyses and in assessing future developments. We illustrate use of the model by calculating the loss of algal-available P from conventional and organic crop and dairy farms located on clay and fine sand soils.  相似文献   

15.
20世纪80年代以来挠力河流域湿地景观变化过程研究   总被引:59,自引:6,他引:59  
挠力河流域面积为241.67×104hm2。其自然条件决定了该流域具有极丰富的湿地生物多样性。从1980年以来,由于经济的快速发展,该流域湿地景观和土地利用发生了显著的变化。自然湿地资源从1982年的53.32×104hm2变成2000年的17.17×104hm2,减少了67.8%;而水田面积却增加了38.5倍,同时,旱田面积也大幅度增加。该文利用遥感和GIS技术,对近20年来该流域湿地景观变化过程进行时空定量分析;并结合流域土地利用/土地覆盖类型的动态变化,探讨流域在经济快速发展中土地利用与湿地之间的演化规律及其对湿地的影响机制。  相似文献   

16.
利用2002年和2006年公路建设前后的两期遥感数据,分析了公路对沿线土地利用和景观格局的影响。结果表明:公路建设使公路用地面积增加了4.10km^2,主要由侵占农业用地和沙地所导致;居民区、森林面积分别增加了1.12km^2和0.08km^2,其余土地利用类型面积有所减少;道路、居民区和森林的景观破碎化指数增加,农田、草地、灌木、沙地和水域下降;景观多样性指数增加,景观优势度降低。  相似文献   

17.
Dairy farming is the largest agricultural source of the greenhouse gases methane (CH4) and nitrous oxide (N2O) in Europe. A whole-farm modeling approach was used to investigate promising mitigation measures. The effects of potential mitigation measures were modeled to obtain estimates of net greenhouse gas (GHG) emissions from representative dairy model farms in five European regions. The potential to reduce farm GHG emissions was calculated per kg milk to compare organic and conventional production systems and to investigate region and system specific differences. An optimized lifetime efficiency of dairy cows reduced GHG emissions by up to 13% compared to baseline model farms. The evaluation of frequent removal of manure from animal housing into outside covered storage reduced farm GHG emissions by up to 7.1%. Scraping of fouled surfaces per se was not an effective option since the reduction in GHG emissions from animal housing was more than out-weighed by increased emissions from the storage and after field application. Manure application by trail hose and injection, respectively, was found to reduce farm GHG emissions on average by 0.7 and 3.2% compared to broadcasting. The calculated model scenarios for anaerobic digestion demonstrated that biogas production could be a very efficient and cost-effective option to reduce GHG emissions. The efficiency of this mitigation measure depends on the amount and quality of organic matter used for co-digestion, and how much of the thermal energy produced is exploited. A reduction of GHG emissions by up to 96% was observed when all thermal energy produced was used to substitute fossil fuels. Potential measures and strategies were scaled up to the level of European regions to estimate their overall mitigation potential. The mitigation potential of different strategies based on a combination of measures ranged from −25 up to −105% compared to baseline model farms. A full implementation of the most effective strategy could result in a total GHG emission reduction of about 50 Mt of carbon dioxide (CO2) equivalents per year for conventional dairy farms of EU(15) comparable to the defined model farms.  相似文献   

18.
Climate, topography, vegetation and land use interact to influence fire regimes. Variable fire regimes may promote landscape heterogeneity, diversification in vegetation pattern and biotic diversity. The objective was to compare effects of alternative land use practices on landscape heterogeneity. Patch characteristics of fire scars were measured from 21 annual burn maps produced from 1972 to 2001 Landsat imagery. Trends in fire patterns under alternative land use practices were compared across a 250,000 ha savanna in southern Africa partitioned into three land use zones. Zone 1, Madikwe Game Reserve (MGR), has had mostly prescribed fires since 1993. Zone 2, cattle farms near MGR in South Africa (SAF), has experienced occasional fires. Zone 3, communal grazing lands in neighboring Botswana (BOT), has had the fewest fires. Cattle ranching was the predominant land use throughout the study area until 1992, when land use switched to conservation and eco-tourism in MGR. Sixteen landscape metrics were applied to this data set to uncover trends in the patch characteristics of the fire scars. A principal components analysis (PCA) reduced the dimensionality of the results so trends in the 10 most important size, shape, and proximity metrics could be better interpreted. The PCA results showed that more burning over time in MGR, and to a lesser extent in SAF, increased patch size, size variability, shape complexity and proximity, while fire exclusion in BOT produced no change or decreasing trends. We tested for significant differences in these metrics between the three land use zones and between two periods, 1972–1992 and 1993–2001. Most patch characteristics in MGR and SAF differed significantly from those in BOT, especially during the latter period, while between MGR and SAF they did not. Patch area, shape complexity and core area increased significantly between periods in MGR, while patch size, size variability and core area increased significantly between periods in SAF. In BOT, no patch characteristics changed significantly between periods. Within the time span analyzed for the study area, we conclude that increased fire occurrence promoted landscape heterogeneity while fire exclusion did not.  相似文献   

19.
Growing global trade with organic products has increased the demand for environmental impact assessments during both production and transport. Environmental hotspots of organic soybeans produced in China and imported to Denmark were identified in a case study using a life cycle assessment approach. Furthermore, environmental impacts of organic and conventional soybeans at farm gate were compared in the case study. The total global warming potential (GWP) per ton organic soybeans imported to Denmark revealed that 51% came from transportation and 35% from the farm level. Comparing organic and conventional soybean at farm gate showed that GWP, non-renewable energy use, acidification and eutrophication was lower per ton organic soybeans, whereas land use was slightly higher.  相似文献   

20.
Bird abundance was assessed on a total of 58 farms across the Seine-et-Marne department, France (12 organic, 19 conservation-tillage and 27 conventional farms). Local abundance variations among the three farming systems were related to two species traits, i.e. habitat specialisation and diet, considering both farmland and non-farmland species. It was found that organic farming favoured specialist birds, either considering the whole community or non-farmland birds only. On the opposite, specialist farmland species were found to be less abundant in conservation-tillage farms than in conventional ones. Invertebrate-feeders were found to benefit from conservation-tillage practices compared to omnivorous species but not compared to granivorous ones; an interaction between species diet and the species specialisation level was also found. Granivorous species tended to increase with the conservation-tillage duration and in particular specialist birds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号