首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
北京典型污染过程PM2.5的特性和来源   总被引:2,自引:0,他引:2  
通过采集北京2010年12月—2011年3月冬春季节大气细颗粒物PM2.5样品,分析了冬春季典型污染时段灰霾和沙尘期间大气细颗粒物PM2.5的质量浓度和其中元素、水溶性离子、有机组分OC和EC特性,及其季节变化和来源.结果表明,北京灰霾和沙尘期间PM2.5日均质量浓度分别高达301.8 μg/m3和284.8 μg/m3,是美国EPA PM2.5日均质量浓度限值(35 μg/m3)的8.62倍和8.14倍.灰霾时段,人为污染元素(S、Cu、Zn、As、Se、Cd、Sb、Pb)、二次无机离子(NH4+、NO3-、SO42-)和二次有机碳(SOC)的质量浓度均高于沙尘天气和非污染天气.沙尘天气时地壳元素(Na、Mg、Al、Ca、Fe等)的质量浓度高于灰霾天气和非污染天气.北京冬春季节PM2.5主要来源于燃煤和工业过程、二次转化、地面扬尘、机动车尾气和生物质燃烧.灰霾污染时段二次转化贡献率较高,沙尘污染时段地面扬尘贡献率较高.  相似文献   

2.
平顶山市大气颗粒物污染水平研究   总被引:1,自引:0,他引:1  
为了初步调查平顶山市大气中颗粒物PM10和PM2.5的污染水平,于2006年9月-2007年8月春、夏、秋、冬4季在平顶山市分别采集了80个样品,并对其进行分析.分析结果表明,平顶山市PM10和PM2.5的质量浓度分别为0.045-0.872 mg/m3,0.023-0.044 4 mg/m3,年均值分别为0.162 mg/m3,0.093 mg/m3,PM10超国家标准0.62倍,PM2.5超美国EPA标准5.20倍.PM10和PM2.5的季节变化趋势足冬季最高,春、秋季次之,夏季最低,PM10中PM2.5约占64%.  相似文献   

3.
使用2002-2007年西安市环境监测站监测的5个功能区PM10、SO2和NO2污染物日平均质量浓度和2006年、2007年时平均质量浓度资料,分析了春节期间西安城区及郊区主要污染物近地面质量浓度的时空变化特征.结果显示: 6年的PM10、SO2和NO2的春节期全市日平均质量浓度的平均值分别为0.217 2 mg/m3、0.067 8 mg/m3和0.041 7 mg/m3,比春节前偏高54.3%、35.8%和14.5%,比春节后偏高73.6%、21.6%和37.8%; 城区小寨PM10和SO2日平均质量浓度最大值分别达0.375 mg/m3和0.303 mg/m3; PM10时平均质量浓度最大值出现在郊区的草滩,高达0.759 mg/m3,SO2时平均质量浓度最大值出现在城区人口稠密的聚居区小寨,高达0.343 mg/m3.表明烟花爆竹燃放可导致近地面空气中PM10、SO2和NO2质量浓度上升,郊区的PM10上升最为显著,而城区PM10和SO2质量浓度上升均较为明显; 且烟花爆竹燃放对近地面污染物质量浓度的短时贡献可大大超出现有污染源的贡献,造成严重的大气污染.因此,春节期间有必要限制西安市烟花爆竹的燃放.  相似文献   

4.
燃放烟花爆竹对北京城区气溶胶细粒子的影响   总被引:11,自引:2,他引:9  
为了研究燃放烟花爆竹对空气中气溶胶细粒子污染的影响,采用TEOM于2003年1月31日-2月25日对PM2.5和PM10质量浓度和化学成分进行了研究,分析了春节期间北京城区气溶胶细粒子的污染特征.结果显示: 燃放烟花爆竹会导致空气中PM2.5在短时间内上升到很高的水平,最大小时平均质量浓度达549 μg/m3,平均每小时质量浓度增加100 μg/m3左右.并且随着PM2.5质量浓度的上升,PM2.5在PM10中的比例也明显上升,两者质量浓度小时平均值的比值最大可达0.9.稳定天气条件下,燃放高峰期过后随着粒径在2.5~10 μm之间的较粗粒子的沉降(约需3~4 h),PM10的质量浓度下降,但PM2.5/PM10的比值仍持续偏高.燃放烟花爆竹导致PM2.5中以燃烧为代表的元素(S、P、As)、部分金属元素(Al、Fe、Ti、Se、K)、可溶性离子成分以及OC的升高.这些成分与烟花爆竹的金属粉末、无机盐类,以及复杂的S、P化合物等主要成分吻合.  相似文献   

5.
对杭州经济技术开发区7个不同监测点PM2.5质量浓度进行了为期8天的监测,研究了PM2.5浓度的时空分布特征,及其与气象条件的关系。监测数据显示,监测期间,开发区PM2.5超标率为50%~62.5%,污染程度严重。文教区、居住区、工业区及钱塘江边的PM2.5日均浓度平均值分别为110μg/m3、95μg/m3、97μg/m3和94μg/m3。气象分析表明,PM2.5浓度水平与风力、温度大小呈负相关,与湿度没有明显相关性。  相似文献   

6.
根据北京市环境保护监测中心发布的PM2.5和O3小时质量浓度及气象、卫星遥感数据,分析了2013年7月2日至10日北京典型PM2.5及O3重污染过程的质量浓度特征及在大气边界层过程各个阶段的质量浓度演变.结果表明,北京夏季O3质量浓度先于PM2.5达到峰值,而天气型演变是导致这一现象的主要原因.具体过程为:1)重污染初始阶段,高压天气型利于前体物积累,PM2.5及O3质量浓度升高;2)在反气旋中部,由于各种污染物质量浓度较低,对大气紫外波段辐射的吸收较弱,导致该阶段紫外辐射强,因而加快了O3生成的光化学反应,O3质量浓度最先达到峰值;3)在反气旋后部,随PM2.5质量浓度增加,辐射变弱,因此O3质量浓度增加速度下降,而受高压后部影响,区域内PM2.5经东南风输送通道进入北京,导致北京PM2.5质量浓度相继达到峰值;4)在重污染清除阶段,在北方反气旋前部的冷锋清除作用下,PM2.5及O3质量浓度同时降低至谷值.  相似文献   

7.
北京市交通扬尘对大气环境质量的影响   总被引:4,自引:0,他引:4  
利用中尺度气象模式ARPS与空气质量模式Models-3/CMAQ的耦合模式,模拟2002年4个季节代表月份(1月、4月、8月和10月)北京市PM10浓度的时空分布.与监测数据对比分析表明,该耦合模式有很好的可靠性.设计了2种污染源情景方案,分析了北京市2002年4个季节代表月份交通扬尘对市区大气PM10的影响.结果表明,在4个代表月中,交通扬尘对北京市PM10的逐时贡献率波动较大,最高可达33%,最低为3%;交通扬尘对北京市大气PM10影响显著,4个月平均贡献率分别为16.73%、12.92%、18.56%和18.17%,平均贡献浓度分别为27.61 μg/m3、32.80 μg/m3、25.20 μg/m3和24.40 μg/m3.此外,依据模拟结果,结合交通扬尘污染特征与治理现状,提出了北京市交通扬尘的初步治理方案.  相似文献   

8.
为探究铀矿井下常用的2种口罩对气溶胶粒子的过滤特性,在我国南方某铀矿山,利用APS3321型空气动力学粒径谱仪对井下工作人员常用纱布口罩和KN95型口罩的过滤特性进行了研究.井下气溶胶监测数据显示,该铀矿井下典型作业场所PM10的质量浓度介于0.069~ 9.800 mg/m3,个数浓度介于173.918 ~2 561.600个/cm3;PM2.5的质量浓度介于0.039~0.479 mg/m3之间,个数浓度介于173.100~2 556.382个/cm3之间.口罩过滤特性试验结果表明:1)KN95型口罩和纱布口罩对PM10的平均过滤效率分别为95%和76%,对PM2.5的平均过滤效率分别为93%和61%,可见KN95型口罩过滤效率明显高于纱布口罩;2)在0.5~3.5 μm粒径范围内,2种口罩对颗粒物的过滤效率均随粒径增大而增大,在3.5~ 10μm粒径范围内,2种口罩对不同粒径颗粒物的过滤效率均接近100%;3)无论从质量浓度还是个数浓度来看,经口罩过滤后的气溶胶粒子大多数分布在2.5μm粒径范围内,表明PM2.5是主要的气溶胶污染物.  相似文献   

9.
对吉林省重点城市2015年~2018年大气日均值PM2.5/PM10数据进行处理,从空气中细颗粒物的比例角度评价吉林省的空气污染情况。经过分析得出结论即吉林省2015年~2018年空气质量明显好转,特别是2018年。中度及以上污染天气污染程度下降显著。月份中10、11、12月份污染下降明显。城市中松原市污染较轻。  相似文献   

10.
王晓舜 《安全》2012,33(3):58-58,60
2011年秋冬季对于我国中东部地区是一个多雾的季节,仅北京雾霾天数就高达65天.大雾导致城市空气质量下降,在公众对大雾天气的持续关注过程中,一个原本陌生的词汇PM2.5进入了人们的视野.PM2.5是指空气动力学直径小于或等于2.5um的颗粒物.与TSP(总悬浮颗粒物,即空气动力学直径小于或等于100um的颗粒)、PM10(可吸入颗粒物)相比,PM2.5可直接进入肺泡并沉积,导致与心和肺的功能障碍有关的疾病(如心血管病),对人体健康构成较大危害.  相似文献   

11.
使用2002-2007年西安市环境监测站监测的5个功能区PM90、SO2和NO2污染物日平均质量浓度和2006年、2007年时平均质量浓度资料,分析了春节期间西安城区及郊区主要污染物近地面质量浓度的时空变化特征。结果显示:6年的PM10、SO2和NO2的春节期全市日平均质量浓度的平均值分别为0.2172mg/m^3、00678mg/m^3和0.0417mg/m^3,比春节前偏高54.3%、35.8%和14.5%,比春节后偏高73.6%、21.6%和37.8%;城区小寨PM10和SO2日平均质量浓度最大值分别达0.375mg/m^3和0.303mg/m^3;PM10时平均质量浓度最大值出现在郊区的草滩,高达0.759mg/m^3,SO2时平均质量浓度最大值出现在城区人口稠密的聚居区小寨,高达0.343mg/m^3。表明烟花爆竹燃放可导致近地面空气中PM10、SO2和NO2质量浓度上升,郊区的PM10上升最为显著,而城区PM10和SO2质量浓度上升均较为明碌;且烟花爆竹燃放对近地面污染物质量浓度的短时贡献可大大超出现有污染源的贡献,造成严重的大气污染。因此,春节期间有必要限制西安市烟花爆竹的燃放。  相似文献   

12.
采用大气边界层模式和随机游动扩散模式相连接的模拟方法,对上海市拟建的交通隧道排气口附近街道建筑物区域的气流分布和废气排放物浓度场进行了数值模拟分析,设计了6种方案,并按不同的废气排放形式,分别分析了街区的地面污染物质量浓度分布.结果表明,在建筑物存在的情况下,排风口造成的地面污染物质量浓度的最高值会很大,可达0.44 mg/m3,若换成排风塔,则为0.13 mg/m3; 没有建筑物的情况下,由排风口和排风塔造成的地面污染物最高质量浓度分别为0.11 mg/m3,0.4 mg/m3.当风速增大,质量浓度会降低,最大值分别从0.44 mg/m3降为0.2 mg/m3,和从0.13 mg/m3降为0.1mg/m3.分析表明,建筑物附近的气流特征对污染物扩散会起引导作用: 垂直方向上,导致污染物从高空被带入地面; 水平方向上,使得污染物在下风向堆积; 当风速增大时,地面污染物质量浓度值降低.同时研究表明,对排风塔污染物散布起主要作用的是水平方向的气流结构,而对排风口的污染物散布起主要作用的则是其附近建筑物的背风侧的气流下洗效应和水平流场,因此建筑物背风侧有可能成为重污染区.  相似文献   

13.
林忠  胡越 《环境与发展》2023,(3):93-100
通过对包头市2021年3月14-21日发生的一次强沙尘暴过程中的颗粒物浓度、天气形势场、气象参数、卫星遥感资料进行分析,归纳此次沙尘污染过程特点:1.过程影响程度强,持续时间长,影响范围广,属近十年罕见。2.过程包含沙尘形成、发展、回流、叠加第二波沙尘影响、沙尘清除5个阶段。沙尘起源于蒙古国,蒙古气旋及大风为其提供动力条件。3.在沙尘发展阶段,包头市处于严重污染共27h,期间出现PM10与PM2.5同步为首要污染的少见的现象,第二波沙尘影响程度减弱,颗粒物浓度变化与一般沙尘天气过程变化规律一致。  相似文献   

14.
北京城6区大气颗粒物质量浓度变化规律研究   总被引:5,自引:0,他引:5  
为较好地了解当前北京城6区大气颗粒物PM2.5和PM10质量浓度的污染水平及变化规律,根据2013年3月11日至2014年2月28日城6区12个空气质量实时监测点连续、实时的监测结果,构建多点位、完整时间序列的颗粒物质量浓度数据资料.应用数理统计分析手段,对当前北京城6区大气颗粒物质量浓度的频数分布、相关性和逐时变化特征进行分析,并结合全年实际气象特征,对引起大气颗粒物质量浓度变化的因素进行了初步探讨.结果表明,2013年3月至2014年2月北京城6区大气颗粒物污染较为严重,且PM2.5和PM10质量浓度具有特别显著的线性相关关系,全年相关系数达0.9,10年间无显著变化;二者年均值达91.7 μg/m3和116.9 μg/m3,分别超标162%和67%;二者质量浓度比达78.4%,10年间同比增长约20%.颗粒物质量浓度逐时变化受季节变化影响明显,总体呈现夜间最高、白天最低的趋势,变化周期为7~9h.研究表明,影响颗粒物质量浓度变化的因素包括春季的大风和生物粒子、夏季的湿热和降雨、秋季和冬季的逆温现象和降雪等气象因素及规律性的人为源因素.  相似文献   

15.
对郑州市2005年1月—2009年12月份的可吸入颗粒物(PM10)指数数据进行统计分析,并利用Matlab软件建立了利用气象要素预测PM10的BP神经网络模型。结果表明:2005—2009年郑州市PM10指数的年均值和空气质量超标天数逐步下降,且趋于稳定;年内各月的PM10指数浓度差异很大,冬季PM10指数显著高于夏季,8月最低,而12月最高;采暖期PM10指数显著高于非采暖期,而节假日对于PM10指数的影响不明显;通过平均风速、平均气温、平均气压和平均相对湿度预测PM10浓度可以达到最高精度86.85%。  相似文献   

16.
三氯杀螨醇生产过程中的DDT环境排放研究   总被引:1,自引:0,他引:1  
三氯杀螨醇生产工艺流程主要包括缩合、碱解、氯化和水解等步骤。对工作场所中空气样品、生产过程排放的废酸及废水样品进行采集和分析。工作场所空气中DDT总质量浓度均值为6.69×10-3mg/m3。其中,碱解反应工序中质量浓度水平较低,为1.10×10-3mg/m3;包装车间质量浓度水平较高,为16.72×10-3mg/m3。所有空气样品中p,p’-DDE均是主要贡献物质,占DDT杂质总量的80.2%;p,p’-DDT的质量浓度范围为0.053×10-3~1.66×10-3mg/m3,平均为0.49×10-3mg/m3,低于国家标准限值。缩合废酸与水解废酸中DDT杂质总质量比分别为4.84μg/kg和334.83μg/kg;碱解废水与水解废水中的DDT杂质总质量比分别为456.48μg/kg和75.65μg/kg。废水及废酸样品中各种DDT杂质的质量比水平存在差异;生产工艺阶段不同,杂质组成也各具特点。水解废酸的p,p’-DDT的质量比最高,为146.82μg/kg;缩合废酸与水解废水处质量比水平较低,分别为0.33μg/kg和1.41μg/kg。该企业随废水及废酸排放的DDT杂质总量为1234.08 g/a,其中随碱解废水的排放量高达912.95 g/a。p,p’-DDT的年排放总量为163.37 g/a,随碱解废水和水解废酸的排放量分别为86.98 g/a和73.41 g/a。  相似文献   

17.
卷烟生产的有害因素   杀虫剂的危害   卷烟厂大都以磷化铝作为熏蒸杀虫剂.磷化铝是灰绿色粉末,遇水分解产生磷化氢,磷化氢是无色而稍有腐鱼样臭味的气体,比空气稍重,能溶于水,有毒性.空气中含磷化氢1 4 mg/m3~4 2mg/m3即可闻到其气味;接触10mg/m3达6小时,有中毒症状;浓度409 mg/m3~846 mg/m3时,半至1小时发生死亡.……  相似文献   

18.
为研究夏季高架路边颗粒物浓度的垂直分布规律,以上海市南北高架交叉处路边垂直区域为研究对象,通过Fluke 985粒子计数器采集颗粒物数量浓度数据。分析了6种直径范围颗粒物(0.3~0.49μm、0.5~0.99μm、1~1.99μm、2~4.99μm、5~9.99μm、≥10μm)在高架路垂直区域的分布规律,并结合微观尺度下的交通、气象、高度等数据建立了逐步回归和SVM神经网络预测模型。结果表明:在高架路边的垂直方向上,随高度增加,6种颗粒物浓度整体呈现下降的趋势;0.3~0.49μm、0.5~0.99μm、1~1.99μm三种颗粒物浓度受高架桥带来的"盖子效应"影响,在距离地面约21 m高的7楼达到最大值;总体上早高峰颗粒物浓度大于晚高峰,工作日颗粒物浓度高于非工作日;SVM神经网络模型比线性逐步回归模型能更好地预测高架路边颗粒物的垂直分布规律,可作为上海市夏季非降水天气高架桥面附近颗粒物浓度预测的方法。  相似文献   

19.
北京市区秋季气溶胶粒子浓度与特性参数的观测研究   总被引:1,自引:0,他引:1  
对2010年10月和11月北京市区粒径小于2.5μm(PM2.5)和2.5~10μm之间(PM2.5-10)的气溶胶粒子质量浓度进行了观测和分析,同时研究了同期的Angstrom指数和散射系数等气溶胶特性参数的变化。结果表明,不同粒径颗粒物的质量浓度与气溶胶特性参数的逐时日变化明显。PM2.5质量浓度在凌晨5时至6时取得最小值,夜间20时至21时取得最大值;PM2.5-10质量浓度则在9时至10时和20时至21时出现双峰。气溶胶Angstrom指数在下午明显高于上午,最大值出现在16时左右;散射系数高峰出现在17时至18时。2010年10月7—9日出现了显著的灰霾天气,灰霾天气下PM2.5和PM2.5-10质量浓度均有明显增加。细粒子增多是导致PM2.5增加和Angstrom指数增大的主要原因。另外,灰霾天气期间散射系数迅速增大,非灰霾天(10月11日)的散射系数只有灰霾天(10月8日)的1.27%。  相似文献   

20.
为了初步调查平顶山市大气中颗粒物PM10和PM2.5的污染水平,于2006年9月-2007年8月春、夏、秋、冬4季在平顶山市分别采集了80个样品,并对其进行分析。分析结果表明,平顶山市PM10和PM2.5的质量浓度分别为0.045-0.872mg/m^2,0.023-0.0444mg/m^3,年均值分别为0.162mg/m^3,0.093mg/m^3,PM10超国家标准0.62倍,PM2.5超美国EPA标准5.20倍。PM10和PM2.5的季节变化趋势是冬季最高,春、秋季次之,夏季最低,PM10中PM2.5约占64%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号