首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
The early life history of the American conger eel, Conger oceanicus, was studied using otolith microstructure and chemical composition in metamorphosing leptocephali collected from New Jersey estuarine waters. The age of leptocephali was estimated by counting daily growth increments. Age of early metamorphosing leptocephali at recruitment to the estuary ranged from 155 to 183 days, indicating that migration of conger eel leptocephali from their oceanic spawning ground to the estuary requires 5–6 months. Back-calculated hatching dates suggest that the spawning season lasted 3 months, from late October to mid-December. However, in the late metamorphic leptocephali, the presence of an unclear peripheral zone in the otolith prevents the accurate estimation of the larval stage duration. The calcium content was almost constant throughout the otoliths. Both strontium and Sr:Ca ratios increased with age, but dramatically decreased at age 70–120 days. The otolith increment width also showed a marked increase at the same ages, indicating the onset of metamorphosis. A negative correlation between age at metamorphosis and otolith growth rate indicates that faster growing leptocephali arrive at the estuary earlier than slower growing ones. A close relationship was also found between age at recruitment and age at metamorphosis, suggesting that individuals that metamorphosed earlier were recruited to the estuary at a younger age. This larval migration pattern appears to be similar among anguilliform fishes.Communicated by S.A. Poulet, Roscoff  相似文献   

2.
This study reviewed literature on spawning times for three north temperate species of anguillid eels estimated by sampling for small leptocephali (larvae) at sea and for several temperate and tropical species by back-calculating from putative daily ages derived from otolith increment analysis of glass eels that recruited to coastal waters. Estimates from otoliths of European eels, Anguilla anguilla, American eels, Anguilla rostrata, and Japanese eels, Anguilla japonica, imply much more protracted spawning seasons than are indicated by sampling at sea during various times of year. European eels are inferred to spawn year-round from otolith analysis, but the smallest, recently hatched leptocephali are found only in late winter and spring. From otoliths, the spawning times of these three species are all estimated to occur much later in the year than when small leptocephali are found at sea, indicating that ages appear to be underestimated. For these and other temperate and tropical eels, there are inconsistencies in assigned ages among various studies, which are most extreme for the European eel. This species has the longest larval migration and often has an opaque zone in the glass eels’ otoliths where it is difficult to discern growth increments. These inconsistencies suggest that interpretation of otolith growth increments is incorrect at least in some studies, and the apparently consistent mismatch between otolith and sea-sampling studies suggests that increments may not always be formed at some period during the unusual early life history of anguillids. Because daily increments may be formed in eels during most of their early life history, future research is needed to determine the cause of the mismatch of glass eel aging studies and the apparent spawning times of eels offshore. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.
James D. McCleaveEmail:
  相似文献   

3.
A model that helps explain the mysterious long-distance migration of the Japanese eel (Anguilla japonica) is presented, based on oceanographic observations, satellite buoy drift experiments, and samplings of eel larvae taken in 1991. The trajectory of a 150 m depth buoy relased in the spawning area strongly suggests that A. japonica larvae spawned just south of the salinity front are transported westward by the North Equatorial Current (NEC). The larvae are then thought to be entrained into the Mindanao Current flowing southward along the Philippine Islands where A. japonica juveniles are scarcely distributed. These controversial results lead to the assumption that eel larvae are transferred from the NEC to the northward flowing Kuroshio, which distributes the eel larvae to the growth habitats of eastern Asia. In this eel larvae transfer model, a northward Ekman transport caused by trade winds plays an important role in explaining the wind-induced northward shift of the larvae together with the onset of diel vertical migration. Assuming that leptocephali greater than 20 mm initiate the vertical migration, a westward wind velocity greater than 5 to 10 m s-1 should be high enough to diminish the southward current velocity. When the physical and geophysical conditions — such as the salinity front for spawning activity, the water tunnel for westward larval transport, the Ekman transport by the trade wind for transfer of the larvae from the NEC to the Kuroshio, and the strong velocity of the Kuroshio for rapid transport to growth habitats — are well matched with the timing of the onset of vertical migration, large-scale eel migration could result.  相似文献   

4.
The growth history and age at recruitment of Anguilla anguilla Linnaeus, 1758 were studied, based on growth increments in sagittal otoliths of glass eels and elvers collected from the eastern Atlantic coast in 1989 and in 1990. The maximum otolith radius varied with pigmentation stage. Deposition of the transition ring was complete at Stage VIA0. The size of the leptocephalus growth zone varied as a function of site, increasing from south to north. The oceanic migration of the leptocephali required less than one year.  相似文献   

5.
Growth rate and hatch date distributions were estimated for juvenile walleye pollock Theragra chalcogramma (Pallas, 1814) collected in autumn 1987 from the western Gulf of Alaska. Mean juvenile growth rates varied geographically by as much as 45%. A trend for slower growth around Unimak Pass and the Shumagin Islands and faster growth upstream in the Alaska Coastal Current towards Kodiak Island was noted; the fastest growth did not occur in the main habitat region. Juvenile hatch date distributions were compared to identify regional differences that might reflect stock structure. Juvenile hatch dates were compared with hatch dates of the same cohort sampled as larvae to test for selective mortality. Regional differences in hatch dates, along with other information, indicated several minor spawning populations located around Kodiak Island and near Unimak Pass. For the main aggregation of pollock in the Shumagin Island region, hatch date distributions were not significantly different among the early larval cohort sampled in late May, the late larvae sampled in mid-June to early July, and the juveniles sampled in autumn. Neither growth-rate nor size-dependent mortality of pollock between the larval and juvenile stages appears to be a dominant factor in determining survival patterns. An alternative test was attempted, by which lengths-at-age during larval life were back-calculated from juvenile otoliths and compared with lengths-at-age of the population sampled as larvae in May and June. Pollock surviving as juveniles in autumn were not larger as larvae than the general larval population. This result is an example of the observation that back-calculated lengths are almost always smaller than the lengths of fish sampled at age (Lee's phenomenon). Problems in determining survival patterns based on otolith back-calculations and comparison of hatch date distributions are discussed.  相似文献   

6.
Growth trajectories of individual larvae of Japanese sardine, Sardinops melanostictus, caught in the coastal waters off western Japan were back-calculated from the first feeding stage up to date of capture (approximate size of 20 to 35 mm total length; TL) based on individually determined allometric relationships between otolith daily ring radii and fish total lengths. The larvae in January-, February-, and March-hatched cohorts in the coastal waters grew faster and more uniformly than those in the oceanic waters offshore of the Kuroshio current. Growth trajectories of the three hatch-month cohorts were similar and could be expressed by the Gompertz model. The inflection points of the growth curves were reached at 9 to 11 d after hatching, when larvae were 10.8 to 11.8 mm TL. Maximum growth rates at these points were 0.80 to 0.85 mm d−1. Growth rates gradually declined after the inflection points, and larval TLs converged into the infinite length of 29 to 32 mm, the sizes at which metamorphosis from larvae to juveniles is initiated. This asymptotic growth pattern in the larval stage resulted in the narrow ranges in TLs in spite of the wide range of ages of the larvae caught by boat seiners in the coastal waters. Slow growth and therefore long duration of the metamorphosing stage could be influential in determining the cumulative total mortality in the early life stages of the Japanese sardine. Received: 14 July 1996 / Accepted: 20 August 1996  相似文献   

7.
Engraulis encrasicolus (Linnaeus, 1758) were sampled in July/August 1985 in the Western Mediterranean Sea; they were aged by means of growth rings in the sagittal otoliths. Daily growth rings were observed and subdaily rings were visible starting with the third or fourth daily increment. The Gompertz growth equation, commonly employed in larval growth analysis, suitably describes the growth of this species in the length range sampled; however, extrapolation to greater lengths is not reliable. An instantaneous growth rate of ca. 0.9 mm d-1 was calculated for 8 mm larvae at a temperature of 20°C. This rate is higher than those reported by other authors for the related species E. mordax from colder waters.  相似文献   

8.
Genetic variation (mtDNA) of the European conger eel, Conger conger, was compared across five locations in the north-eastern Atlantic (Madeira, Azores, South Portugal, North Portugal and Ireland) and one location in the western Mediterranean (Mallorca). Genetic diversity of conger eel was high, and differentiation among regions was not significant. Additionally, comparisons of element:Ca ratios (Sr:Ca, Ba:Ca, Mn:Ca and Mg:Ca) in otolith cores (larval phase) and edges (3?months prior to capture) among the Azores, North Portugal, Madeira and Mallorca regions for 2?years indicated that variation among regions were greater for edges than cores. Therefore, while benthic conger may display residency at regional scales, recruitment may not necessarily be derived from local spawning and larval retention. Furthermore, data from otoliths suggest a separated replenishment source for western Mediterranean and NE Atlantic stocks. The combination of genetics and otolith chemistry suggests?a population model for conger eel involving a broad-scale dispersal of larvae, with limited connectivity for benthic juvenile life stages at large spatial scales, although the existence of one or multiple spawning grounds for the species remains uncertain.  相似文献   

9.
A discrete dense patch of eggs and larvae of hoki (Macruronus novaezelandiae) within the hoki spawning grounds off Westland, New Zealand, was sampled to examine prey selectivity by larvae and to obtain estimates of larval mortality and growth. The patch was tracked using a free-drifting drogue, and surveys of the horizontal distribution of larvae before and after the patch study indicated that the drogue had successfully followed the patch. Modal analysis of the size-frequency distributions of hoki larvae revealed up to six cohorts within the patch at any one sampling time, and a growth rate of 0.21 mm standard length per day. The daily mortality coefficient for larvae within the patch was 0.19, although this is considered to be an overestimate. Differences in the mean length between cohorts suggest that hoki have a synchronised, diel spawning periodicity, and results of a simple cellular design model revealed that ten continuous days of spawning were required to yield the observed size structure of the hoki larvae population within the patch. Diet analysis of larvae in the patch showed that copepods of the genus Calocalanus are actively selected, and are especially important in the diet of early-stage larvae. Based on aspects of larval diet, morphology, and rates of mortality and growth, it is hypothesised that hoki larvae are adapted to a low-food environment, and that predation is likely to be more important as a source of mortality than starvation.  相似文献   

10.
The great barracuda (Sphyraena barracuda) is a widespread, ecologically and socioeconomically important coastal fish, yet very little is known about its larvae. We examined spawning and larval ecology of Western Atlantic sphyraenids using monthly ichthyoplankton samples collected over 2 years along a transect spanning the east–west axis of the Straits of Florida (SOF). Samples were dominated by the great barracuda (92.8%) and sennets (Sphyraena borealis and Sphyraena picudilla; 6.6%). While larval sennets and S. barracuda displayed similar vertical distributions (majority in upper 25 m), horizontal and temporal patterns of abundance suggested a spatial and temporal species replacement between larval S. barracuda and sennets that tracks adult ecology. The diet of both taxa consisted largely of copepods, with inclusion of fish larvae at 8 mm SL, and in S. barracuda alone, a switch in the wet season to exclusive piscivory by 12 mm SL (18 days post-hatch). A lack of piscivory in S. barracuda larvae captured in the dry season corresponded to slower larval growth than in the wet season. Larval growth was also related to size-at-hatch and larval age such that larvae that were larger at hatch or larger (older) at capture grew faster at earlier ages, suggesting faster larval growth, and indirectly larger hatch size, conveys a survival advantage. Unlike larval growth, instantaneous mortality rate did not differ with season, and no lunar cyclic patterns in spawning output were identified. Our results provide insight into the pelagic phase of sphyraenids and highlight the importance of both diet and hatch size to the growth and survival of fish larvae in low latitude oceanic environments.  相似文献   

11.
Age-0 walleye pollock (Theragra chalcogramma) caught in September in the Gulf of Alaska display habitat-associated differences in standard length (SL). Age-0 fish collected in the region around Sutwik Island and 375?km farther downstream near the Shumagin Islands most likely originate from the Shelikof Strait spawning aggregation. However, age-0 fish resulting from the same spawning aggregation differ in mean size up to 20?mm between areas by September. We examined the otoliths of the larval and age-0 stages of walleye pollock from these two areas in 2000 and 2001 to determine whether growth rate, hatch date, and/or temperature influenced fish size. Circulation models were used to determine whether transport of larvae from an upstream spawning group into the study areas could have occurred. Mean in situ temperature during sampling periods was not defined as a significant factor in altering growth rates. Overlapping hatch date distributions of the larval and age-0 fish in the Shumagin Island area confirmed that the fish were from the Shelikof Strait spawning group. Comparison of hatch date distributions in the upstream Sutwik Island area revealed larger/older larvae from an upstream spawning group mixed with larvae from the Shelikof Strait spawning group. Our results suggest that the offset of 20?mm SL between the groups of age-0 pollock was the result of a combination of enhanced survivorship of early-hatched larvae in the Sutwik area and the introduction and retention of the progeny of another spawning group originating upstream of Shelikof Strait.  相似文献   

12.
The relationship between somatic growth and growth of otoliths of sea bass larvae, postlarvae and juveniles under relatively steady temperature conditions was studied. Larvae were incubated at the constant ambient temperature of 13.5°C, whereas postlarvae and juveniles were reared at a comparatively steady temperature ranging from 18.6 to 20.4°C, with a mean of 19.67°C. The patterns of both somatic and otolith growth were found to be similar. Differentiated data on larvae length and otolith diameters indicated three periods of change in their growth rates. Since temperature was kept relatively steady during the experiment, and larvae fed ad libitum, these periods could be attributed with relative certainty to intrinsic changes which occur during stage-specific periods of growth. The third period of change in both growth rates indicates a specific phase of growth during metamorphosis. The changes in growth rates, as well as the raw time series of the growth of both larval lengths and otolith diameters, may be described by higher order polynomials with a high degree of probability levels. A non-linear relationship between body length and otolith diameters was established, indicating positive allometric growth of otoliths. It was also observed that the coefficient of allometric growth changed at the time estimated for the end of metamorphosis. Thus, a non-linear relationship and changes in the coefficients of allometry should be borne in mind when back-calculating somatic growth from the growth of otoliths.  相似文献   

13.
Transgenerational isotope labelling (TRAIL) using enriched stable isotopes provides a novel means of mass-marking marine fish larvae and estimating larval dispersal. The technique, therefore, provides a new way of addressing questions about demographic population connectivity and larval export from no-take marine protected areas. However, successful field applications must be preceded by larval rearing studies that validate the geochemical marking technique, determine appropriate concentrations and demonstrate that larvae are not adversely affected. Here, we test whether injection of enriched stable barium isotopes (135Ba and 137Ba) at two dose rates produces unequivocal marks on the otoliths of the coral reef grouper Epinephelus fuscoguttatus. We also assess potential negative effects on reproductive performance, egg size, condition and larval growth due to injection of adult female fish. The injection of barium isotopes at both 0.5 and 2.0 mg Ba/kg body weight into the body cavities of gravid female fish was 100% successful in the geochemical tagging of the otoliths of larvae from the first spawning after injection. The low-dose rate produced no negative effects on eggs or larvae. However, the higher dose rate of 2 mg Ba/kg produced small reductions in yolk sac area, oil globule area, standard length and head depth of pre-feeding larvae. Given the success of the 0.5 mg Ba/kg dose rate, it is clearly possible to produce a reliable mark and keep the concentration below any level that could affect larval growth or survival. Hence, enriched Ba isotope injections will provide an effective means of mass-marking grouper larvae.  相似文献   

14.
Quantitative genetic variances and covariances were estimated for shell length of the hard clam Mercenaria mercenaria (L.) at three larval stages (prodissoconch I, 2 d and 10 d post-fertilization) in 1987 and in 1988 after ca. 9 mo of growth. At each sample interval additive genetic variance was a highly significant component of the total size variation. Narrow sense heritability estimates for shell length ranged between 0.58 (±0.10) for prodissoconch I and 1.08 (±0.29) for 2-d-old larvae. There was significant and positive genetic covariance in prodissoconch I and 2-d larval shell length which resulted in a highly significant genetic correlation (r g=0.74) between these two traits. This covariance is not surprising since the prodissoconch I comprises the majority of the larval shell of a 2-d-old larvae. The genetic covariances between 2-d-old and 10-d-old larvae and between 10-d-old larvae and 9-mo-old juveniles were low and not significantly different from zero. These results indicate that there is substantial genetic variation for shell growth in M. mercenaria but this variation is not stable during development; the genetic variation in shell growth at one stage of development is not strongly related to the genetic variation in growth during other ontogenetic periods. In this study there were no evident constraints to natural selection for increased shell growth rate during development, which coupled with the high levels of genetic variation may suggest that in nature high rates of larval growth may not be normally subject to significant selective pressure.  相似文献   

15.
H. Ueda  H. Kamakura 《Marine Biology》2006,148(6):1263-1271
Planktonic larvae of the amphioxus Branchiostoma belcheri were collected in the western part of the Seto Inland Sea, Japan, in order to document their seasonal occurrence, recruitment, and growth patterns. The larvae appeared from mid-July to early October and their size ranged from 0.6 to 5.5 mm. Three distinct cohorts were observed during the summers, indicating multiple, synchronous spawning within the population. The length increment pattern of a cohort demonstrates slow growth for at least a week during the early larval stage. July 10, 20, and 30 are the inferred dates when spawnings started to produce the three cohorts in 2001. Favorable temperature range for spawning was 21–23°C. Bias in population structure due to advection can be assumed to be negligible; therefore the length increment of the cohort, about 0.05 mm day−1, is regarded as the larval growth rate after the initial slow-growth stage. The planktonic stage of the first cohort in 2001 is estimated to have lasted around 55 days. The relative proportions of the second and third cohorts in samples from surface and mid-depth waters suggest downward migration of the planktonic larvae, as they age.  相似文献   

16.
The reproductive biology of the Antarctic fish Nototheniops nudifrons (Lönnberg, 1905) was analyzed by examination of the gonads of fish collected in March and April 1985 in trawls near Low Island, Antarctic Peninsula, and compared to direct observations of reproduction and early larval development in the laboratory from March to October of the same year. Males and females reached sexual maturity at an age of 4 to 5 yr. Mature males differed in coloration from females and immature males. Ovaries of sexually mature females contained two distinct size modes of vitellogenic oocytes, representing two separate clutches of developing eggs. Females spawned 100 to 3 500 demersal eggs, which were laid in a nest in crevices or under rocks, and guarded by the male for about 4 mo. Females did not assist in nest defense or egg care. Most spawning in the field and in the laboratory occurred in late fall and early winter (May to June). A second clutch may be spawned in spring (November and December). Eggs hatched after 124 d, and larvae were raised for 38 d. Otoliths of larvae contain internal microincrements, which are deposited in a daily fashion, and are visible by light microscopy. The otoliths of 32 adult fish were examined by scanning electron microscope, and counts of microincrements in these otoliths allowed the backcalculation of hatching dates. Estimated hatching dates were between September and May.  相似文献   

17.
J. Harms 《Marine Biology》1990,104(2):183-190
Liocarcinus holsatus (Fabricius) larvae, of females originating from the Elbe Estuary, FRG, were reared in the laboratory at constant 15°C in May 1988. For each larval stage, developmental time was measured by individual cultures (Zoea I: 6.7±0.7d; Zoea II: 5.0±0.6d; Zoea III: 4.8±0.7 d; Zoea IV: 5.3±0.6d; Zoea V: 6.1±1.1d; Megalopa: 10.45±0.7d). During the entire period of development, dry weight (W), carbon (C), nitrogen (N), and hydrogen (H) were measured daily (Zoea I to V) or every second day (Megalopa). The energy content (E) was estimated from C. Biomass and energy (per individual) increased in each larval stage as a parabolic function of age and is described by power functions. C, H, and E exhibit a higher percentage gain (relative to initial values at the time of hatching) than W and N. It is suggested that proportionally more lipid than protein is accumulated during larval development. Cyclical changes in the relative biomass (% W) correspond to the larval moult cycle, indicating a rapid uptake of water and minerals immediately after hatching and a later increase in tissue growth. Changes in the C:N ratio suggest that during the first period more lipid than protein is accumulated. These patterns of growth and elemental composition are compared with literature data and a high degree of similarity in the growth characteristics of decapod larvae is seen. In addition W, C, N, and H values as well as E were measured for the exuviae of Zoea I to V and Megalopa. The percentage loss of growth rate by exuviae for each larval instar were higher in W (12 to 16%) and C (8 to 12%), and varied between 5 and 10% for N, H, and E.  相似文献   

18.
Planktonic larvae of six genera of labrid and pomacentrid reef fishes were captured in march 1985 in the eastern Pacific Ocean several hundred kilometers from the nearest reefs. The larvae were identified to genus by fin-ray counts as well as by comparison of their larval otolith morphology with that of known species. The larval otolith morphologies of known species were derived from measurements of the larval otolith embedded within the otoliths of settled juveniles (as delineated by the daily otolith-increment marks corresponding to the late larval period). The body morphology and melanophore patterns of the eastern Pacific labird and pomacentrid larvae closely matched those of congeneric larvae described from other oceans. Growth rates of larvae less than about 70 d old were similar between taxa (from 0.13 to 0.19 mm d-1). After about 70 d in the plankton, labrid larvae grew much more slowly (0.06 mm d-1 in Xyrichtys sp.). Labrid larvae had long larval durations (up to 131 d in Xyrichtys sp.), while the larval lives of the pomacentrids appeared to be shorter and much less variable. Larvae of many different ages occurred within the same water mass, and young cohorts of larvae appeared continuously over the sampling period. Some larvae were as young as 21 d, indicating that reef-fish larvae are capable of rapid long-distance dispersal (at least 18 km d-1).  相似文献   

19.
Atlantic blue marlin (Makaira nigricans) and sailfish (Istiophorus platypterus) larvae were collected from 10 monthly cruises (June–October 2003 and 2004) across the Straits of Florida to test (1) whether growth differed between the more productive western region near the Florida shelf, and the less productive eastern region toward the Bahamas, and (2) whether growth was related to prey consumption. Examination of larval sagittal otoliths revealed that instantaneous growth and daily growth during the first 2–3 weeks of life did not vary significantly between the two regions for either species. However, recent growth during the last two full days prior to collection was greater in the west for blue marlin larvae. Recent growth of blue marlin larvae <9 mm SL (primarily zooplanktivorous) was significantly related to prey composition (faster growth when higher proportions of Farranula copepods were consumed). Western larvae grew faster and had higher proportions of Farranula in their guts. Trends for sailfish larvae were not significant. In both species, comparison of early growth between <9 and ≥9 mm SL size groups indicated that growth trajectories diverged around 5–8 mm SL, the time when billfish larvae become capable of piscivory. Significantly faster growth of larger (older) larvae suggests that mortality was selective for fast growers and that the transition to piscivory may be a critical point in the early life of billfish.  相似文献   

20.
Morphology and microstructure of the sagittal otoliths from three species of mesopelagic, tropical-subtropical myctophids [Benthosema suborbitale (Gilbert),Diaphus dumerilii (Bleeker)Lepidophanes guentheri (Goode and Bean)], collected from September 1984 to May 1986 in the eastern Gulf of Mexico (27°N, 86°W), were examined and described. Analysis of the microstructure revealed microincrements corresponding to the daily growth rings reported in many studies. Using marginal increment analysis, the deposition of microincrements was verified as occurring daily, the first validation of daily growth rings in the otoliths of mesopelagic fishes. In all three species, the clear central (larval growth) zone of the sagitta was sharply delimited by a dark check accompanied by a series of accessory primordia. A wide, dark, sharply defined postlarval zone (width 100 µm) radiated out from this boundary inB. suborbitale andL. guentheri. While a darkened region was also observed around the larval growth zone inD. dumerilii, it was diffuse and differed in structure from that in the other two species. Within the dark zone in the otoliths ofB. suborbitale andL. guentheri, two different microincremental structures were observed. The narrower of these was determined to be the increment deposited on a daily basis. The structure and formation of the dark region in these three species appear to be related to larval transformation and behaviors of different species of myctophid larvae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号