首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
板栗内皮对水溶液中镉的吸附研究   总被引:9,自引:2,他引:7  
采用生物吸附法去除水体重金属污染具有重要的现实意义.本文以板栗内皮为吸附剂,研究了溶液pH值、反应时间、吸附剂投加量对水溶液中镉的吸附量与去除率的影响;通过模型拟合、离子交换实验、电镜扫描(SEM)和红外光谱(FTIR)分析,对吸附机理进行了探讨.结果表明:板栗内皮是一种理想的镉吸附剂,适应pH值范围宽(3~6),达到...  相似文献   

2.
硫化钠沉淀法处理化学镀镍废液   总被引:2,自引:1,他引:1  
采用化学沉淀法处理化学镀镍废液,以硫化钠为沉淀剂,将废液的镍离子以硫化镍的形式析出,从而达到净化废液和回收镍的目的。实验结果分析表明,在影响镍去除率效果的几个因素中硫化钠投加量的影响最大,pH值次之,反应时间影响最小。在pH为6,投加200 mL质量分数为20%的硫化钠溶液,反应时间为30 min,可以使200 mL化学镀镍废液中(镍质量浓度为5450 mg/L)的镍去除率达到99.8%,残余镍的质量浓度可以降至12 mg/L左右,对其余重金属离子的去除也有明显的效果。同时得到的沉淀致密,镍含量高(质量分数为21.6%),便于进一步回收利用。  相似文献   

3.
氯化锌为活化剂污泥含碳吸附剂用于含六价铬废水的吸附实验。实验以静态吸附的操作方式,考察了吸附剂的投加量、吸附时间、废水的pH值对目标污染物的去除率的影响,并对其吸附模型进行了探讨。结果表明:对于含六价铬废水吸附实验最佳的吸附条件是吸附剂投加量不少于0.7g,吸附平衡时间是90min,溶液pH值小于2,溶液的初始浓度为20mg/L。朗格缪尔模型比弗兰德利希模型更适合用于描述污泥含碳吸附剂对该废水的吸附,其饱和吸附量为8.285mg/g。  相似文献   

4.
氯化锌为活化剂污泥含碳吸附剂用于含六价铬废水的吸附实验。实验以静态吸附的操作方式,考察了吸附剂的投加量、吸附时间、废水的pH值对目标污染物的去除率的影响,并对其吸附模型进行了探讨。结果表明:对于含六价铬废水吸附实验最佳的吸附条件是吸附剂投加量不少于0.7g,吸附平衡时间是90min,溶液pH值小于2,溶液的初始浓度为20mg/L。朗格缪尔模型比弗兰德利希模型更适合用于描述污泥含碳吸附剂对该废水的吸附,其饱和吸附量为8.285mg/g。  相似文献   

5.
采用AlCl_3改性麦糟和Na OH改性麦糟分别处理酸性湖蓝A和碱性湖蓝BB,研究了不同pH、吸附剂投加量、时间和温度对吸附效果的影响。结果表明:改性麦糟对酸性湖蓝A吸附反应的最佳条件在室温下,初始染料色度为500倍,溶液pH为3,吸附剂投加量5 g/L,反应时间30 min,脱色率达93%;改性麦糟对碱性湖蓝BB吸附反应的最佳条件在室温下,初始染料色度为500倍,溶液pH为9,吸附剂投加量3 g/L,反应时间30 min,脱色率达99%。且吸附过程符合准二级动力学模型,其相关系数均在0.999以上。实验处理后废水色度在50倍以下,水质达到《污水综合排放标准》(GB8978-1996)一级标准。  相似文献   

6.
该研究以高锰酸钾和硫酸锰溶液作为原料,在pH=10.0条件下,采用两种物质混合反应制备新生态二氧化锰。以新生态MnO2作为吸附剂,以活性艳红X-3B为目标物,采用静态吸附实验研究,考察改变pH值、吸附剂投加量、反应时间、反应温度、离子强度等因素对新生态MnO2吸附活性艳红X-3B染料废水性能的影响。该吸附剂作为一种高效、经济的吸附材料对染料废水的脱色处理具有较好的作用。  相似文献   

7.
实验室重金属废水处理研究   总被引:1,自引:0,他引:1  
根据实验室废水中Hg2+和Cr3污染特点,以硫酸亚铁、硫化钠作为还原剂,将废水中的Cr6+还原为Cr3+,Hg2+和Cr3+以沉淀的形式混凝去除。分别考察pH值、反应时间及还原剂投加量对两种重金属去除率的影响,结果表明过低的反应时间不利于Cr6+和Hg2+的去除,pH2.0时,Cr6+和Hg2+的还原效率较高,FeSO4和Na2S加量分别在1 000 mg/L和667 mg/L时,Cr6+和Hg2+具有较高的去除效率。利用正交实验对污染物去除条件进行优化,结果表明,两种无机还原剂投加比例对铬、汞两种重金属离子的去除率影响大,pH值次之,反应时间对去除率的影响最小,在pH为2.0、FeSO4和Na2S加量分别在1 000 mg/L和667 mg/L,反应时间为30 min时,废水中Hg2+和Cr6+的去除率最高,分别达到98.23%、95.97%,处理后废水达到国家污水排放标准。  相似文献   

8.
将改性粉煤灰应用于氨氮废水中,考察改性粉煤灰的吸附方式、超声功率、吸附时间、吸附剂投加量、吸附剂粒度和溶液p H值对氨氮去除率的影响。结果表明:(1)适宜功率的超声辅助有利于氨氮吸附过程的进行;(2)在pH值为5、浓度100 mg/L的氨氮废水中,投加180目的粉煤灰10 g,240 W超声功率下吸附5 h,氨氮的去除率可达90.7%。  相似文献   

9.
试验通过制备的污泥基吸附剂A、B、C和市售果壳活性炭分别对磷酸二氢钾、三聚磷酸钠、甘油磷酸钠不同的磷溶液进行吸附除磷,研究吸附时间、吸附剂投加量、吸附溶液pH值以及磷溶液初始浓度对除磷效果的影响。试验结果表明:污泥基吸附剂对磷的去除率随吸附时间的增加而提高,在2h时基本达到吸附平衡;磷去除率随吸附剂投加量的增加而提高,但单位吸附剂的吸附量会降低;磷去除率随着磷溶液浓度的增加而降低,而吸附量随磷溶液浓度的增加而提高;随着污泥基吸附剂含铁量的增加,磷溶液解析pH值也越小;同时在对生活污水吸附除磷试验中发现,污泥基吸附剂A、B、C磷去除率均好于市售果壳活性炭,分别为73.4%、85.2%、93.6%、73.3%。  相似文献   

10.
以印染污泥为原料制备的污泥吸附剂通过搅拌-吸附-沉淀一体化装置,对印染废水进行工业试验。试验选取污泥吸附剂投加量、印染废水pH、吸附时间及悬浮物等因素进行考查。结果表明,通过搅拌吸附沉淀装置,吸附剂在酸性条件下处理印染废水,吸附剂投加量为1017.5 g L-1,搅拌吸附时间为117.5 g L-1,搅拌吸附时间为11.5 h,可得到较好的处理效果。在印染废水pH值为5时,吸附剂投加量为10 g L-1,搅拌吸附时间约为60 min,沉淀时间约为45 min的条件下,污泥吸附剂处理后的出水pH为3.96,对废水脱色率为92.65%,COD去除率为47.33%。在工业上可用污泥吸附剂代替活性炭对印染废水进行处理。  相似文献   

11.
利用白蜡树叶对铁锆复合氧化物进行改良所得材料为吸附剂,在吸附废水中铜、汞离子时,溶液pH、吸附材料投加量对吸附效果的影响。  相似文献   

12.
生物吸附剂对重金属Cr(Ⅵ)吸附性能的研究   总被引:1,自引:1,他引:0  
邹继颖  刘辉 《环境工程》2014,32(2):64-67
利用锯末和花生壳制备出对重金属离子具有较好吸附性能的生物吸附剂。研究了此种生物吸附剂对废水中Cr(Ⅵ)的吸附性能,并深入分析了吸附时间、pH、Cr(Ⅵ)初始浓度、吸附剂粒径、搅拌速度、共存阴离子对吸附的影响,并通过再生试验检验了吸附剂性质的稳定性和重复利用性。最佳吸附条件组合为:生物吸附剂Ⅰ初始浓度7 mg/L,吸附时间120 min,pH=2.0,温度30.2℃,投加量0.8 g,此时去除率达到85.01%;生物吸附剂Ⅱ初始浓度100 mg/L,吸附时间360 min,pH=2.0,温度30.1℃,投加量1.0 g,此时去除率达到87.96%。  相似文献   

13.
对改性贻贝壳吸附去除亚甲基蓝的效果进行了研究,考察了改性温度、吸附剂投加量、溶液盐度、吸附剂粒径、吸附温度等条件对亚甲基蓝吸附去除效果的影响。在200~1 060℃条件下对贻贝壳进行了温度改性优化,结果表明,最佳改性温度为550℃。当改性贻贝壳投加量为0.6 g/L时,对亚甲基蓝的去除率达到87%;亚甲基蓝的吸附去除效果随着贻贝壳粒径变小吸附能力略有上升,当粒径小于60目时,吸附能力趋于稳定,对亚甲基蓝的去除率在90%左右;盐度对吸附效果影响较大,亚甲基蓝去除效果受离子强度效应影响随盐度的增加先减小后增大最后到达稳定;而吸附温度对改性贻贝壳的吸附能力的影响较小。  相似文献   

14.
采用铁碳微电解-Fenton氧化联合工艺处理甲苯硝化废水,探讨了溶液pH值、铁炭投加量、铁炭比例、H2O2投加量和反应时间等因素对微电解-Fenton氧化处理硝化废水的影响规律,获得微电解-Fenton氧化处理硝化废水的最佳工艺条件:废水pH在3左右,铁炭投加量为0.6 g/L,Fe/C质量比为4∶1,反应时间为1.5h,微电解后H2O2投加量为20 ml/L,反应时间为1 h。硝化废水经微电解-Fenton氧化处理后,COD由29 146mg/L降至6 477 mg/L,COD去除率达77.8%,BOD5/COD由0提高到0.37左右,废水可生化性显著增强。  相似文献   

15.
锰氧化物改性硅藻土对水中Cd(Ⅱ)的吸附性能研究   总被引:1,自引:1,他引:0       下载免费PDF全文
以硅藻土精土为基体,用锰氧化物作为改性剂制备了改性硅藻土,采用SEM、FT-IR、XRD、比表面积仪对锰氧化物改性的硅藻土进行表征。通过静态吸附试验考查了吸附剂用量、溶液初始浓度、反应温度、溶液初始pH、反应时间等因素对改性硅藻土吸附模拟废水中Cd(Ⅱ)的影响。结果表明:环境温度为25℃,溶液pH为4,投加量为5 g/L时,改性硅藻土对4 mg/L的Cd(Ⅱ)吸附效果最好,去除率可达到97.5%以上,处理后的废水中ρ(Cd(Ⅱ))<0.1 mg/L,低于GB 8978—1996《污水综合排放标准》中总镉的排放标准。  相似文献   

16.
磁性壳聚糖微球吸附水中As(Ⅲ)的实验研究   总被引:2,自引:0,他引:2  
文章主要考察实验室制得的乙二胺改性磁性壳聚糖微球对毒性高,迁移能力强的A(sⅢ)去除效果。通过单因素实验研究了pH值、吸附时间、A(sⅢ)溶液初始浓度和吸附剂投加量对磁性壳聚糖微球吸附除A(sⅢ)效果的影响。实验结果表明在pH值为2,吸附时间为90 min,磁性壳聚糖微球投加量为0.4 g时,对初始浓度为10 mg/L,体积为100 mL的A(sⅢ)溶液去除率达到96.96%,吸附后溶液中A(sⅢ)浓度仅为0.304 mg/L,低于我国污水综合排放标准中砷含量标准值。磁性壳聚糖微球的解吸实验表明,吸附剂解吸4次后,对A(sⅢ)的去除率仍达到95%以上,吸附性能稳定,具有较好的可重复利用性。因此,磁性壳聚糖微球是一种去除低浓度含砷废水非常有效的材料。  相似文献   

17.
以粉煤灰作为吸附材料,吸附处理实际渗沥液中的氨氮,研究吸附剂投加量、温度、p H值对吸附效果的影响。结果表明,在吸附剂投加量为4g、温度为35℃、碱性条件下,吸附达到平衡,氨氮去除率达65.12%,单位吸附量8.853mg/g,可调节渗沥液营养比例,有利于生物处理作用。  相似文献   

18.
为提高高岭土对溶液中铀的吸附效果,将富含官能团的富里酸与高岭土结合形成富里酸-高岭土复合体,通过静态对比试验,研究了pH值、反应时间和吸附剂投加量等因素对富里酸-高岭土复合体的铀吸附效率的影响。试验结果表明:富里酸-高岭土复合体对铀的吸附效率与高岭土相比有显著的增加,富里酸-高岭土复合体和高岭土对铀的吸附率在pH值为5时分别可达99%和80%;富里酸-高岭土复合体和高岭土对铀的吸附反应均在反应时间为20 h达到吸附平衡,富里酸-高岭土复合体和高岭土两种吸附剂的吸附反应皆遵循准二级动力学吸附规律;当吸附剂投加量在0.1~0.5 g之间时,随着富里酸-高岭土复合体和高岭土两种吸附剂投加量的增加,铀的吸附率也随之增加,铀的最大吸附率分别可达87%和78%;铀的解吸效率随着富里酸溶液浓度的增加而增加,相较于用超纯水作洗脱剂的空白试验,铀的解吸率可达60%;富里酸-高岭土复合体对溶液中铀的最佳吸附条件为:溶液pH=5、反应时间20 h、吸附剂投加量0.5 g。该研究结果可为提高溶液中铀的提取与去除效率提供理论依据。  相似文献   

19.
为了探究人造沸石颗粒吸附剂去除废水中的二价锰离子(Mn2+)的效果,进行了一系列动力学和环境条件影响的实验.去除率随着沸石颗粒投加量的增加而增加.反应平衡时间为4h;吸附速率符合准二级动力学模型.吸附效率随着反应温度的升高而增大,pH值为4~6为最佳条件.HCl溶液的解吸附效果最好;而NaOH溶液的再生效果最好.  相似文献   

20.
制备了磁性纳米复合吸附剂PAM@Fe3O4/MnO2(PFM),用于含铜废水的吸附实验研究,考察了吸附剂投加量、重金属溶液初始浓度、吸附时间等因素对吸附效果的影响。实验结果表明:磁性纳米复合吸附剂PFM可有效去除水中的铜离子,在Cu2+浓度为50 mg/L,pH为6.0,吸附剂量为1.6 g/L的条件下,在400 min达到吸附平衡,吸附容量可达到30.29 mg/g,Cu2+去除率可达到97%。吸附-再生循环实验证实PFM具有良好的再生性能,在去除Cu2+方面具有很好的实际应用前景。VSM分析表明:纳米PFM具备超顺磁性和铁磁性的优势;PFM的XRD图谱显示,PAM附着于纳米Fe3O4/MnO2表面,增强了其与溶液中金属离子接触的表面积,有利于对金属离子的吸附;在纳米PFM吸附剂的FTIR中出现PAM中的酰胺键,印证了Fe3O4/MnO2与PAM成功制备为磁性纳米复合吸附剂PFM。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号