共查询到20条相似文献,搜索用时 15 毫秒
1.
Simultaneous measurements of CO and respirable particles (RP) at outdoor network stations and of personal exposure in a sample of twelve volunteers were carried out during the winter and summer season of 1980/81 in order to evaluate how well personal exposure can be assessed from outdoor network station data.The results have shown that personal exposure of our subjects to both CO and RP is in best correlation with exposure at home where subjects spend in the average nearly 70% of their time. While personal exposure to CO can hardly be related to outdoor CO levels, personal exposure to RP is in fair agreement with simultaneously measured outdoor concentrations in winter (but not in summer). A large intercept on WAE axis of the WAE/RP relationship indicates that a considerable part of personal exposure to RP should be attributed to particles which are not of indoor origin. This part does not follow the seasonal and day-to-day changes in outdoor RP concentration and causes a negative, but highly significant correlation between WAE/RP ratio and RP. 相似文献
2.
Maria T. Morandi Thomas H. Stock Charles F. Contant 《Environmental monitoring and assessment》1988,10(2):105-122
Personal monitoring (PM) for respirable suspended particulate matter (RSP) of thirty subjects was performed as part of an air pollution health effects study conducted in Houston, Texas. Parallel RSP measurements were performed in the study subjects' homes and two fixed site monitoring stations. The participants' daytime activities were independently recorded by study techicians. These data were used to characterize RSP concentrations in each microenvironment visited by the participants. Four estimates of daytime exposure to RSP were calculated based on two different microenvironmental models, and home and fixed site mean daytime RSP concentrations. These estimates were compared to mean daytime personal exposure from PM. Hourly estimates of exposure were calculated from a microenvironmental model and mean hourly home RSP concentrations and compared to hourly PM data. The results of the study indicate that, as in the case of NO2, it is important to characterize indoor microenvironmental RSP concentrations according to location, sources, and concurrent activities, both qualitatively and quantitatively. Stratification of concentrations according to sources present and self-reported activity can lead to misclassification of exposures. For RSP and, probably, other pollutants with indoor sources and with short exposure integration times, adequate measures of exposure can only be obtained with very detailed and complex microenvironmental models or comprehensive personal monitoring. 相似文献
3.
Page SJ Volkwein JC Vinson RP Joy GJ Mischler SE Tuchman DP McWilliams LJ 《Journal of environmental monitoring : JEM》2008,10(1):96-101
The United States National Institute for Occupational Safety and Health, through an informal partnership with industry, labor, and the United States Mine Safety and Health Administration, has developed and tested a new instrument known as the Personal Dust Monitor (PDM). The new dust monitor is an integral part of the cap lamp that coal miners normally carry to work and provides continuous information about the concentration of respirable coal mine dust within the breathing zone of that individual. Previous laboratory testing demonstrated that there is a 95% confidence that greater than 95% of individual PDM measurements fall within +/-25% of reference measurements. The work presented in this paper focuses on the relationship between the PDM and respirable dust concentrations currently measured by a coal mine dust personal sampler unit utilizing a 10 mm Dorr-Oliver nylon cyclone. The United Kingdom Mining Research Establishment instrument, used as the basis for coal mine respirable dust standards, had been designed specifically to match the United Kingdom British Medical Research Council (BMRC) criterion. The personal sampler is used with a 1.38 multiplier to convert readings to the BMRC criterion. A stratified random sampling design incorporating a proportionate allocation strategy was used to select a sample of mechanized mining units representative of all US underground coal mines. A sample of 180 mechanized mining units was chosen, representing approximately 20% of the mechanized mining units in production at the time the sample was selected. A total of 129 valid PDM/personal sampler dust sample sets were obtained. A weighted linear regression analysis of this data base shows that, in comparison with the personal sampler, the PDM requires a mass equivalency conversion multiplier of 1.05 [95% C.I.=(1.03, 1.08)] when the small intercept term is removed from the analysis. Removal of the intercept term results in a personal sampler-equivalent concentration increase of 2.9% at a PDM measurement of 2.0 mg m(-3). 相似文献
4.
Peters S Vermeulen R Portengen L Olsson A Kendzia B Vincent R Savary B Lavoué J Cavallo D Cattaneo A Mirabelli D Plato N Fevotte J Pesch B Brüning T Straif K Kromhout H 《Journal of environmental monitoring : JEM》2011,13(11):3262-3268
We describe an empirical model for exposure to respirable crystalline silica (RCS) to create a quantitative job-exposure matrix (JEM) for community-based studies. Personal measurements of exposure to RCS from Europe and Canada were obtained for exposure modelling. A mixed-effects model was elaborated, with region/country and job titles as random effect terms. The fixed effect terms included year of measurement, measurement strategy (representative or worst-case), sampling duration (minutes) and a priori exposure intensity rating for each job from an independently developed JEM (none, low, high). 23,640 personal RCS exposure measurements, covering a time period from 1976 to 2009, were available for modelling. The model indicated an overall downward time trend in RCS exposure levels of -6% per year. Exposure levels were higher in the UK and Canada, and lower in Northern Europe and Germany. Worst-case sampling was associated with higher reported exposure levels and an increase in sampling duration was associated with lower reported exposure levels. Highest predicted RCS exposure levels in the reference year (1998) were for chimney bricklayers (geometric mean 0.11 mg m(-3)), monument carvers and other stone cutters and carvers (0.10 mg m(-3)). The resulting model enables us to predict time-, job-, and region/country-specific exposure levels of RCS. These predictions will be used in the SYNERGY study, an ongoing pooled multinational community-based case-control study on lung cancer. 相似文献
5.
Furquan Ahmad Ansari Altaf Husain Khan Devendra Kumar Patel Huma Siddiqui Shachi Sharma Mohammad Ashquin Iqbal Ahmad 《Environmental monitoring and assessment》2010,170(1-4):491-497
In order to evaluate the exposure of the northern India rural population to polyaromatic hydrocarbon (PAH) inhalation, indoor pollution was assessed by collecting and analyzing the respirable particulate matter PM2.5 and PM10 in several homes of the village Bhithauli near Lucknow, UP. The home selection was determined by a survey. Given the nature of biomass used for cooking, homes were divided into two groups, one using all kinds of biomass and the second type using plant materials only. Indoor mean concentrations of PM2.5 and associated PAHs during cooking ranged from 1.19 ± 0.29 to 2.38 ± 0.35 and 6.21 ± 1.54 to 12.43 ± 1.15 μg/m3, respectively. Similarly, PM10 and total PAHs were in the range of 3.95 ± 1.21 to 8.81 ± 0.78 and 7.75 ± 1.42 to 15.77 ± 1.05 μg/m3, respectively. The pollutant levels during cooking were significantly higher compared to the noncooking period. The study confirmed that indoor pollution depends on the kind of biomass fuel used for cooking. 相似文献
6.
Personal exposures to viable fungi and bacteria were compared with the concentrations being assessed by stationary samplers in home and workplace microenvironments. A random sample of 81 elementary school teachers in eastern Finland performed two 24-hour measurement periods in wintertime. Concentrations and prevalences of viable fungi and bacteria on the collection filters were determined by cultivation method. The geometric mean concentration was 3-12 cfu m(-3) for total viable fungi, 0.6-3.7 cfu m(-3) for Penicillium and mainly under 1 cfu m(-3) for other fungi. The samples with higher fungal concentrations also had higher diversity of fungi than samples with lower concentrations. The total number of fungal genera recovered was 39 for personal, 34 for home and 23 for work samples. The variation in concentration of Penicillium explained even 25-95% of the variations of total fungal concentration in personal exposure, home and workplace environments. There was an association between personal exposure and home concentration of viable fungi and between personal exposure and home and work concentrations of viable bacteria. Personal exposure and home concentrations of fungi were higher in rural areas than in urban areas. Our results also indicate that presence of a certain fungus in a microenvironment does not necessarily mean similar findings in personal exposure samples. 相似文献
7.
Li Z Mulholland JA Romanoff LC Pittman EN Trinidad DA Lewin MD Sjödin A 《Journal of environmental monitoring : JEM》2010,12(5):1110-1118
Non-occupational inhalation and ingestion exposure to polycyclic aromatic hydrocarbons (PAHs) has been studied in 8 non-smoking volunteers through personal air sampling and urinary biomonitoring. The study period was divided into 4 segments (2 days/segment), including weekdays with regular commute and weekends with limited traffic related exposures; each segment had a high or low PAH diet. Personal air samples were collected continuously from the subjects while at home, at work, and while commuting to and from work. All urine excretions were collected as individual samples during the study. In personal air samples, 28 PAHs were measured, and in urine samples 9 mono-hydroxylated metabolites (OH-PAHs) from 4 parent PAHs (naphthalene, fluorene, phenanthrene and pyrene) were measured. Naphthalene was found at higher concentrations in air samples collected at the subjects' residences, whereas PAHs with four or more aromatic rings were found at higher levels in samples taken while commuting. Urinary OH-PAH biomarker levels increased following reported high inhalation and/or dietary exposure. On days with a low PAH diet, the total amount of inhaled naphthalene during each 24-hour period was well correlated with the amount of excreted naphthols, as was, to a lesser extent, fluorene with its urinary metabolites. During days with a high dietary intake, only naphthalene was significantly correlated with its excreted metabolite. These findings suggest that this group of non-occupational subjects were exposed to naphthalene primarily through indoor air inhalation, and exposed to other PAHs such as pyrene mainly through ingestion. 相似文献
8.
Source contribution estimates (SCE) of school community personal Respirable Particulate Matter (RPM) have been investigated. Reported relationships of personal RPM with Ambient-outdoors and indoor RPM levels have given the concept of defining the sources of personal exposure. Ambient-outdoors, indoors, soils and local road- traffic dusts were identified as main routes and principal sources of fine particulates at personal exposure levels. Fifteen subjects (05 from each of three schools) were selected from previous conducted study of interrelationships among classified atmospheric receptors in theses schools located in Bhilai-Durg, District Durg, India. Samples of RPM collected from identified receptors and sources were analyzed for selected chemical constituents and the chemical data has been utilized in preparation of source-receptor profiles. Chemical mass balance (CMB8) model has been used for source apportionment study. Major dominating source is ambient-outdoors in case of school located near to steel plant downwind. Indoors and road-traffic dusts have also played dominating role in case of school located near to National Highways. Indoor ventilation properties have played an important role in source contribution estimates. 相似文献
9.
Paul Fischer Bert Brunekreef Jan S. M. Boleij 《Environmental monitoring and assessment》1986,6(3):221-229
Indoor NO2 concentrations were measured in the kitchen, the living room and bedroom of 612 houses in two different areas in the Netherlands. In a group of housewives living in these homes, personal exposure to NO2 was measured. NO2 concentrations indoors were dependent on the presence or absence of (un)vented gas appliances. Personal NO2 exposure was only different between the two areas in the group with the lowest indoor concentrations. In this study, it was determined that gas appliances inside the house are the most important factor with respect to NO2 exposure and that outside NO2 concentration played a secondary role, except in situations where gas appliances were absent. 相似文献
10.
All major opencast mining activities produce dust. The major operations that produce dust are drilling, blasting, loading, unloading, and transporting. Dust not only deteriorates the environmental air quality in and around the mining site but also creates serious health hazards. Therefore, assessment of dust levels that arise from various opencast mining operations is required to prevent and minimize the health risks. To achieve this objective, an opencast coal mining area was selected to generate site-specific emission data and collect respirable dust measurement samples. The study covered various mining activities in different locations including overburden loading, stock yard, coal loading, drilling, and coal handling plant. The dust levels were examined to assess miners' exposure to respirable dust in each of the opencast mining areas from 1994 to 2005. The data obtained from the dust measurement studies were evaluated by using analysis of variance (ANOVA) and the Tukey-Kramer procedure. The analyses were performed by using Minitab 14 statistical software. It was concluded that, drilling operations produce higher dust concentration levels and thus, drill operators may have higher incidence of respiratory disorders related to exposure to dust in their work environment. 相似文献
11.
Nordqvist Y Nilsson U Colmsjo A Dahl A Gudmundsson A 《Journal of environmental monitoring : JEM》2005,7(5):469-474
A denuder/filter system constructed for solvent-free personal exposure measurements was evaluated for separation of vapour and particulate 4,4'-methylenediphenyl diisocyanate (4,4'-MDI) generated from heated PUR-foam. The two different phases were collected in the denuder and on the filter, respectively, by chemosorption on a polydimethylsiloxane (SE-30)-dibutylamine (DBA) stationary phase. Both repeatability and the total mass concentration of 4,4'-MDI were similar to that obtained from the reference method, in this case an impinger/filter system. The penetration of particles through the denuder at 300 ml min(-1) was nearly 100% in the particle size range 25 to 700 nm, which fits well with the Gormley-Kennedy equation. Denuder/filter sampling of the 4,4'-MDI aerosol at 500 ml min(-1) yielded a phase distribution that was in accordance with the results from the reference method. The method limit of detection was 6 ng m(-3) and 4 ng m(-3) for the denuder and filter, respectively, when using an air sampling flow rate of 300 ml min(-1) and a sampling period of 15 min. This is well below the Swedish occupational exposure limit (OEL) of 50 and 100 microg m(-3) for an 8-hour working day and a 5-min period, respectively. 相似文献
12.
13.
B. Vijay Bhaskar R. V. Jeba Rajasekhar P. Muthusubramanian Amit P. Kesarkar 《Environmental monitoring and assessment》2010,164(1-4):323-336
Airborne particulate matter (PM10) was collected for a period of 1 year at six locations in Madurai city, India. The chemical analyses on PM10 samples were carried out for the estimation of heavy metals and ions using atomic absorption spectroscopy and ion chromatography respectively. The average PM10 concentrations varied from 97.2 to 152.5 μg/m3, which were found to be below the Indian air quality standards. While industrial areas had the highest concentrations of heavy metals such as Fe, Zn and Cr and also the $\text{SO}_{4}^{2-}$ ions, traffic areas with relatively higher traffic densities in the city endured highest concentrations of Cd and the $\text{NO}_{3}^{-}$ ion. As gaseous pollutants serve as precursors of ionic particles in the atmospheric environment, gaseous pollution control is necessitated along with particulate with special reference to heavy metal and ion pollution abatement for the sustainable development of Madurai city. 相似文献
14.
Occupational exposure to antimony compounds 总被引:4,自引:0,他引:4
McCallum RI 《Journal of environmental monitoring : JEM》2005,7(12):1245-1250
The toxicology of antimony and its compounds is known from three sources: its medicinal use over centuries, studies of process workers in more recent times, and more recent still, studies of its presence in modern city environments and in domestic environments. Gross exposure to antimony compounds over long periods, usually the sulfide (SbS3) or the oxide (Sb2O3) has occurred in antimony miners and in antimony process workers. There have been relatively few of these, and few studies of possible symptoms have been made. Antimony sulfide imported from, at different times, China, South Africa, and South America was processed in the North-East of England from about 1870 to 2003. The process workers in North-East England have been studied at different times, notably by Sir Thomas Oliver in 1933, and by the Newcastle upon Tyne University Department of Occupational Medicine on later occasions. Studies which have been made of the working environment, and in particular of the risk of lung cancer in process workers, have underlined the high levels of exposure to antimony compounds and to other toxic materials. However, the working conditions in antimony processing have improved markedly over the last 30 years, and the workforce had been much reduced in numbers following automation of the process. Prior to the cessation of the industry in the UK it had become a 'white coat' operation with relatively few people exposed to high concentrations of antimony. Antimony, which is normally present in domestic environments, has also been studied as a possible cause of cot death syndrome (SIDS) but extensive investigations have not confirmed this. The full importance of environmental antimony has still to be determined, and evidence of specific effects has not yet been presented. 相似文献
15.
The magnetic properties of tree leaves along with their ecological, economical and aesthetic importance can be used to control
road derived respirable particulates. Isothermal remanent magnetization (IRM300 mT) of three different tree leaves viz. Mango (Mangifera indica), Sisso (Dalbergia sisso) and Banyan (Ficus benghalensis) were determined and IRM300 mT normalized for the leaf area. The normalized 2-D magnetization of leaves as shown by results is dominantly controlled
by leaf morphology and traffic density. F. benghalensis (Banyan) leaf has highest 2-D magnetization and D. sisso (Sisso) leaf having least 2-D magnetization suggesting greater ability of F. benghalensis (Banyan) tree leaves to reduce magnetic particulates. The particle size of the magnetic grains falls in the category of PM2.5,
a particle size hazardous to human health due to its capacity to be inhaled deeply into the lungs. 相似文献
16.
D. N. McNelis 《Environmental monitoring and assessment》1982,2(1-2):43-56
Although exposure assessments cannot be completed remotely, remote sensing techniques provide an invaluable adjunct in exposure monitoring programs. Exposure can be defined as the summation over time, in all media, of the amount of a pollutant available at the exchange boundaries of the receptor during a specified period. This paper describes a few remote monitoring techniques that provide direct measurement input into an exposure assessment and several that furnish quantitative or qualitative information leading to decisions regarding how to monitor, such that the source-exposure-dose relationships can be fully defined. Two general classes of remote sensing systems are included in this discussion-passive and active. Passive systems depend on a measurement of the energy reflected or emitted by a target and active systems use an energy source, e.g., a laser to perform the environmental interrogation. Airborne as well as ground-based remote monitoring measurements or systems are also considered in this paper. 相似文献
17.
Kenneth F. Hedden Lee A. Mulkey William A. Tucker 《Environmental monitoring and assessment》1982,2(1-2):57-69
A potentially important exposure route for humans is the ingestion of chemicals via drinking water. If comprehensive exposure assessments are to be completed for either existing or proposed new chemicals and cost effective control strategies developed, then a quantitative understanding of multimedia transport and fate of specific chemical pollutants must be achieved. Mathematical models provide a powerful framework into which quantitative relationships may be placed to provide guidance in reaching water quality goals. Existing, state-of-the-art media-specific toxic organic transport and fate models for atmospheric (DiDOT), land surface (NPS) and surface water processes (EXAMS) and potable water treatment (WTP) have been linked to demonstrate the technical feasibility of such an approach. Limited application and sensitivity testing of this linked modeling system has shown that the impact of various source loadings and control strategies on drinking water quality can be estimated. 相似文献
18.
James E. Davis Edwin R. Stevens Donald C. Staiff Larry C. Butler 《Environmental monitoring and assessment》1983,3(1):23-28
Applicators applying diazinon to yards were monitored to determine potential exposures received while using this commonly available pesticide around the home. Diazinon was applied to lawns and shrubs using compressed air or hose-end sprayers. Even with minimal clothing, the largest mean exposure received during any of the applications was estimated to be less than 0.2% of a lethal dose per hour. Exposure to the hands accounted for 85% or more of the total exposure, so simply protecting the hands would have essentially eliminated exposure. 相似文献
19.
Continuing evidence of the feminising effects of xenoestrogens on a range of wildlife species increases the need to assess the human health risk of these estrogen mimics. We have estimated the exposure of New Zealand males, females and young men to a range of naturally occurring and synthetic xenoestrogens found in food. Only estrogenic compounds that act by interaction with the estrogen receptor have been included. Theoretical plasma estrogen activity levels were derived from estrogen exposure estimates and estrogenic potency data. Theoretical plasma levels were compared with published data for specific xenoestrogens. There was surprisingly close agreement. Xenoestrogenicity from dietary intake was almost equally attributed to naturally occurring and synthetic xenoestrogens. Relative contributions for a male, for example were isoflavones (genistein and daidzein) (36%) and bisphenol A (34%) with smaller contributions from alkyl phenols (18%) and the flavonoids (phloretin and kaempferol) (12%). It is suggested that dietary xenoestrogens might have a pharmacological effect on New Zealand males and postmenopausal women, but are unlikely to be significant for pre-menopausal women. 相似文献
20.
The dermal exposure to the suspected allergenic monoterpenes [small alpha]-pinene, [small beta]-pinene and [capital Delta](3)-carene was assessed with a patch sampling technique. The patch used was made of activated charcoal sandwiched between two layers of cotton cloth. Patches were fastened at 12 different spots on a sampling overall and at the front of a cap to estimate the potential exposure of the body. Fastening two patches on a cotton glove, one patch representing the dorsal side and one patch representing the palm of the hand respectively, assessed the exposure on the hands. Sampling was carried out during collecting of pine and spruce boards in sawmills and during sawing of pine wood pieces in joinery shops respectively. The potential dermal exposure of the total body was 29.0-1 890 mg h(-1) with a geometric mean (GM) of 238 mg h(-1) during sawing. During collecting the GM was estimated to 100 mg h(-1) with a range of 12.2-959 mg h(-1). The hands had a mean exposure of 9.24 mg h(-1) during sawing and 3.25 mg h(-1) during collecting respectively. The good correlation between the mass of contamination on the individual body parts and the potential body exposure indicates that sampling can be performed on one body part to give a good estimation of the potential body exposure. Monoterpenes were detected at patches fastened underneath the protective clothing indicating a contamination of the skin of the worker. The patch used may overestimate the dermal exposure. 相似文献