首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为研究太原市环境空气中含碳组分的时空分布变化规律,于2014年3月、5月、8月、12月采集了太原市3个点位春、夏、秋、冬等4个季节的PM_(2.5)样品,利用碳分析仪(DRI 2001A)测定了样品中OC1、OC2、OC3、OC4、EC1、EC2、EC3、OPC共8种碳组分含量,计算了有机碳(OC)、元素碳(EC)二者浓度,分析了OC和EC的时空分布特征.结果显示,太原市PM_(2.5)中OC和EC的平均质量浓度分别是13.5±14μg·m~(-3)和6.5±6.1μg·m~(-3),其中OC浓度随季节变化顺序为冬季春季夏季秋季,EC浓度季节变化与OC一致.春、夏、秋、冬4个季节总含碳气溶胶(TCA)占PM_(2.5)比例分别为17.6%、9.5%、8.8%、42.3%,其中冬季最高,表明冬季含碳气溶胶污染较为严重.夏季中OC和EC相关性较弱(R~2=0.4054),而春季(R~2=0.7659)、秋季(R~2=0.8253)、冬季(R~2=0.8184)OC和EC相关性较强,表明夏季碳气溶胶来源不同.通过(OC/EC)min最小比值法估算二次有机碳(SOC)浓度,春、夏、秋、冬季SOC浓度分别为2.8±2.9μg·m~(-3)、1.0±0.8μg·m~(-3)、 0.5±0.4μg·m~(-3)、 3.6±3.5μg·m~(-3),冬季SOC浓度最高. 8种碳组分分析结果显示,不同季节一次排放源中生物质燃烧、机动车尾气排放及煤炭燃烧对太原市含碳气溶胶贡献不同,其中,冬季燃煤和机动车排放使太原市含碳气溶胶污染严重,应加强燃煤和机动车排放源管控,来减轻碳组分污染.  相似文献   

2.
PM_(2.5)是危害环境及人体健康的重要空气污染物之一,但目前对PM_(2.5)的时空分布及气象成因的研究还相对缺乏。为了更好地控制ρ(PM_(2.5)),利用西安市2013年9月1日至2014年8月31日的PM_(2.5)逐日质量浓度、首要污染物数据及气象数据,分析PM_(2.5)逐日质量浓度对空气质量的影响,ρ(PM_(2.5))的分布特征及其气象成因。结果表明,PM_(2.5)是影响空气质量的重要因素。ρ(PM_(2.5))年超标率高达42.1%,在季节上具有冬秋季高、春夏季低的特征,月变化呈现"V"字形变化。各类型站点的ρ(PM_(2.5))总体空间分布状况为:道路参照点污染最严重;居民参照点、工业参照点次之;商贸参照点及文化、生态参照点的PM_(2.5)污染较轻,基本处于良好状态;PM_(2.5)的空间分布状况及站点间的变动幅度会随季节而有所不同。采用逐步回归模型建立的ρ(PM_(2.5))的预测模型具有较好的预测效果,ρ(PM_(2.5))拟合值均能较好的反映ρ(PM_(2.5))的变化规律,ρ(PM_(2.5))与气象条件有一定的关系。  相似文献   

3.
选取太原市城区10个监测点2014—2016年PM_(10)和PM_(2.5)日变化数据,分析和探讨了其时空变化特征,及其与人类经济活动的同步性规律;采用小波连续变换的功率谱方法识别颗粒物周期变化特征,采用可视化主成分分析法识别不同时间尺度下颗粒物变化的影响因素。结果表明,太原市大气颗粒污染物PM_(10)和PM_(2.5)质量浓度的变化存在明显的时空差异,新兴经济发展区较传统老工业区污染严重,颗粒物污染程度在冬季较为严重。小波分析结果显示,PM_(10)和PM_(2.5)时间序列的变化周期均以4~8 d的短周期为主(P0.05),污染物的质量浓度变化与城市经济活动的周波动变化相一致;PM_(10)和PM_(2.5)质量浓度最大值出现在周波动的中间时段,最小值出现在周末。可视化PCA结果揭示,大气颗粒物PM_(10)和PM_(2.5)季节性波动均受冬季影响较强;周波动周期内均受周三影响最大;一天之内PM_(10)和PM_(2.5)质量浓度分别受夜晚和早晨影响最大,但白天颗粒物质量浓度变化是造成其日变化特征的主要因素。研究结果有利于从不同时间尺度辨析能源城市大气颗粒物污染的多变特征,有针对性地开展大气污染防控,也可为管理部门制定相关标准和规范提供科学依据。  相似文献   

4.
为研究春运期间北京市PM2.5和气态污染物的污染特征,根据35个空气监测子站周边环境类型的不同将北京市划分为城区、郊区、对照区和交通密集区.结合春运期间的人为活动,比较分析各类污染物在各区域的日均浓度变化特征;将PM2.5日均浓度与SO2、NO2、CO、O3日均浓度及北京市的日均温度、相对湿度、风级进行相关性分析.结果显示,春运期间北京市PM2.5污染最严重,超过《环境空气质量标准》二级标准的天数占45%;PM2.5日均浓度变化趋势与春运客流量变化具有较好的一致性;各区域PM2.5、SO2、NO2和CO的日均浓度均符合交通密集区城区郊区对照区的分布,而O3的情况为对照区郊区城区交通密集区;各区域PM2.5浓度分别与该区域SO2、NO2、CO浓度呈正相关,与O3浓度呈负相关;各区域PM2.5浓度与温度未见相关性,与相对湿度呈正相关,与风级呈负相关.本文的研究结果表明,交通运输、烟花燃放和气象因子对春运期间PM2.5的污染特征影响较大.  相似文献   

5.
为系统反映太原市春季PM_(2.5)中无机水溶性离子的特征,采用在线气体/气溶胶监测仪(Marga)分析了太原市2016年3月1日至5月31日期间PM_(2.5)中无机水溶性离子的变化情况,研究表明二次离子(SO_4~(2-)、NO_3~-、NH_4~+)是无机水溶性离子的主要组成部分,它们在监测期间的均值分别为13.7μg·m~(-3)、14.7μg·m~(-3)以及10.4μg·m~(-3),整个观测期间三者的浓度之和(SNA)占总无机水溶性离子值的百分数为81.0%,占PM_(2.5)百分数为68.5%.三者浓度的日变化特征均呈单峰的形式存在,NO_3~-变化略有不同.热力学研究表明,由于NH_4NO_3分解平衡常数(Ke)与观测期间NH_3与HNO_3的浓度积(Km)的不同,导致了不同监测期间NO-3浓度变化不一致.观测期间硫氧化率(SOR)和氮氧化率(NOR)的值都大于0.1,说明太原市大气气溶胶中硫酸盐和硝酸盐主要都是经过转化形成的二次污染物.在典型空气污染过程中,SO_4~(2-)、NO_3~-、NH+4与能见度、相对湿度的变化有很好的对应关系,说明太原市低能见度与二次离子的生成有关.  相似文献   

6.
本文研究了太原市未纳入城市集中供热的城中村大气中PM2.5的多环芳烃的污染特征,并对其来源进行讨论,同时对样品的前处理过程和高效液相色谱的分析条件进行优化.实验结果表明:城中村大气污染属于典型燃煤污染,尾气污染也占有一定比例.  相似文献   

7.
收集北京市2014年PM_(2.5)质量浓度数据,利用小波变换探讨北京市各类监测站点PM_(2.5)污染的时间序列特征、主周期、突变特性,并结合气象资料,采用小波相干谱探究气象因子对PM_(2.5)的影响。结果表明,2014年北京市各类监测点PM_(2.5)质量浓度变化呈现波动-平稳-波动的相似变化趋势,其中1—4月和10—12月波动明显,且主周期相同(172 d)。采暖期间,南部站点PM_(2.5)质量浓度最高,采暖结束后,交通站点超越南部站点,成为PM_(2.5)质量浓度最高的站点。北京PM_(2.5)突变事件秋冬季节频繁而春夏较少,主要对应于重污染天气的生消过程。5类监测站点的PM_(2.5)质量浓度基本呈现南高北低的分布规律。南部站点PM_(2.5)污染最为严重、突变事件频次最高,该区局地污染排放显著,又是区域传输的重要通道,污染相对复杂;而北部站点污染水平最低、突变频次也最少;市区范围内交通站点污染相对突出。此外,气象因子对PM_(2.5)质量浓度变化影响巨大:在小尺度(0~20 d)上,PM_(2.5)与相对湿度相关性最突出;在中等尺度(20~64 d)上,PM_(2.5)主要受平均风速和相对湿度制约,但季节变化明显;大尺度(64 d)上,PM_(2.5)与日照时数和相对湿度相关性显著。  相似文献   

8.
对石家庄市2016年1月18—22日出现的PM_(2.5)污染过程进行研究,选择3个不同地区采用中流量采样器分别采集PM_(2.5)和PM_(10)样品,测定PM_(2.5)质量浓度及其化学组分(含碳组分、水溶性离子和无机元素),分析PM_(2.5)污染天气的污染特征和引起污染的气象因素,结合后向轨迹模型(HYSPLIT)分析污染的主要潜在源区。结果显示,在采样期间3个点的PM_(2.5)平均质量浓度分别为113、131和119μg·m-3,PM_(2.5)浓度高值出现在早晨和午夜,冬季京津冀地区农村散煤燃烧也是大气污染的主要原因。有机碳(OC)最大质量浓度值为218.37μg·m-3,无机碳(EC)最大质量浓度值为21.22μg·m-3。污染过程中3个点的地壳元素(Na、Ca、Mg、Al、K和Fe)质量浓度变化范围为27.19~60.03μg·m-3,占总无机元素的96.5%,表明交通源、道路扬尘和煤炭燃烧是此次石家庄市PM_(2.5)污染的主要贡献源类。较高的相对湿度和弱风速也会加速二次粒子的生成和颗粒物吸湿增长。潜在源分析表明,石家庄市PM_(2.5)污染主要受来源于北京和天津的气团影响,同时潜在源贡献(PSCF)分析表明河北省是影响石家庄市环境空气质量的最主要潜在源区。  相似文献   

9.
2013年10月至2014年7月,在太原城区,分4个月采集大气细颗粒物,每个月选取4个样品,分析了颗粒物上8种多溴联苯醚(PBDEs)和6种新型溴代阻燃剂(NBFRs)的浓度与组成。结果表明,大气PM2.5样品中PBDEs和NBFRs总浓度算术平均值分别为(10.9±10.3)pg·m-3和(22.3±24.7)pg·m-3,其中BDE-209、HBB和DBDPE是溴代阻燃剂中的主要污染物。季节变化来看,秋季样品中总PBDEs和总NBFRs的浓度要高于其他季节,夏季最低;化合物组成上,秋季样品中BDE-209含量较低,而NBFRs中HBB含量较高。相关分析显示,溴代阻燃剂的变化与颗粒物浓度和有机质的相关性不大,与大气温度与无显著性相关,而主要与气团来源有关。城市儿童的吸入暴露量约为成人的2~3倍,反映出PM2.5中溴代阻燃剂对城镇居民尤其是儿童的潜在健康危害仍不容忽视。  相似文献   

10.
本文基于国家空气质量自动监测位点2015年3月到2016年2月全年的逐时监测数据,对山西省11个地级市PM_(2.5)的污染状况与时空分布进行了详细研究.结果表明,山西省11个地级城市PM_(2.5)年均浓度均超过了国家年均浓度的二级标准限值,其中,长治和运城污染最为严重,超标率均高达27.51%.PM_(2.5)月均浓度变化特征分析发现,各地区PM_(2.5)污染高峰主要出现在冬季,9个城市在夏季出现另一小高峰,太原在春季出现另一小高峰.PM_(2.5)/PM_(10)月均浓度变化特征分析发现,太原、大同、晋城、朔州、晋中和忻州等6个城市PM_(2.5)/PM_(10)的值从春季到冬季逐渐增长,临汾和运城该比值波动于50%—70%之间,阳泉和吕梁PM_(2.5)/PM_(10)的值在7月和11月出现两次高峰,长治则在7月和1月出现两次高峰,提示不同地区可能受到不同污染源的影响.PM_(2.5)日变化规律总体较为一致,呈明显的双峰分布,其特征是中午和午夜高,凌晨和下午低.不同季节PM_(2.5)的空间分布虽有很大差异,但总体上南部城市高于北部城市.局部自相关分析发现,山西省PM_(2.5)污染的热点区域主要集中在运城.  相似文献   

11.
城市PM_(2.5)时空分布特征研究对改善空气质量具有重要意义。利用2016年1月1日—2016年12月31日合肥市主城区10个国控空气质量监测站PM_(2.5)浓度、土地开发强度、道路交通等数据,基于Arcgis空间分析平台,探讨合肥市主城区PM_(2.5)时空分布特征及其与土地开发强度、道路交通的关系,可为地方政府改善空气质量提供科学依据。结果表明:(1)合肥市主城区PM_(2.5)浓度季节差异显著,由高到低依次为冬季、春季、秋季和夏季,秋、冬季PM_(2.5)浓度波动较大,而春、夏季PM_(2.5)浓度比较稳定;(2)污染天数呈现春冬多、夏秋少的规律,1月、2月、3月、11月和12月的污染天数比例均超过50%,重度以上污染天气主要出现在春冬季节,严重污染天气暂未出现;(3)1月PM_(2.5)浓度空间分布呈现"双峰多谷"的规律,庐阳区和滨湖新区是PM_(2.5)浓度高峰区,属于轻度污染;7月PM_(2.5)浓度空间分布呈现"双峰双谷"的规律,庐阳区和包河区是PM_(2.5)浓度高峰区,属于良好;(4)合肥市主城区PM_(2.5)浓度与绿地率、主干路长度和容积率有较强关联性;绿地率与PM_(2.5)浓度呈显著负相关,容积率与PM_(2.5)浓度有一定正相关关系,土地利用性质和其他因素综合影响PM_(2.5)浓度;交通流量大的主干路与PM_(2.5)浓度存在正向关系。中心城区通过增加公共绿地空间、合理控制容积率,加强公共交通和电动汽车的使用,可达到改善空气质量的目的。  相似文献   

12.
本研究采用PM_(2.5)连续在线监测仪对广州市不同典型地区4所学校共16间教室进行室内外PM_(2.5)同时监测.结果表明,教室室内外PM_(2.5)浓度水平分别为65±15μg·m~(-3)和75±24μg·m~(-3),4所学校由于不同地理位置、外部环境以及室内卫生条件呈现出不同的PM_(2.5)污染水平;受人为因素影响较大的学校白天的PM_(2.5)浓度较高,受自然环境因素影响较大的学校则呈现白天低、夜晚高的趋势;通风方式和开关窗行为是影响室内外PM_(2.5)相关关系的重要因素,夏季空调机械通风的教室能有效地降低外部PM_(2.5)的渗透,开窗通风的教室室内PM_(2.5)则主要受室外环境影响;同样关窗情况下,具有较好围护结构、气密性较好的教室更能有效避免室外PM_(2.5)污染;当雾霾发生时,室内PM_(2.5)浓度以及室内外一元线性相关系数r~2也相应受到明显影响.通过了解不同区域教室室内外PM_(2.5)的质量浓度,给人们在雾霾和非雾霾天气下如何改善室内空气质量提供帮助,以避免学生长时间暴露在室内PM_(2.5)污染的环境中.  相似文献   

13.
为探究温州市区大气细颗粒物PM_(2.5)及其19种无机元素的污染特征和主要来源,分别于2015年1月、4月、7月以及10月(代表4个季度)在温州市区选取4个监测点位采集环境空气PM_(2.5)样品共112个,并利用电感耦合等离子体发射光谱仪(ICP-AES)和原子荧光光度计(AFS)分析样品中19种无机元素的含量.结果表明,温州市区环境空气PM_(2.5)平均质量浓度为83.6±50.2μg·m-3.温州市不同季节PM_(2.5)浓度最低的均为市站(SZ),春冬季南浦(NP)采样点PM_(2.5)浓度最高.19种无机元素占PM_(2.5)总量的9.90%.样品中主要元素为Na、K、Ca、Si、Zn、Al、Mg和Fe,占所测元素总量的96.7%.龙湾(LW)采样点PM_(2.5)中Fe、Al和Ca元素在多数季节里浓度较高,可能与采样点附近的机械阀门铸造企业和混凝土企业有关.本研究利用富集因子法和主成分分析法进行PM_(2.5)的初步来源分析,结果表明,温州市区PM_(2.5)污染主要来源于燃煤、交通污染、金属冶炼/加工、建筑扬尘和海盐粒子.  相似文献   

14.
杭州市大气PM_(2.5)中碳分布特征及来源分析   总被引:1,自引:0,他引:1  
碳是城市空气中颗粒物的主要成分之一.PM2.5中的碳主要以有机碳(OC)和元素碳(EC)的形式存在.本文对杭州市大气中PM2.5颗粒物进行研究,探讨有机碳和元素碳的分布特征.  相似文献   

15.
在郑州市区布设采样点,研究了郑州市PM_(2.5)中金属元素的污染特征、季节分布规律和富集因子。在1年的监测期中,PM_(2.5)的日平均质量浓度为87.4μg·m-3,日均质量浓度超过GB3095─2012日均值二级标准的天数占总监测天数的53%。PM_(2.5)的日平均质量浓度季节性特征表现为冬季秋季夏季春季。K、V、Mn等10种金属平均质量浓度与PM_(2.5)平均质量浓度呈明显正相关,相关系数范围为0.516~0.907。Na、Cr和Ti平均质量浓度与PM_(2.5)平均质量浓度呈明显负相关,相关系数均小于-0.6。郑州市大气PM_(2.5)中金属元素质量浓度较高的有Ca、Na、K、Mg、Al、Fe、Zn,质量浓度较低的有Cd、Hg、Ni、V等。冬季PM_(2.5)中Hg和Pb的平均质量浓度明显高于其他季节。金属元素总量中占比最高的是Ca、Na、K,这3种元素的比例和在4个季节中都大于65%。Cr、Cd、Pb和Hg的比例之和仅冬季超过2%。富集系数的研究表明郑州市大气PM_(2.5)中的Ti主要来自天然的土壤,K、Ca、Mg、Fe、V的来源是自然和人为因素的结合。Cu、Zn、Pb主要来源于人为排放,富集因子远远大于其它元素,是PM_(2.5)中主要的富集元素。Pb的富集因子在冬季最高,春季最低。对一次典型PM_(2.5)重污染情况进行分析,结果表明PM_(2.5)重污染时,金属元素的污染也相当严重,且其污染源相对复杂,非单一的污染来源。  相似文献   

16.
利用2008—2015年北京中心城区PM_(2.5)质量浓度数据,采用统计分析方法对其长期的污染变化趋势和特征进行了分析。结果表明,PM_(2.5)多年年均质量浓度为95.4μg?m-3,其总体变化趋势是改善的,各年改善程度不同,年均改善幅度约为2.85%,按照此速度,要解决北京的灰霾污染,尚需约18 a的时间。春季各年PM_(2.5)污染维持平稳的趋势,夏季和秋季呈逐年递减的趋势,而冬季则呈逐年上升的趋势,冬季的污染来源和排放控制应引起重视。从小时变化的特征看,春、夏、秋、冬各季的PM_(2.5)小时质量浓度最低值一般出现在日落前的2~3小时,而最高值分别出现在09:00、07:00、00:00和22:00点;春、夏季PM_(2.5)易在早晨累积,小时平均质量浓度日较差不甚明显,秋、冬季易在半夜累积,小时平均质量浓度日较差较明显;研究提示,为了健康,秋、冬季尽量不要在夜间进行户外运动。从健康暴露来看,"不健康"以上平均暴露水平占58.5%,处在非常严重的污染水平,暴露频率总体呈维持或改善的趋势;达到"警戒状态"的极端污染日平均暴露频率为4.4%,暴露频率呈不降反升的趋势。  相似文献   

17.
PM_(2.5)是我国大部分城市大气环境中的首要污染物。PM_(2.5)中的金属元素尤其是重金属,其质量浓度超标会引发生态环境风险及人体健康风险。为了研究北京市春季大气PM_(2.5)中金属元素污染状况及其来源,于2015年5月同步采集了北京城区及郊区大气PM_(2.5)样品13份。用Elan DRC II型电感耦合等离子体质谱仪(ICP-MS)测试了样品中的15种金属元素质量浓度,测试结果表明,Na和Ca占比最高,两元素质量浓度之和占元素总质量浓度的72.23%(城区)和71.96%(郊区);Mg、Al、Fe、K占比较高,这4种元素质量浓度之和占元素总质量浓度的25.84%(城区)和26.35%(郊区);北京城区PM_(2.5)中大部分元素质量浓度较郊区均有所下降,而Zn、Ni、Cu 3种重金属质量浓度表现为城区明显高于郊区。北京城区白天PM_(2.5)中大部分元素质量浓度较夜晚均有所下降,而Ba、Fe、Pb 3种重金属质量浓度表现为白天略高于夜晚。富集因子分析表明,2 0 1 5年春季北京PM_(2.5)中Fe、Al、K、Ba、Mn、Cr的EF值均在1~10之间,为轻度富集;Mg、Ca、Na、Cu、Pb的EF值均在10~100之间,为中度富集;Mo的EF值超过了1 000,为超富集。由Pearson相关分析、因子分析结果以及污染源排放的特征元素判断,北京春季PM_(2.5)中金属元素主要有三大来源,分别为地壳来源(土壤尘和建筑尘)、冶金源和机动车源。  相似文献   

18.
随着中国城市化和工业化的不断推进,大气污染治理形势严峻,PM_(2.5)作为首要的大气污染物,已经引起了公众和学术界的普遍关注。研究PM_(2.5)的时空分布特征及其质量浓度同植被覆盖度之间的关系,为区域大气污染联防联控提供数据支撑和理论依据。以大气污染严重的河南省为研究对象,利用2017年1月—2019年2月期间75个国控空气质量监测站的逐日PM_(2.5)质量浓度数据,通过空间插值技术,分析了PM_(2.5)质量浓度的时间和空间分布特征。基于MODID NDVI遥感卫星数据,采用像元二分模型反演获取植被覆盖度数据,再计算其与PM_(2.5)质量浓度的秩相关系数。研究发现,(1)总体上,河南省PM_(2.5)年均质量浓度逐年降低,由2015年的79μg·m~(-3)降至2018年的63μg·m~(-3),年均降幅达7.2%,但是依然超过国家二级标准(35μg·m~(-3)),污染防治形势仍然严峻。(2)从时间分布看,PM_(2.5)季节差异明显,月均质量浓度曲线大致呈"U"形,冬季质量浓度最高(113μg·m~(-3)),夏季最低(35μg·m~(-3)),春秋两季居中。(3)从空间分布来看,PM_(2.5)质量浓度在河南省内由南至北污染程度递减,形成了以污染最严重的郑州市、安阳市为中心的PM_(2.5)辐射圈。(4)植被覆盖度和PM_(2.5)质量浓度相关性强,秩相关系数为-0.55。从污染治理来看,提高植被覆盖度,增加植被面积对PM_(2.5)沉降有积极作用,但作用有限。  相似文献   

19.
本文研究了2014年1月天津市大气PM2.5中邻苯二甲酸酯(PAEs)的污染状况.结果表明,天津市大气PM2.5中PAEs污染以邻苯二甲酸二丁酯(DBP)和邻苯二甲酸二异辛酯(DEHP)为主;PM2.5上载带的∑6PAEs浓度与PM2.5浓度存在相关关系;文教区PAEs浓度低于工业及居住区浓度;大气PM2.5中PAEs经呼吸的日均暴露量邻苯二甲酸二甲酯(DMP)和邻苯二甲酸二丁酯(DBP)较高,且男性高于女性.  相似文献   

20.
有关湖北省PM2.5污染的时空分布、影响因素及成因的研究较少,分析PM2.5污染特征及气象因素的影响,对科学治理湖北省PM2.5污染具有重要意义。利用2017年和2018年1—3月湖北省7个大气成分观测站逐小时PM2.5质量浓度及平均气温、降水量、相对湿度、10 min平均风速和风向等地面气象观测资料,运用多元逐步线性回归法,探讨PM2.5的变化特征及其与气象因素的关系。结果表明,(1)湖北大气成分监测站PM2.5具有明显的时间变化规律,从日变化上看,除金沙站全天变化平缓外,其他6站PM2.5日变化呈双峰双谷型分布,双峰出现在10:00—11:00和20:00—22:00,双谷出现在06:00—08:00和15:00—17:00。各站PM2.5日均质量浓度变化范围为2.7~269.1μg?m-3,其变化幅度最大值通常出现在1月份。从月份上看,1—3月PM2.5月均质量浓度呈下降趋势;各站PM2.5平均质量浓度介于42.3~90.9μg?m-3,金沙最低而荆州最高;PM2.5质量浓度日均值平均超标率42.3%,其中3月平均超标率22.2%,明显低于1月56.7%和2月50.7%。(2)平均气温、降水量、风速和相对湿度4个近地面气象因素对黄石、金沙和武汉PM2.5质量浓度的影响大而对荆州影响最小,其中平均气温和风速为主要影响因素;具体而言,荆门、宜昌和武汉颗粒物质量浓度主要受气温引起的垂直输送及风速引起的水平扩散影响,襄阳、金沙和黄石则主要受大气中水分变化导致的粒子生成及沉降清除作用影响。(3)各站PM2.5质量浓度水平和变化特征差异在于监测点地理位置和周边环境、城市经济水平和气候气象条件的不同。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号