首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对滨海盐渍化土壤水稻种植过程中出现的磷素淋洗风险,采用田间微区试验,研究了不同用量有机肥和磷肥对滨海盐渍化土壤有效磷含量及磷素淋洗风险的影响。试验设磷肥与有机肥两个因素,3个磷(P_2O_5)水平,分别为P0:无磷,0kg·hm~(-2);P1:低磷,64 kg·hm~(-2);P2:高磷,128 kg·hm~(-2)。3个有机肥(碳)水平,分别为C0:无碳(有机肥0 kg·hm~(-2));C1:低碳,450 kg·hm~(-2)(有机肥1 000 kg·hm~(-2));C2:高碳,900 k·hm~(-2)(有机肥2 000 kg·hm~(-2))。共设7个处理:T1:无磷施用;T2:低磷;T3:高磷;T4:低碳低磷;T5:低碳高磷;T6:高碳低磷;T7:高碳高磷。结果表明,磷肥施用显著提高了土壤剖面中H2O-P、Na HCO3-P含量;低磷低碳处理下0~20 cm土层土壤中磷饱和度(DPS)较低磷处理低,其他土层土壤中磷饱和度无显著变化;而低磷高碳处理可显著提高40~60 cm土层土壤中磷饱和度,高于28.1%的临界饱和度;高磷低碳处理表层土壤有效磷含量为31.8 mg·kg~(-1),对整个剖面土壤中磷饱和度影响不大,磷素淋洗风险较小;而高磷高碳处理在提高表层土壤有效磷含量的同时,显著提高了20~40、40~60 cm土层土壤中磷饱和度,且均高于临界饱和度,导致整个土壤剖面具有很高的磷素淋失风险。在滨海盐渍化土壤水稻种植中,配施450 kg·hm~(-2) C和64 kg·hm~(-2) P_2O_5(碳磷比为15.1)时,磷素淋洗风险较低,而过量施用磷肥和有机肥将导致土壤磷素淋洗,利用效率降低。  相似文献   

2.
为了缓解玉米连作带来的土壤养分失衡及根系早衰,探讨生物炭对土壤养分、玉米根系生长的主要径级水平、玉米干物质积累的后效作用。采用定位试验,设置不施氮肥、不施生物炭为对照(CK),2个施氮量(常规施N量225 kg·hm~(-2),N1;减氮10%,N 203 kg·hm~(-2),N2),2个生物炭量(8.4 t·hm~(-2),C1;21 t·hm~(-2),C2)共7个处理。在生物炭施用第二年,测定玉米不同径级根系生长及土壤养分含量。结果表明,与对照(CK)相比,常规施氮配施低量生物炭(N1C1)和减氮配施高量生物炭(N2C2)显著提高了土壤有机质含量;高量生物炭配施氮肥(N1C2和N2C2)分别提高土壤碱解氮储存量29.9%和9.0%;N1C2和N2C1处理显著提高土壤全氮含量。减氮配施低量生物炭(N2C1)促进大喇叭口期玉米0—2 mm径级根系的根长较CK提高38.9%(P?0.05,下同);低量生物炭配施常规氮肥(N1C1)促进成熟期玉米根系变细13.4%、根系变长32.4%,提高0—2 mm径级根系的总根长37.9%;单施氮肥或配施生物炭对2—3、3—4径级的根长无显著影响;常规单施氮肥(N1C0)较CK显著提高4 mm径级根系根长约40.5%。低量生物炭配施常规氮肥(N1C1)提高大喇叭口期玉米单株干物质积累53.16 g·plant~(-1)。综上,研究结果说明,8.4 t·hm~(-2)生物炭配施225 kg·hm~(-2)氮肥能更好地促进成熟期玉米细根生长。单施氮肥和配施21 t·hm~(-2)生物炭均可促进土壤养分的固持。该研究结果为秸秆循环利用提供科学参考,同时为优化玉米根系结构提供新思路。  相似文献   

3.
通过盆栽模拟试验,探究玉米秸秆生物炭施用对菜地温室气体N2O、CO2与CH4排放及土壤理化性质的影响。结果表明,生物炭施用抑制了菜地N2O排放,NB1(施N 400 kg·hm-2,生物炭20 t·hm-2)和NB2(施N 400kg·hm-2,生物炭40 t·hm-2)的N2O累积排放量分别比N处理(施N 400 kg·hm-2)低76.4%和70.7%,但抑制效应并未随生物炭用量的增加而加强。生物炭施用增强了CO2排放,但对CH4排放影响不显著。NB1和NB2累积CO2排放量分别为N处理的1.8和2.1倍,不容忽视的是,这2种处理同时增加了土壤中有机碳含量,分别比N处理高15.2%与21.3%。NB1和NB2在不降低甚至提高蔬菜产量的基础上,提高了土壤中NH4+-N含量与p H值,降低了NO3--N含量。p H值和NH4+-N含量分别平均比N处理高0.265和34.9%,NO3--N含量平均比N处理低12.7%,因此生物炭具有减排N2O与改良菜地土壤质量的巨大潜力。但生物炭引起的CO2排放以及对土壤有机碳增加的净影响效应尚需进一步研究。  相似文献   

4.
为了解施用生物炭对杨树人工林土壤CO_2、CH_4、N_2O3种温室气体排放的长期影响及其主要调控机理,以东台国有林场杨树人工林为对象,设置低生物炭添加量(D,40 t·hm~(-2))、中生物炭添加量(Z,80 t·hm~(-2))、高生物炭添加量(G,120 t·hm~(-2))及对照(CK,0 t·hm~(-2))4种不同处理,采用静态箱-气相色谱法对CO_2、CH_4、N_2O3种温室气体的排放速率进行了多次测定,同时测定分析了土壤含水率、土壤酶活性等土壤理化及生化指标,为阐明生物炭对杨树人工林生态系统的长期影响提供理论依据。结果表明:(1)对照样地土壤CO_2排放速率变化范围为123.428-412.066mg·m-2·h-1,中、高生物炭添加处理显著促进了土壤CO_2的排放(P=0.001、0.000),分别导致CO_2年平均排放速率增加了21%和20%;(2)对照样地土壤CH4排放速率变化范围为0.578-1.405 mg·m-2·h-1,中、高生物炭添加处理显著抑制了土壤CH_4的排放(P=0.000、0.000),分别导致CH4年平均排放速率降低了21%和33%;(3)对照样地土壤N2O排放速率变化范围为0.124-0.297mg·m-2·h-1,中、高生物炭添加处理显著抑制了土壤N2O的排放(P=0.003、0.000),分别导致N_2O年平均排放速率降低14%和37%;(4)土壤CO_2排放主要与土壤微生物量C(MBC)、水溶性有机碳(DOC)、全氮(TN)、蔗糖酶活性(IA)呈显著正相关关系(P=0.000、0.000、0.013、0.000),与土壤微生物量N(MBN)、土壤微生物量P(MBP)呈显著负相关关系(P=0.000、0.000);(5)土壤CH4排放和N2O排放主要与MBN、MBP、土壤含水率(SMC)、蛋白酶活性(PA)、脲酶活性(UA)、IA呈显著正相关关系(PCH4=0.011、0.009、0.005、0.000、0.000、0.007;PN2O=0.021、0.024、0.002、0.000、0.001、0.019),与MBC、DOC、TN呈显著负相关关系(PCH4=0.000、0.003、0.002;PN2O=0.001、0.012、0.001)。综上,添加生物炭导致了土壤N、P养分有效性增加和蛋白酶、脲酶等相关酶活性降低,可能是本区域生物炭调控杨树人工林土壤3种温室气体排放的主要机制。  相似文献   

5.
探讨了化学氮肥减量配施秸秆生物炭对双季稻生长发育、光合作用、物质积累及产量的影响,为水稻作物的养分管理提供参考依据。通过两季田间试验,设置对照(不施氮,CK),常规施氮(180 kg·hm~(-2),N100)、减氮20%(144 kg·hm~(-2),N80)、减氮20%+15 kg·hm~(-2)生物炭(N80+BC),减氮40%(108 kg·hm~(-2),N60)、减氮40%+15 t·hm~(-2)生物炭(N60+BC)6个处理来对比研究减量施氮配施稻秆生物炭对水稻生长、光合特性、物质积累及产量性状的影响,为化肥减量化和生物炭的农业生产利用提供参考依据。结果表明,与常规施氮相比,单纯减氮(N80、N60)或减氮配施生物炭(N80+BC、N60+BC)对水稻株高无显著影响;移栽70 d后与单纯减氮相比,N60+BC提高水稻分蘖数8.37%;晚稻分蘖期N80+BC的最大光化学量子效率(F_v/F_m)比N80显著增加8.17%,配施生物炭对叶绿素含量(SPAD)无显著影响。在早稻分蘖期和晚稻成熟期,N80+BC比N80的干物质重量显著增加40.33%、20.43%;减氮20%、40%配施生物炭(N80+BC、N60+BC)比常规施氮2018年早稻分别增产11.64%和18.07%,晚稻则差异不大。研究表明,施用15 t·hm~(-2)稻秆生物炭可以在稳定水稻产量的同时减少20%—40%的化学氮肥施用量,实现水稻氮肥管理的"减量增效"。  相似文献   

6.
温志豪  曾路生  柴超  吴娟 《环境化学》2019,38(10):2356-2365
本文建立了一种利用生物质炭并结合过氧化氢对火电厂多环芳烃(PAHs)污染土壤的修复方法.采集诸城火电厂多环芳烃污染土壤为研究对象,采用盆栽试验的方法,研究了不同梯度生物质炭与过氧化氢配合施用修复多环芳烃污染土壤,对小白菜生长指标及土壤多环芳烃含量的变化.结果表明,合理施用生物质炭配施过氧化氢能促进小白菜生长,有效降低土壤和小白菜中多环芳烃含量.与T1(不施生物质炭)对比,生物炭处理的小白菜生物量增加8%—15%,叶绿素SPAD值增加25%—50%,荧光参数和光谱反射率有一定提高,小白菜和土壤多环芳烃含量显著减少.同时,使污染酸化土壤pH值提高了0.2—0.6个单位,土壤有机质含量提高了9.5%—45.6%,碱解氮、速效磷与速效钾等养分有一定量的增加.其中,T7(0.5‰H_2O_2+2‰生物质炭)处理修复效果最好,供试蔬菜和土壤中多环芳烃去除率分别达到了69.6%和58.8%.其次是T3(2‰生物质炭)处理,供试蔬菜和土壤中多环芳烃去除率分别达到了42.9%和54.6%,也具有较好的去除效果.因此,可推荐在修复实践中参考应用.  相似文献   

7.
生物炭对旱作农田土壤理化性质及作物产量的影响   总被引:3,自引:0,他引:3  
生物炭因其结构和功能特性受到国内外学者广泛关注,在农业土壤改良培肥、固碳减排等方面展现出巨大的应用潜力,但基于田间长期定位试验,开展生物炭对大田土壤理化性质及作物产量的影响研究尚不多见。以西南地区玉米(Zea mays L.)-油菜(Brassica campestris L.)轮作农田为研究对象,通过不同生物炭添加比例的田间定位试验研究了生物炭施用对旱作农田土壤容重、pH值、有机质、矿质态氮、有效磷、含水量等理化性质以及作物产量的影响,试验共设4个处理:单施复合肥、尿素(C0);复合肥、尿素+20 t·hm-2生物炭(C2);复合肥、尿素+50 t·hm-2生物炭(C5);复合肥、尿素+100 t·hm-2生物炭(C10)。结果表明:与C0对比,C5和C10处理均显著降低了土壤容重,降低幅度分别为14.6%和32.5%;C2、C5和C10处理土壤年均pH比对照组分别提高了0.10、0.17和0.15个单位;处理组土壤中有机质含量比对照组分别提高44.9%、137.7%和297.2%;土壤硝态氮含量比对照组分别提高了38.0%、26.3%和88.4%;土壤有效磷含量分别提高了34.8%、135.0%和232.2%;生物炭处理下土壤年均含水量比对照组分别提高了8.8%、29.1%和44.7%。玉米、油菜籽实和均表现为生物炭处理高于对照组。玉米籽实提高7.6%~20.3%,玉米根茎叶生物量提高8.6%~46.8%;油菜籽实产量提高显著,高于对照组15.7%~35.4%,根茎叶生物量提高-17.2%~30.3%。综合来看,本试验条件下,生物炭施用有利于降低土壤容重,提高土壤pH、有机质含量、NO3--N含量、有效磷含量、含水量,显示出生物炭作为土壤改良剂施用于农田能有效改良土壤理化性质和提高耕作性能。  相似文献   

8.
为探讨生物炭对土壤磷素转化的影响,选择华南地区两种典型土壤(高磷水稻土和低磷赤红壤),通过土壤培养试验,研究添加不同剂量(0%、1%、2%和4%,分别用CK、T1、T2、T4表示)秸秆生物炭对土壤磷素有效性及不同磷组分随时间变化的动态影响.结果表明,不同剂量秸秆生物炭处理均能显著提高水稻土和赤红壤的全磷及有效磷含量,且增加幅度随生物炭添加剂量的增加而升高,培养第40天T4处理的水稻土及赤红壤的有效磷含量相比对照分别增加118.45%和6432.08%,赤红壤效果更为明显.不同剂量秸秆生物炭处理均能显著增加两种土壤的Fe-P和Ca-P含量,其中T4处理效果最为显著.培养第40天T4处理的水稻土中水溶性磷、Al-P、Fe-P、Ca-P含量较对照分别增加233.53%、14.95%、8.82%和55.65%,O-P含量则降低2.74%;赤红壤的Al-P、Fe-P、Ca-P含量分别增加71.35%、80.15%和124.73%,水溶性磷和O-P含量则降低7.14%和0.52%.随着培养时间推移,秸秆生物炭处理的水稻土和赤红壤酸性磷酸酶活性逐渐降低,碱性磷酸酶活性则逐渐升高.此外,培养初期添加秸秆生物炭显著降低了两种土壤的微生物量磷含量,但该抑制作用随时间推移逐渐减弱直至消失.综上所述,秸秆生物炭处理显著影响水稻土和赤红壤磷素的化学形态、微生物活性及磷素转化,增加磷素有效性,尤其对赤红壤作用效果更为明显,因此在化肥减施增效中值得进一步推广应用.(图7表3参50)  相似文献   

9.
为明确不同量生物炭施用与蚯蚓互作对土壤N_2O和CO_2排放的影响,设置了仅有土壤(S)、接种蚯蚓(SE)、施用低剂量生物炭(SL)、接种蚯蚓并施用低剂量生物炭(SLE)、施用高剂量生物炭(SH)和接种蚯蚓并施用高剂量生物炭(SHE)6个处理,开展了50 d的室内培养试验。结果表明,施加生物炭显著降低蚯蚓生物量,与接种前相比,SE处理蚯蚓生物量下降18%,SLE处理蚯蚓生物量下降26%,而SHE处理蚯蚓生物量下降高达37%。培养结束后,接种蚯蚓处理(SE、SLE和SHE)N_2O累积排放量分别为589.8、538.0和258.3μg·kg~(-1),均显著高于未接种蚯蚓处理(S、SL和SH处理N_2O累积排放量分别为57.1、34.5和23.4μg·kg~(-1))。添加生物炭显著降低接种蚯蚓处理N_2O排放量,且生物炭添加量越高,效果越明显。接种蚯蚓处理(SE、SLE和SHE)CO_2累积排放量分别为686.1、682.2和420.7 mg·kg~(-1),均显著高于未接种蚯蚓处理(S、SL和SH处理CO_2累积排放量分别为346.9、268.7和165.9 mg·kg~(-1))。添加生物炭降低了接种蚯蚓处理CO_2累积排放量,但仅高剂量生物炭添加处理(SHE)与无生物炭处理(SE)间存在显著差异。主体间效应检验结果显示,蚯蚓、生物炭均对土壤CO_2和N_2O累积排放量产生显著影响,蚯蚓和生物炭的交互作用仅对N_2O累积排放量产生显著影响。此外,在所有处理中,添加生物炭均增加土壤pH值,降低土壤无机氮含量。因此,高剂量生物炭施用可能通过提高土壤pH值、降低土壤无机氮含量和对蚯蚓活性的影响来抑制蚯蚓作用下的土壤N_2O和CO_2排放。  相似文献   

10.
生物炭对砂糖桔叶果和土壤理化性状的影响   总被引:1,自引:0,他引:1  
通过田间试验,开展生物炭对砂糖桔(Citrus reticulate Blanco cv.Shatangju)园土壤理化性质和叶片养分及果实产量品质的影响研究,以期为生物炭在砂糖桔园的培肥改土及合理农用方面提供理论依据。以10年生砂糖桔为试材,于2014—2015年在广东云浮采用沟施生物炭的方法,设置6个处理,分别施加0(CK)、1.2(T1)、2.4(T2)、3.6(T3)、4.8(T4)、6.0(T5)kg·plant~(-1)生物炭,每个处理3个重复,1个重复2株树,随机排列。收获后分析土壤理化性质和叶片养分,比较各处理果实产量和品质。结果表明:砂糖桔园施生物炭可显著降低土壤容重,提高土壤含水量、田间持水量、毛管孔隙度;施用生物炭能显著提高土壤p H值和有机质,且随着施用量增加而升高,生物炭处理p H值提高1.72~2.49个单位,T1、T2、T3、T4和T5有机质含量分别比对照增加93.76%、151.99%、201.53%、254.21%和465.24%;施用生物炭可以提升土壤中碱解氮、有效磷、速效钾、交换性钙、交换性镁、有效锌、有效硼和CEC含量,还可不同程度提高砂糖桔产量,改善果实品质,当施炭量为2.4 kg·plant~(-1)和3.6 kg·plant~(-1)时,产量分别比CK提高了153.68%和163.84%,果实品质也优于其他处理。因此,砂糖桔园施用生物炭对土壤理化性质和叶片营养及果实产量品质有较大影响,且不同生物炭用量间存在较大差异,当施炭量为2.4 kg·plant~(-1)和3.6 kg·plant~(-1)时,对土壤理化性质、叶片营养、果实产量和品质等方面的改善效果最好。  相似文献   

11.
氮沉降增加对贝加尔针茅草原土壤微生物群落结构的影响   总被引:3,自引:0,他引:3  
土壤微生物是草原土壤生态系统的重要组成部分。为研究氮沉降增加对草原土壤微生物群落结构的影响,以内蒙古贝加尔针茅草原为研究对象,开展连续6年(2010—2015年)模拟氮沉降试验,以N计算,设置:N0(0 kg·hm~(-2))、N50(50kg·hm~(-2))、N100(100 kg·hm~(-2))、N150(150 kg·hm~(-2))和N300(300 kg·hm~(-2))5个处理,采用磷脂脂肪酸(PLFA)技术测定0~10 cm土壤特征微生物PLFA生物标记数量并探讨土壤微生物群落结构对氮沉降的响应。结果表明:随氮添加量增大,土壤微生物总PLFAs、细菌PLFAs、革兰氏阳性细菌PLFAs、革兰氏阴性细菌PLFAs和放线菌PLFAs含量呈先升高后降低的趋势,均以N100(100 kg·hm~(-2))处理最高。土壤微生物群落PLFA标记的主成分分析显示,不同氮添加下土壤微生物PLFA标记有显著差异。相关分析表明,土壤革兰氏阳性菌、放线菌PLFA含量、G~+/G~-与土壤p H值呈显著负相关,土壤微生物总PLFAs、土壤细菌PLFAs、革兰氏阳性菌PLFAs、革兰氏阴性菌PLFAs、放线菌PLFAs和饱和脂肪酸PLFAs含量均与土壤速效磷含量呈显著正相关。综合研究表明,连续6年氮添加改变了贝加尔针茅草原土壤微生物群落结构,土壤p H值和土壤速效磷含量是驱动这种变化的主要因素。  相似文献   

12.
为探究生物炭施用对土壤微生物群落结构与功能的影响,以广东博罗某生态农业实验基地玉米地为试验对象,设置3个处理,分别按0(C)、5(B1)、10(B2)t·hm~(-2)施加秸秆生物炭,分别于第7天、14天、21天后采集根际土壤及非根际土壤样品,通过对玉米根际及非根际土壤细菌16S rDNA进行高通量测序分析,结合16S rDNA PICRUSt功能预测技术,探究生物炭施用对玉米根际土壤及非根际土壤微生物群落结构与功能的影响。结果表明,与空白对照组相比,施加生物炭可明显增加玉米非根际土壤微生物群落多样性,施加21 d后C组、B1组和B2组chao1指数分别为1 261、2 707和2 472;对根际土壤微生物多样性影响不显著(P=0.406)。施加5t·hm~(-2)生物炭后,玉米根际土壤酸杆菌门(Acidobacteria)相对丰度升高,但施加10 t·hm~(-2)生物炭处理酸杆菌门(Acidobacteria)相对丰度降低。在科水平上,施加生物炭后,玉米非根际土壤黄色单胞菌科(Xanthomonadaceae)受到明显抑制,而施加生物炭与否及施加量多少对根际土壤黄色单胞菌科(Xanthomonadaceae)丰度高低影响不显著(P=0.857)。PICRUSt预测结果表明,生物炭施加对玉米土壤微生物群落代谢、遗传、信息传递等过程产生影响,从而改变微生物的群落结构及生态功能。综上,施用生物炭会影响玉米土壤微生物群落结构与功能,相对于施加10 t·hm~(-2)处理,施加5 t·hm~(-2)处理对土壤微生物群落结构的影响效果更为显著。该研究结果可为生物炭农业化利用机制研究及施加量选择提供参考。  相似文献   

13.
改性生物炭对菜地土壤磷素形态转化的影响   总被引:1,自引:0,他引:1  
生物炭是一种含碳量高且更为稳定的有机碳,能够显著影响土壤物理、化学及生物学性质。以华南地区主要的菜地土壤为研究对象,研究新型生物炭对土壤磷素形态转化及有效性的影响,结果表明,施用生物炭可以提高树脂磷(Resin-Pi)、NaHCO3提取态无机磷(NaHCO3-Pi)、NaOH提取态无机磷(NaOH-Pi)含量,生物炭施入土壤后能明显提高土壤的有效磷含量,但并未显著提高稀盐酸提取态无机磷(D·HCl-Pi)和浓盐酸提取态无机磷(C·HCl-Pi)的含量;施用生物炭增加了NaHCO3提取态有机磷(NaHCO3-Po)的含量,降低了NaOH提取态有机磷(NaOH-Po)的含量,提高了残渣磷(Residual-Pt)含量,并未改变浓盐酸提取态有机磷(C·HCl-Po)的含量。土壤速效磷与Resin-Pi、NaHCO3-Pi、NaHCO3-Po、NaOH-Pi、D.HCl-Pi、Residual-Pt呈显著相关,并与NaHCO3-Pi的相关性最强,相关系数达到0.980 5;Resin-Pi与NaHCO3-Pi、D.HCl-Pi呈极显著相关;NaHCO3-Pi与NaOH-Pi、D.HCl-Pi、Residual-Pt呈显著相关,并与D.HCl-Pi的相关性最强,相关系数达到0.816 6。表明在施用生物炭的条件下,不同形态的磷可以通过矿化等形式转化为有效性较高的磷形态。  相似文献   

14.
生物炭与磷肥配施对棕壤中Cd形态及其有效性的影响   总被引:1,自引:0,他引:1  
通过实验室模拟Cd污染棕壤,探讨单施不同量(20和40 g·kg~(-1))花生秸秆生物炭(PB)和棉花秸秆生物炭(CB)、20 g·kg~(-1)磷肥(P)以及两者配施对污染土壤p H值及5种形态Cd含量变化的影响,分析生物炭、磷肥及其联合作用对棕壤Cd生物有效性的影响机制。结果表明,单施磷肥可显著降低土壤p H值(较CK降低14.64%),单施生物炭以及两者配施均可提高土壤p H值(较CK增加0.99%~24.67%),以单施40 g·kg~(-1)花生生物炭处理土壤p H值增幅最显著。单施磷肥显著降低土壤可交换态、碳酸盐合态和铁锰氧化物结合态Cd含量,增加有机结合态和残渣态Cd含量;单施生物炭和配施处理均可使土壤可交换态Cd含量显著减少,碳酸盐结合态Cd含量显著增加(49.76%)。在相同施炭量(20 g·kg~(-1))下,配施处理土壤有效态Cd含量的降幅高于单施处理,且花生秸秆生物炭与磷肥配施处理效果优于棉花生物炭与磷肥配施,Cd活性系数分别为0.150和0.236,即20 g·kg~(-1)花生秸秆生物炭+20 g·kg~(-1)磷肥(P+PB_2)混合处理最有利于降低土壤Cd生物有效性。  相似文献   

15.
通过田间试验研究了河套灌区套作小麦(Triticum aestivum L.)-玉米(Zea mays L.)在不同施氮水平下(小麦N0 0 kg·hm~(-2)、N1 90 kg·hm~(-2)、N2 180 kg·hm~(-2)、N3 270 kg·hm~(-2);玉米N0 0 kg·hm~(-2)、N1 135 kg·hm~(-2)、N2 270 kg·hm~(-2)、N3 405 kg·hm~(-2))土壤微生物量碳、氮的变化规律,为农业生产中定量施氮提供有益的生物参数和指标。结果表明:小麦全生育期内土壤微生物量氮、碳含量呈现出"升-降-升"趋势,抽穗期土壤微生物量氮达到最大值,灌浆期的下降幅度最大,土壤中的养分被小麦大量吸收消耗,此时微生物矿化出一部分微生物量氮以供作物吸收利用,土壤微生物量含量大幅下降。玉米土壤微生物量氮、碳含量随生育期进程推进而先增加后降低,在抽雄期出现峰值,土壤中的有效养分充足,同时,根系代谢活动旺盛,分泌物增多,使微生物代谢加快,为微生物的生长和繁殖提供了充足的营养环境。套作小麦-玉米土壤微生物量碳、氮含量均随着施氮水平的升高呈现出先增加后降低的趋势,在N2(小麦180 kg·hm~(-2)、玉米270 kg·hm~(-2))水平下,土壤微生物量碳、氮含量最高。N2处理的小麦微生物量碳较N0增加了53.7%,微生物量氮则是N0的3.29倍;N2处理的玉米微生物量碳、氮分别是N0的2.61、5.38倍。回归分析表明,土壤微生物量与施氮量之间表现为显著的二次型回归关系,适宜的氮肥施用量对微生物量碳、氮的负效应较低;根据边际分析及综合土壤微生物量碳、氮,推荐小麦最佳施肥量为165.9~187.5 kg·hm~(-2),玉米最佳施肥量为227.5~287.9 kg·hm~(-2)。  相似文献   

16.
镁改性芦苇生物炭对水环境中磷酸盐的吸附特性   总被引:1,自引:0,他引:1  
为了实现湿地水生植物资源化利用,加强对水环境中磷污染的控制,以中国东北地区湿地典型水生植物芦苇(Phragmitesaustralis)为生物质材料,在700℃条件下制备成生物炭,用六水合氯化镁作为改性剂对生物炭进行改性,通过SEM和能谱分析对芦苇生物炭改性前后进行表征,发现未改性的芦苇生物炭的电镜呈明显的孔隙结构,孔壁薄,孔隙排列有序,Mg元素含量仅为0.17%;而镁改性芦苇生物炭的孔隙负载了一些针状结构,且Mg元素的含量达到5.04%。说明镁离子成功负载在生物炭的表面。通过SEM、EDS、FTIR、XRD等技术对镁改性芦苇生物炭吸附磷酸盐前后进行表征,发现磷酸盐主要以Mg HPO_4和Mg_3(PO_4)_2的形态吸附在镁改性生物炭上。吸附动力学实验结果表明,镁改性生物炭对磷酸盐的吸附过程符合准二级动力学模型,吸附机理是由物理吸附和化学吸附共同作用的。通过颗粒内扩散模型的分析发现吸附速率由表面吸附、液膜扩散和颗粒内扩散等共同决定。镁改性生物炭对磷酸盐的吸附热力学可以用Langmuir方程描述(R~2=0.938 6),表明该吸附行为主要是单分子层吸附。共存离子实验表明,HCO_3~-和CO_3~(2-)能明显抑制镁改性生物炭对磷酸盐的吸附。经过3次解吸,镁改性生物炭吸附后的磷可全部释放。当温度为308 K,改性剂浓度为2 mol·L~(-1),改性生物炭投加量为2.0 g·L~(-1),p H为7.0时,吸附效果最佳,吸附量可达到2.37 mg·g~(-1)。  相似文献   

17.
为明确秸秆生物质炭对酸化茶园土壤改良及温室气体排放的影响,采用室内培养试验方法,研究了小麦秸秆生物质炭添加(对照CK:0 g·kg~(-1);低生物质炭B1:8 g·kg~(-1);中生物质炭B2:24 g·kg~(-1);高生物质炭B3:48 g·kg~(-1))对茶园土壤pH值和温室气体排放的影响。结果表明,与对照组CK相比,添加生物质炭显著抑制了酸性茶园土壤N2O的排放(P=0.000),但抑制效应并未随生物质炭添加量的增加而加强,培养期间各处理N2O累积排放量分别为:CK 2.366 mg·kg~(-1),B1 0.444mg·kg~(-1),B2 0.142 mg·kg~(-1),B3 0.207 mg·kg~(-1)。低生物质炭(8 g·kg~(-1))和中生物质炭(24 g·kg~(-1))处理的综合增温潜势(GWP)分别比对照组CK降低了33.45%和25.77%,而高生物质炭处理(48 g·kg~(-1))与对照处理差异不显著。这表明施用中低量生物质炭更有利于茶园土壤的固碳减排。此外,生物质炭显著提高了酸化茶园土壤p H值,生物质炭添加比例越大,p H值越高,故施用作物秸秆生物质炭有利于酸化土壤改良。相关性分析结果表明,土壤N_2O排放与pH值之间呈显著负相关关系,土壤p H值的升高可能是引起N_2O排放量降低的重要原因。  相似文献   

18.
近年来,稻田Cd污染引起的环境及健康问题日益突出。应用钝化技术对土壤中有效性Cd进行钝化对稻田生态系统中Cd的生物地球化学循环具有重要的理论和实际意义。在广东省韶关市仁化县董塘镇红星村一受Cd污染的稻田上,设置大田试验,研究铁基生物炭对Cd在大田土壤-水稻系统迁移的影响以及对作物产量的影响。试验共设6个处理:(1)空白对照;(2)每一季水稻插秧前,一次性施加1500 kg·hm-2的普通生物炭;(3)每一季水稻插秧前,一次性施加75 kg·hm-2的零价铁(Fe0);(4)每一季水稻插秧前,一次性施加1500 kg·hm-2、ω(Fe)=1%的铁基生物炭(ω(Fe)=1%in Fe-Biochar);(5)每一季水稻插秧前,一次性施加1500 kg·hm-2、ω(Fe)=3%的铁基生物炭(ω(Fe)=3%in Fe-Biochar);(6)每一季水稻插秧前,一次性施加1500 kg·hm-2、ω(Fe)=5%的铁基生物炭(ω(Fe)=5%in Fe-Biochar)。结果表明:(1)施用生物炭、铁粉和铁基生物炭土壤钝化调理剂可以增加水稻产量,显著降低籽粒重金属Cd含量;(2)施用铁基生物炭可以显著增加水稻根表铁膜Fe含量,同时显著增加水稻根表铁膜固定的Cd量,抑制重金属Cd向籽粒的运输累积。综合考虑施用成本和钝化效果,对于Cd污染稻田,建议施用1500 kg·hm-2、ω(Fe)=3%的铁基生物炭材料。  相似文献   

19.
生物炭与有机肥配施对菜地温室气体强度的影响   总被引:1,自引:0,他引:1  
采用盆栽模拟研究方法,设置对照(CK)、只施氮肥(U)、氮肥与有机肥配施(UM)、氮肥与生物炭配施(UB)以及氮肥、有机肥与生物炭配施(UMB)共5个处理,探究生物炭与有机肥施用对菜地N_2O、CH_4与CO_2排放以及全球增温潜势(GWP)、温室气体强度(GHGI)、N_2O-N排放系数的影响.结果表明,整个观测期间,N_2O排放变幅较大,达0.02-1 559.77μg m~(-2)h~(-1),CH_4排放变幅较小,为-0.09-0.25 mg m~(-2)h~(-1).与N_2O、CH_4相比,处理间CO_2排放通量具有更为相近的波动规律. UB与UMB能显著降低N_2O排放,其中UMB抑制效果最佳,仅为U处理的14.1%. 5个处理间CH_4累积排放量无显著差异,表明氮肥、有机肥与生物炭均非影响CH_4排放的主要原因. UB与UMB间累积CO_2排放量无差异,但二者均显著高于U与UM处理,证明生物炭施用促进了CO_2释放.菜心与苋菜产量均以UMB最高,两种蔬菜产量分别比U处理高25.6%与29.5%. GWP与GHGI均以UMB最低(除对照外),分别为919±266 kg/hm~2与0.04±0.01 kg/kg. UMB的N_2O-N排放系数最低(0.37%),仅为U处理的11.5%.综上所述,生物炭与有机肥配施处理在不降低蔬菜产量的基础上,既能抑制N_2O排放,降低GWP、GHGI与N_2O-N排放系数,又能降低化学氮肥投入量,是值得推荐的施肥措施.考虑到生物炭施用显著促进CO_2排放,需要进一步探究生物炭与有机肥配施的综合净温室效应.(图1表2参45)  相似文献   

20.
于2013、2014年以苏州市相城区望亭镇某河道污泥为研究对象,设计施氮量为120 kg/hm~2(LN)、240 kg/hm~2(NN)2个水平,连续两季种植粳稻品种武运粳24,探讨河道污泥农田施用对水稻不同生育时期磷素含量、吸收、分配和利用效率的影响.结果表明:1施用河道污泥后,水稻不同生育时期植株含磷率显著提高,各生育时期吸磷量显著提高;2施用河道污泥对水稻多数生育时期磷素在茎鞘、叶片和穗中分配比例无显著影响;3施用河道污泥后,水稻不同生育时期磷素干物质生产效率均极显著降低,磷素籽生产粒效率和P素收获指数显著降低;4增施氮肥后,水稻不同生育时期的植株磷素含量和吸磷量均显著或极显著增加,磷素干物质生产效率和籽粒生产效率显著下降;5河道污泥×氮对稻株多数生育时期磷素吸收利用无显著互作效应.综上,施用河道污泥后,水稻植株含磷率、磷素吸收量显著提高,磷素干物质生产效率和籽粒生产效率均显著降低.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号