首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The aim of this study was to develop cost-effective, appropriate solidification technologies for treating hazardous industrial wastes that are currently disposed of in ways that may threaten the quality of local groundwater. One major objective was to use materials other than cement, and preferably materials that are themselves wastes, as the solidification additives, namely using wastes to treat wastes or locally available natural material. This research examines the cement-based and lime-based stabilization/solidification (S/S) techniques applied for waste generated at a metal-plating industry and a dye industry. For the lime-based S/S process the following binder mixtures were used: cement kiln dust/ lime, bentonite/lime and gypsum/lime. For the cement-based S/S process three binder mixtures were used: cement kiln dust/cement, bentonite/cement and gypsum/cement. The leachability of the wastes was evaluated using the toxicity characteristic leaching procedure. The applicability and optimum weight ratio of the binder mixtures were estimated using the unconfined compressive strength test. The optimum ratio mixtures were mixed with waste samples in different ratios and cured for 28 days in order to find the S/S products with the highest strength and lowest leachability at the same time. The results of this work showed that the cement-and lime-based S/S process, using cement kiln dust and bentonite as additives can be effectively used in order to treat industrial waste.  相似文献   

2.
This study investigated the properties of solidified waste using ordinary Portland cement (OPC) containing synthesized zeolite (SZ) and natural zeolite (NZ) as a binder. Natural and synthesized zeolites were used to partially replace the OPC at rates of 0%, 20%, and 40% by weight of the binder. Plating sludge was used as contaminated waste to replace the binder at rates of 40%, 50% and 60% by weight. A water to binder (w/b) ratio of 0.40 was used for all of the mixtures. The setting time and compressive strength of the solidified waste were investigated, while the leachability of the heavy metals was determined by TCLP. Additionally, XRD, XRF, and SEM were performed to investigate the fracture surface, while the pore size distribution was analyzed with MIP. The results indicated that the setting time of the binders marginally increased as the amount of SZ and NZ increased in the mix. The compressive strengths of the pastes containing 20 and 40wt.% of NZ were higher than those containing SZ. The compressive strengths at 28 days of the SZ solidified waste mixes were 1.2-31.1MPa and those of NZ solidified waste mixes were 26.0-62.4MPa as compared to 72.9MPa of the control mix at the same age. The quality of the solidified waste containing zeolites was better than that with OPC alone in terms of the effectiveness in reducing the leachability. The concentrations of heavy metals in the leachates were within the limits specified by the US EPA. SEM and MIP revealed that the replacement of Portland cement by zeolites increased the total porosity but decreased the average pore size and resulted in the better containment of heavy ions from the solidified waste.  相似文献   

3.
This study focuses on evaluation and quantification of factors affecting leachability of lead from bottom ashes of municipal solid waste incinerators (MSWI) by utilizing a database. The database, which was constructed with data collected from sources such as research papers, questionnaires and reports, consists of 1149 data sets on 508 MSWI plants. Factors chosen as affecting lead leachability included: pH in the leachate, loss on ignition of bottom ash, total content of lead, and content of main elements such as Fe, Mn, Si and Al. The lead leachability was reduced to a minimum at neutral pH, increased with increasing pH and, especially, showed an abrupt increase at pH levels above 12. The main factor controlling the pH of the leachate appeared to be leachable Ca(2+) originating from portlandite (Ca(OH)(2)). Leaching concentration increased with increasing total contents of lead, and the relationship between leaching of lead and loss on ignition showed no distinct tendencies. The lead leaching ratio increased with decreasing total contents of Si, Mn and Fe. It is evident, therefore, that these numerous factors determine the leachability of lead in a simultaneous and complex manner.  相似文献   

4.
The chemical composition and the leachability of heavy metals in municipal solid waste incinerator (MSWI) fly ash were measured and analysed. For the leachability of unstabilized MSWI fly ash it was found that the concentrations of Pb and Cr exceeded the leaching toxicity standard. Cementitious solidification of the MSWI fly ash by Na2SiO3-activated ground granulated blast-furnace slag (NS) was investigated. Results show that all solidified MSWI fly ash can meet the landfill standards after 28 days of curing. The heavy metals were immobilized within the hydration products such as C-S-H gel and ettringite through physical encapsulation, substitution, precipitation or adsorption mechanisms.  相似文献   

5.
This paper discusses the stabilisation/solidification process with Portland cement applied to municipal solid waste incineration residues. Two types of residues were considered: fly ash (FA) produced in an electrostatic precipitator, and air pollution control (APC) residues from a semi-dry scrubber process. Cement pastes with different percentages of FA and APC residues were characterised according to their physical properties, the effect of the hydration products and their leaching behaviour. Portland pastes prepared with APC residues showed a rapid setting velocity in comparison with setting time for those pastes substituted with FA residues. Portland cement hydration was retarded in FA pastes. Leaching test results showed that heavy metals (such as Zn, Pb and Cd) and sulphates are immobilised within the paste, whereas chlorides are only partially retained. The carbonation process increases the leachability of S04(2-) and heavy metals such as Zn and Cr.  相似文献   

6.
Fly- and scrubber-ash (weight ratio of approximately 1:3) from municipal solid waste incinerators (MSWI) are a major land-fill disposal problem due to their leaching of heavy metals. We uniformly mixed both types of ash with optimal amounts of waste glass frit, which was then melted into a glassy slag. The glassy slag was then pulverized to a particle size smaller than 38 μm for use as a cement substitute (20–40% of total cement) and blended with sand and cement to produce slag-blended cement-mortar (SCM) specimens. The toxicity characteristics of the leaching procedure tests on the pulverized slag samples revealed that the amount of leached heavy metals was far below regulatory thresholds. The compressive strength of the 28-day cured SCM specimens was comparable to that of ordinary Portland cement mortars, while the compressive strength of specimens cured for 60 or 90 days were 3–11% greater. The observed enhanced strength is achieved by Pozzolanic reaction. Preliminary evaluation shows that the combination of MSWI fly- and scrubber-ash with waste glass yields a cost effective and environmentally friendly cement replacement in cement-mortars.  相似文献   

7.
The continuous increase in generation of solid wastes and gradual declining of fossil fuels necessities the development of sustainable conversion technologies. Recent studies have shown that the addition of biomass with hydrogen-rich co-reactants (plastics) altogether enhances the quality of bio-fuels using pyrolysis process. It was observed that red mud (which is produced as by-product in Bayer process) was used as a catalyst in few conversion process. In this study, pyrolysis of biomass (Pterospermum acerifolium) and waste plastic mixture with activated red-mud catalyst was investigated using thermo-gravimetric analysis. The kinetic parameters (activation energy and pre-exponential factor) of this process were determined using distributed activation energy model (DAEM). The DAEM was effectively applied to decide the activation energy (E) and pre-exponential factor (A) for each sample at various conversions during the catalytic co-pyrolysis. The biomass, plastic, biomass–plastic, and biomass–plastic–catalyst exhibited activation energies in the ranges of 78–268, 172–218, 67–307, and 202–292 kJ/mol, respectively.  相似文献   

8.
With respect to sustainable development, the leachability of trace metal from solid materials in contact with water has focused much attention over the years. Portland cements produced in industrial kilns generally contain from 10 to 300 mg/kg of trace metals. The behaviour of these endogenous metals has been, in this regard, the target of different leaching studies. Many of these researches concluded that heavy metals release are lower than analytical detection limits. Although satisfying from an environmental point of view, it induces a lack in the knowledge about the trace metals behavior during the leaching of cement based material. Accordingly, we designed the CTG-LEACHCRETE device, a dynamic leaching system (modified Soxhlet type) that overcomes this difficulty and allows long term monitoring. The experimental procedure is presented and preliminary results are discussed.  相似文献   

9.
Municipal solid waste incinerators every year produce tons of fly ashes which, differently from coal fly ashes, contain large amounts of toxic substances (heavy metals, dioxins, furans). The stabilization/solidification (S/S) technology known as geopolymerization is proposed with the purpose to bond physically and chemically incinerator fly ashes (IFA) in a solid matrix, in order to reduce pollutant mobility. The chemical stability of geopolymers with Si/Al ratio of 1.8–1.9 and Na/Al ratio of 1.0, synthesized by alkali activation of metakaolin and the addition of 20 wt% of two different kinds of IFA, is presented. The concentration of the alkaline solution, water to solid ratio and curing process have been optimized. The room temperature consolidation of IFA containing geopolymers has been tested for leachability in water for 1 day, accordingly to EN 12457 regulation and extended to 7 days to increase the water attack on solid granules. Leachable metals in the test solution, determined by ICP_AES, fall within limit values set by regulation for non-dangerous waste landfill disposal. Geopolymeric matrix evolution with leaching time has been also evaluated in terms of pH and electrical conductivity increase in solution.  相似文献   

10.
This article proposes a quick method of monitoring for pozzolanic reactivity of waste ashes by investigating the electrical conductivity of the suspension at an elevated temperature. This suspension is obtained by mixing tested pozzolan with an ordinary Portland cement (OPC) solution produced by mixing ordinary Portland cement with water. For comparison, silica fume, metakaolin, rice husk ash and river sand – whose pozzolanic reactivities range from reactive to inert – were used in the experimental investigation. The electrical conductivity of the suspension was continually recorded by using an electrical conductivity meter and stored by using a personal computer for a period of slightly over 1 day. The indicative parameters that can be related to pozzolanic reactivity were discussed and analyzed in detail. It was found that it is possible to determine the pozzolanic reactivity of fly ash within 28 h by using the proposed technique, as compared to 7 or 28 days for the determination of strength activity index according to ASTM. This technique would help concrete technologists to speedily investigate the quality of fly ash for use as a cement replacement in order to alleviate pollution caused by cement production and solve disposal problems of waste ashes.  相似文献   

11.
The sintering process offers an opportunity to combine detoxification and resource recovery for the treatment of municipal solid waste (MSW) incinerator fly ash. However, the chromium (Cr) in the sintered fly ash becomes more readily leachable with increasing sintering time and temperature, thus posing severe threats to the environment and human health when the sintered ash is recycled or reused. This study investigated the enhanced leachability of fly ash containing Cr, by heating the chromium (III) oxide (Cr2O3)-spiked fly ash to 800 degrees C in atmospheres containing air, nitrogen gas (N2), and 5% H2 + 95% N2, respectively. The results indicated that trivalent chromium was converted to its soluble hexavalent form during sintering in the air atmosphere; whereas sintering in a nitrogen atmosphere significantly reduced the leachability of Cr due to lack of oxygen (O2) to oxidize. The effects of the sintering temperature on the total chromium content and the leaching concentration in the toxicity characteristic leaching procedure (TCLP) extract are also discussed.  相似文献   

12.
The objective of this work was to determine the composition and production rate of dental solid waste, produced by dental practices in the Prefecture of Xanthi, a multicultural area in Northeast Greece with a population of 102,000. For the study, 22 private dental practices and 1 public dental practice were selected of the 48 private and 5 public dental practices in operation. The 22 private dental practices included 16 owned by Christian Greek-born dentists, 3 by Moslem dentists and 3 by Christian dentists repatriated from the former Soviet Union. Differentiation on the basis of religion is directly related to the countries from which dentists received their training, e.g., Greece-European Union, Turkey and former Soviet Union. Thus, including the one public dental practice, 4 study groups were considered. Waste collection took place for 22 working days, from 20 May to 27 June 2002. This period was considered to be a representative one for a semi-rural area, such as Xanthi. Dentists were instructed to collect the total amount of waste they produced. A total of 260 kg dental solid waste was collected during the study period and was manually separated. Dental solid waste was classified in three main categories: (1) Infectious and potentially infectious waste, accounting for 94.7% by weight. (2) Non-infectious waste accounting for 2.0%. (3) Domestic-type waste, accounting for 3.3% by weight. The category of infectious waste is classified as hazardous and includes components containing metal (8.51%), components without metal (91.18%) and amalgam (0.33%). Using the weight data, the production rate of dental solid waste for the study period in the Prefecture of Xanthi was determined to be 513 g/practice/day and of infectious and potentially infectious waste 486 g/practice/day. The latter includes the production rate of sharps (9.8 g/practice/day), non-sharps (31.6), infectious waste without metal (443) and amalgam (1.6 g/practice/day). Since dental solid waste is currently disposed of in landfills together with the municipal solid waste, the results of the study were used to suggest an appropriate management scheme. The results were also used to compare the composition and production rates of dental solid waste produced by the 4 study groups.  相似文献   

13.
Waste generation has increased considerably worldwide in the last decades. As a consequence, incineration became an alternative for reducing waste volume, leading to the generation of ash as a new type of waste. The new cement-ash composite systems have been tested for future applications in building materials. Having in mind the previous data and scientific reports, the objective of the present study is oriented to evaluate the additions of hospital waste ash in cement matrices to be potentially used as construction elements. This involved the assessment of the effect of the additions (different proportions of ash and metal-spiked ash) on the physico-mechanical properties of the building materials and the leachability of metals. The experiences show the feasibility of including hospital waste ashes in masonry blocks or other similar products.  相似文献   

14.
The objective of this study was to characterize recovered soil fines from construction and demolition (C&D) waste recycling facilities for trace organic pollutants. Over a period of 18 months, five sampling trips were made to 14 C&D waste recycling facilities in Florida. Screened soil fines were collected from older stockpiles and newly generated piles at the sites. The samples were analyzed for the total concentration (mg/kg) of a series of volatile organic compound (VOCs) and semi-volatile organic compounds (semi-VOCs). The synthetic precipitation leaching procedure (SPLP) test was also performed to evaluate the leachability of the trace organic chemicals. During the total analysis only a few volatile organic compounds were commonly found in the samples (trichlorofluoromethane, toluene, 4-isopropyltoluene, trimethylbenzene, xylenes, and methylene chloride). A total of nine VOCs were detected in the leaching test. Toluene showed the highest leachability among the compounds (61.3-92.0%), while trichlorofluoromethane, the most commonly detected compound from both the total and leaching tests, resulted in the lowest leachability (1.4-39.9%). For the semi-VOC analysis, three base-neutral semi-VOC compounds (bis(2-ethylhexyl)phthalate, butyl benzyl phthalate, and di-n-butyl phthalate) and several PAHs (acenaphthene, pyrene, fluoranthene, and phenanthrene) were commonly detected in C&D fines samples. These compounds also leached during the SPLP leaching test (0.1-25%). No acid extractable compounds, pesticides, or PCBs were detected. The results of this study were further investigated to assess risk from land applied recovered soil fines by comparing total and leaching concentrations of recovered soil fines samples to risk-based standards. The results of this indicate that the organic chemicals in recovered soil fines from C&D debris recycling facilities were not of a major concern in terms of human risk and leaching risk to groundwater under reuse and contact scenarios.  相似文献   

15.
The objectives of this study were to improve the mechanical stability of a sulphide soil with additives of an industrial waste product (LD-Slag) and Portland Cement. The criterion of using LD-Slag was if it could be done in an environmentally proper way. Sequential Leaching Tests were performed on monolithic LD-Slag/Portland Cement stabilised sulphide soil samples in order to register the leachability and pollution potentials. Different pH and Eh conditions were established in these tests in order to control the leachability of Na, K, Ca and Mg, which are important during cementation processes inside as well as outside an inforced monolith, and the leachability of V, which is regarded as a pollutant. The contents of Cr and V of pure LD-Slag, monolithic samples and leachates were compared with Canadian and Finnish Maximum Containment Level standards. The investigation showed that acidic conditions will increase the leachability of V. An acidic environment will even change the physical properties of a monolith. However, acidic conditions are not likely to occur in an in-situ anaerobic sulphide soil.  相似文献   

16.
Waste to energy conversion is based on the classification of waste. In-flight catering wastes resulting from Egypt Airlines economy class passengers were classified. The solid waste stream generated contains plastic, paper, left-over waste food and aluminum. The type of meal served varies according to the period of flight and so the quantity and content of the waste stream. It was found that the waste generation rate varied from 61.3 to 265 g according to the meal type. Breakfast snack meal generates the highest weight of waste which recorded an average of 265 g. Plastic waste generated varied from 39.6% to 64.6% by weight for the various types of meals served. A total amount of 725 tons were generated annually from organic waste (paper, plastic and food waste) among which a non combustible 39.4 tons of aluminum. The calorific value for each generated item is calculated and the total energy potential reached up to 14.3 TJ annually.  相似文献   

17.
A study is undertaken to determine the waste immobilization performance of low-level wastes in cement-clay mixtures. Liquid low-level wastes are precipitated using chemical methods, followed by solidification in drums. Solidification is done using cementation processes. Long-term leaching rates of the radionuclides are used as indicators of immobilization performance of solidified waste forms. In addition to evaluating the effects of kaolin clay on the leaching properties of the cemented waste forms, the effect of addition of kaolin on the strength of the cemented waste form is also investigated. The long term leaching tests show that inclusion of kaolin in cement reduces the leaching rates of the radionuclides significantly. However, clay additions in excess of 15 wt.% causes a significant decrease in the hydrolytic stability of cemented waste form. It is found that the best waste isolation, without causing a loss in the mechanical strength, is obtained when the kaolin content in cement is 5%.  相似文献   

18.
The suitability of using cement-stabilized sludge products as artificial soils in earth works was evaluated. The sludge products investigated were cemented sludge, cement-treated clay-amended sludge (SS+MC), and cement-treated copper slag-amended sludge (SS+CS). The leachability of lead (Pb), zinc (Zn), copper (Cu), and chromium (Cr) were assessed using the sequential extraction technique, toxicity characteristic leaching procedure (TCLP), NEN 7341 availability test, and column leaching test. The results indicated that Zn leachability was reduced in all the cement-stabilized sludge products. In contrast, Cu was transferred from the organic fraction to the readily leachable phases in the cement-stabilized sludge products and therefore exhibited increased leachability. The increased Cu leachability could be attributed to dissolution of humic substances in the sludge as a result of elevated pH. Good correlation between dissolved organic carbon (DOC) and heavy metal leaching from the cement-stabilized sludge products was observed in the column leaching experiment. Even with a cement percentage as small as 12.5%, calcium silicate hydrate (C-S-H) was formed in the SS+MC and SS+CS products. Inclusion of the marine clay in the SS+MC products could reduce the leaching potentials of Zn, and this was the great advantage of the marine clay over the copper slag for sludge amendment.  相似文献   

19.
Stockpiled municipal waste incinerator bottom ash is frequently considered for utilization as a construction material. Two 360 kg lysimeter experiments were conducted to study percolation washing of contaminants from stockpiled MSW bottom ash. One lysimeter was leached with a concentrated sodium hydroxide solution, as a possible pre-treatment for improvement of the bottom ash characteristics prior to utilization, while the other was leached using distilled water. The lysimeter leachate was analysed, and at the end of the 2-year leaching period, the bottom ash from each lysimeter was subjected to several laboratory tests to assess the effect of the treatments. The laboratory tests showed that distilled water leachability of both treated ashes was an order of magnitude lower than that of fresh ash, but long-term contaminant leachability under acidic conditions had not changed. Although alkaline washing clearly resulted in greater contaminant removal than did distilled water washing, the chemical properties of the alkaline-leached bottom ash were not significantly different from those of the water-leached ash.  相似文献   

20.
Immobilization of a model liquid organic pollutant, i.e. the 2-chloroaniline (2-CA), into a cement matrix using organoclays as pre-sorbent agents was investigated. Five cement-clay pastes were prepared with different nominal water-to-cement ratios (w/c=0.40, 0.25 and 0.15 wt/wt) and various amounts of waste (waste-to-cement o/c=0.20, 0.60 and 1.00 wt/wt); for comparison, a neat cement paste was also prepared. Dynamic leach tests were performed on solidified monoliths in order to assess the successful immobilization of the 2-CA. In monoliths at constant w/c ratio (0.40) the total amount of pollutant released increases with its initial content, and ranges from 15 to 35% with respect to it. By lowering w/c from 0.40 to 0.15 at constant o/c, the performances improved (<25% released). The microstructure of the hardened cement-clay pastes was characterized by quantitative X-ray diffraction (QXRD) and electronic microscopy (SEM-EDS) techniques; hydration degree was estimated by means of thermogravimetric analysis (TGA) in addition to QXRD. No evidence of any chemical reaction between 2-CA and cement phases was found. Moreover, it was shown that the most important factors affecting the cement hydration process were the total water content, i.e. the one taking also into account the water contained in the wet polluted clay, and the amount of 2-CA not firmly sorbed by the organoclay, and then freely dispersed in the paste.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号