首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
It is known that aeration reduces rapidly the concentration of organic matter in leachate. However, the oxygen flow rate required to attain a certain reaction rate of organic matter should be carefully estimated. In this study, using the oxygen ratio (the ratio of oxygen flow rate by aeration to oxygen consumption rate of waste layer) as a parameter, the reaction rate of organic matter in leachate from landfilled incineration ash and incombustible waste upon aeration was evaluated. Total organic carbon (TOC) in the leachate was reduced rapidly when the oxygen ratio was high. The decomposition rate exceeded the elution rate of TOC in the leachate from the waste layer for several days when the oxygen ratio was above 102. The results indicate that the oxygen ratio can be used as a parameter for the aeration operation in actual landfill sites, to rapidly stabilize organic matter in leachate.  相似文献   

2.
Leachate was collected from an anaerobic lagoon at Shanghai Laogang refuse landfill, the largest landfill in China, and the sample was separated into six fractions using micro-filtration membranes, followed by ultra-filtration membranes. Several parameters of the samples were measured, including chemical oxygen demand (COD), total organic carbon (TOC), total solids (TS), pH, total phosphate (TP), total nitrogen (TN), fixed solids (FS), NH4+, orthophosphate, color, turbidity, and conductivity. These parameters were then quantitatively correlated with the molecular weight cutoff of the membrane used. Organic matter in the dissolved fraction (MW<1kDa) predominated in the leachate, accounting for 65% of TOC. Thermal infrared spectroscopy was used to characterize the filter residues. Asymmetric and symmetric stretching of methyl and methylene groups, and of functional groups containing nitrogen and oxygen atoms, were observed. In addition, the ability of two different samples to adsorb heavy metals was tested. Cu2+ was chosen as the representative heavy metal in this study, and the samples were soil; aged refuse, which had spent 8 years in a conventional sanitary landfill; and samples of soil and aged refuse treated for 48h with leachate in the ratio of 5g of sample per 50ml of leachate. Cu2+ uptake by the raw soil was approximately 4.60microg/g, while uptake by the leachate-contacted soil and leachate-contacted aged refuse were 5.66 and 5.11microg/g, respectively. These results show that the organic matter in the leachate enhanced the capacity of aqueous solutions to adsorb Cu2+.  相似文献   

3.
Adsorbable organic halides (AOX) and AOX formation potential (AOXFP) were investigated in 46 landfill lea-chates as potentially toxic parameters. AOX in landfill leachate was within the range <10–2200 μg Cl/l, and AOXFP was within 51–15 000 μg Cl/l. AOX and AOXFP correlated with chemical oxygen demand (COD). AOX discharge from closed landfills was generally lower than that from operating landfills. The molar ratio of AOXFP/total organic carbon (TOC) suggested that organic compounds in a leachate have a double bond every 15–190 carbons under the supposition that one chlorine would add to one double bond. The five landfills discharging high-level AOXFP (>4000 μg Cl/l) were all landfills where sludge had been dumped. The removal efficiencies of three parameters through leachate treatment processes were as follows: polychlorinated dibenzo-dioxins/dibenzo-furans (PCDDs/DFs) > TOC > AOX. PCDDs/DFs were substantially removed at p.p.t. levels, while AOX was hardly removed at relatively low levels. Received: February 14, 2000 / Accepted: January 9, 2001  相似文献   

4.
Landfill leachate characterization is a critical factor in establishing a corresponding effective management strategy or treatment process. However, it is often difficult to forecast leachate quality because of a variety of influencing factors such as waste composition and landfill operations. This paper describes leachate formation mechanisms, summarizes leachate quality indicators, and investigates the temporal variation of leachate quality from pre-sorted and baled municipal solid waste characterized with high organic and moisture content. The purpose of the study is to evaluate the potential effects of waste composition and site-specific operational procedures on biodegradation processes and leachate quality at a field-scale landfill that receives in excess of 1800 tonnes per day of refuse. For this purpose, waste disposal and leachate generation rates were monitored and leachate samples were collected for a period of 18 months during the early stages of refuse deposition. Chemical analysis was performed on the samples and the temporal variation of several parameters were monitored including pH, COD, TOC, TDS, chlorides, sulfates, orthophosphates, nitrates, ammonia nitrogen, hardness, and heavy metals. Chemical concentration levels were related to biological activity within the landfill and the results indicated that: (1) pre-sorting and baling of the waste did not hinder waste stabilization; and (2) the high organic and moisture contents resulted in an extremely strong leachate, particularly at the onset of biodegradation processes, which can affect the leachate treatment facility.  相似文献   

5.
A test road constructed with municipal solid waste incineration (MSWI) bottom ash was monitored over a period of 36 months. Using chemical and toxicological characterisation, the environmental impact of leachates from bottom ash was evaluated and compared with leachates from gravel used as reference. Initial leaching of Cl, Cu, K, Na, NH4-N and TOC from bottom ash was of major concern. However, the quality of the bottom ash leachate approached that of the gravel leachate with time. Leachates from the two materials were compared regarding the concentration of pollutants using multivariate data analyses (MVDA). A standardized luminescent bacteria assay using Vibrio fischeri did not show any toxicity, most likely because saline contamination can mask the toxic response and stimulate luminescence in these marine bacteria. A mung bean assay using Phaseolus aureus revealed that the toxicity of bottom ash leachate collected at the very beginning of the experimental period (October 2001 and May 2002) might be attributed to the following components and their respective concentrations in mg l(-1): Al (34.2-39.2), Cl (2914-16,446), Cu (0.48-1.92), K (197-847), Na (766-4180), NH4-N (1.80-8.47), total-N (12.0-18.5), and TOC (34.0-99.0). The P. aureus assay was judged as a promising environmental tool in assessing the toxicity of bottom ash leachate.  相似文献   

6.
A natural treatment system for the treatment of leachate was studied at Moskogen landfill in southern Sweden. This facility consists of three consecutive ponds and a soil-plant (SP)-system. A test area, receiving water from the third pond with the same hydraulic load as the SP-system, was used for estimation of the latter system. Quality parameters including biochemical oxygen demand, total organic carbon, ammonium, nitrate, orthophosphate, and total suspended solids along the treatment line were determined as well as soluble metals (Cu, Cd, Zn, Cr, Ni, and Pb). In addition a thorough investigation along the treatment line has also been performed concerning volatile organic compounds and semi-volatile organic compounds. Non-polar organic compounds were investigated using gas chromatography-mass spectrometry. Quantification was based on the assumption of equal response for the compounds found in comparison with the chosen marker substances. For polar, water-soluble compounds the measurements were restricted to phenolic compounds using high-performance liquid chromatography. Several different types of organic compounds were found in the raw leachate including aromatics, benzene-sulfonamides, biphenyls, naphthalene, organic phosphates, polycyclic aromatic hydrocarbons, polychlorinated biphenyls, phenols and phthalates. The treatment system efficiently reduced organic pollutants, heavy metals, and nitrogen/phosphorous compounds. Most metals and organic compounds in the leachate were already significantly reduced to a low level in the treatment ponds and ammonium-N was efficiently transformed to nitrate-N in the SP-system.  相似文献   

7.
Bottom ash from municipal solid waste incineration (MSWI) is a main type of waste that is landfilled in Japan. The long-term elution of organic matter from the MSWI bottom ash layers is a concern because maintenance and operational costs of leachate treatment facilities are high. In closed system disposal facilities (CSDFs), which have a roof to prevent rainfall from infiltrating into the waste layers, water must be supplied artificially and its quantity can be controlled. However, the quantity of water needed and how to apply it (the intensity, period and frequency) have not been clearly defined. In order to discuss an effective watering plan, this study proposes a new washout model to clarify a fundamental mechanism of total organic carbon (TOC) elution behavior from MSWI bottom ash layers. The washout model considers three phases: solid, immobile water and mobile water. The parameters, including two mass transfer coefficients of the solid-immobile water phases and immobile-mobile water phases, were determined by one-dimensional column experiments for about 2 years. The intensity, period and frequency of watering and other factors were discussed based on a numerical analysis using the above parameters. As a result, our washout model explained adequately the elution behavior of TOC from the MSWI bottom ash layer before carbonation occurred (pH approximately 8.3). The determined parameters and numerical analysis suggested that there is a possibility that the minimum amount of water needed for washing out TOC per unit weight of MSWI bottom ash layer could be determined, which depends on the two mass transfer coefficients and the depth of the MSWI bottom ash layer. Knowledge about the fundamental mechanism of the elution behavior of TOC from the MSWI bottom ash layer before carbonation occurs, clarified by this study, will help an effective watering plan in CSDFs.  相似文献   

8.
Carbon in waste can occur as inorganic (IC), organic (OC) and elemental carbon (EC) each having distinct chemical properties and possible environmental effects. In this study, carbon speciation was performed using thermogravimetric analysis (TGA), chemical degradation tests and the standard total organic carbon (TOC) measurement procedures in three types of waste materials (bottom ash, residual waste and contaminated soil). Over 50% of the total carbon (TC) in all studied materials (72% in ash and residual waste, and 59% in soil) was biologically non-reactive or EC as determined by thermogravimetric analyses. The speciation of TOC by chemical degradation also showed a presence of a non-degradable C fraction in all materials (60% of TOC in ash, 30% in residual waste and 13% in soil), though in smaller amounts than those determined by TGA. In principle, chemical degradation method can give an indication of the presence of potentially inert C in various waste materials, while TGA is a more precise technique for C speciation, given that waste-specific method adjustments are made. The standard TOC measurement yields exaggerated estimates of organic carbon and may therefore overestimate the potential environmental impacts (e.g. landfill gas generation) of waste materials in a landfill environment.  相似文献   

9.
Toxicity of waste gasification bottom ash leachate from landfill lysimeters (112 m(3)) was studied over three years. The leachate of grate incineration bottom ash from a parallel setup was used as reference material. Three aquatic organisms (bioluminescent bacteria, green algae and water flea) were used to study acute toxicity. In addition, an ethoxyresorufin-O-deethylase (EROD) assay was performed with mouse hepatoma cells to indicate the presence of organic contaminants. Concentrations of 14 elements and 15 PAH compounds were determined to characterise leachate. Gasification ash leachate had a high pH (9.2-12.4) and assays with and without pH adjustment to neutral were used. Gasification ash leachate was acutely toxic (EC(50) 0.09-62 vol-%) in all assays except in the algae assay with pH adjustment. The gasification ash toxicity lasted the entire study period and was at maximum after two years of disposal both in water flea (EC(50) 0.09 vol-%) and in algae assays (EC(50) 7.5 vol-%). The grate ash leachate showed decreasing toxicity during the first two years of disposal in water flea and algae assays, which then tapered off. Both in the grate ash and in the gasification ash leachates EROD-activity increased during the first two years of disposal and then tapered off, the highest inductions were observed with the gasification ash leachate. The higher toxicity of the gasification ash leachate was probably related to direct and indirect effects of high pH and to lower levels of TOC and DOC compared to the grate ash leachate. The grate ash leachate toxicity was similar to that previously reported in literature, therefore, confirming that used setup was both comparable and reliable.  相似文献   

10.
Open waste dump systems are still widely used in Indonesia. The Jatibarang landfill receives 650-700 tons of municipal waste per day from the city of Semarang, Central Java. Some of the leachate from the landfill flows via several natural and collection ponds to a nearby river. The objectives of the study were to identify seasonal landfill leachate characteristics in this surface water and to determine the occurrence of natural attenuation, in particular the potential for biodegradation, along the flow path. Monthly measurements of general landfill leachate parameters, organic matter-related factors and redox-related components revealed that leachate composition was influenced by seasonal precipitation. In the dry season, electrical conductivity and concentrations of BOD, COD, N-organic matter, ammonia, sulphate and calcium were significantly higher (1.1-2.3 fold) than during the wet season. Dilution was the major natural attenuation process acting on leachate. Heavy metals had the highest impact on river water quality. Between the landfill and the river, a fivefold dilution occurred during the dry season due to active springwater infiltration, while rainwater led to a twofold dilution in the wet season. Residence time of leachate in the surface leachate collection system was less than 70 days. Field measurements and laboratory experiments showed that during this period hardly any biodegradation of organic matter and ammonia occurred (less than 25%). However, the potential for biodegradation of organic matter and ammonia was clearly revealed during 700 days of incubation of leachate in the laboratory (over 65%). If the residence time of leachate discharge can be increased to allow for biodegradation processes and precipitation reactions, the polluting effects of leachate on the river can be diminished.  相似文献   

11.
The application of reverse osmosis for the treatment of landfill leachate is becoming widespread in Turkey as well as in Europe. A major drawback of this process is the production of concentrate, which could be as much as 30% of the feed stream, and high concentrations of salts and contaminants. The reverse osmosis concentrate is disposed of by using several methods including re-infiltration, drying, incineration and solidification/stabilization. In this study, solidification/stabilization (S/S) technology was studied for the treatment of reverse osmosis concentrate produced from landfill leachate. In order to benefit from its capability to absorb heavy metals, ammonia and some other pollutants, zeolite and different aggregate materials were used in solidification experiments. Main pollutants in the leachate concentrate, TOC, DOC, TDS and ammonia were successfully solidified and approximately 1% of TOC, DOC, TDS and ammonia remained in the eluate water. The results indicated that the landfill disposal limits could be attained by solidification/stabilization process.  相似文献   

12.
Incinerators do not achieve a complete mineralization of organic constituents of municipal solid waste. The solid residues (bottom ash, boiler ash and air pollution control residues) contain carbon which can be determined as total organic carbon (TOC). This work focuses on the TOC composition and its significance to the genesis and diagenesis of the solid residues. An analytical procedure is presented to characterize carbon species by different chemical and microscopic analytical methods. The procedure is based on two steps. In the first step a quantitative classification of TOC into four different carbon species (elemental carbon, water extractable organic carbon, dichloromethane extractable organic carbon and non extractable organic carbon) is performed to obtain a first survey of the TOC composition. Based on this survey a further characterization of individual carbon species is performed. The results of the qualitative and quantitative characterization of carbon species allow to postulate hypotheses on the influence of organic carbon on the long-term behavior of the solid residues.  相似文献   

13.
The objective of this study was to identify the organic compounds removed from the leachate when treated with Fenton–Adsorption by gas chromatography coupled to mass spectrometry (GC–MS) in order to identify toxic compounds that could be harmful for the environment or human health.The physicochemical characterization of the raw leachate was carried out before and after the Fenton–Adsorption process. The effluent from each stage of this process was characterized: pH, Biological Oxygen Demand (BOD5), Chemical Oxygen Demand (COD), Total Organic Carbon (TOC), Total Carbon (TC), Inorganic Carbon (IC), Total Solids (TS), Total Suspended Solids (TSS) and Color. The organic compounds were determined by GC–MS.The removal of COD and color reached over 99% in compliance with the Mexican Standard NOM-001-SEMARNAT-1996, which establishes the maximum permissible limits for contaminants present in wastewater discharges to water and national goods. The chromatographic analysis from the Fenton–Adsorption effluent proved that this treatment removed more than 98% of the organic compounds present in the initial sample. The mono (2-ethylhexyl) ester 1,2-benzenedicarboxylic acid persisted, although it is not considered as toxic compound by the NOM-052-SEMARNAT-2005. Therefore, the treated effluent can be safely disposed of into the environment.  相似文献   

14.
Dissolved organic carbon (DOC) may affect the transport of pollutants from incineration residues when landfilled or used in geotechnical construction. The leaching of dissolved organic carbon (DOC) from municipal solid waste incineration (MSWI) bottom ash and air pollution control residue (APC) from the incineration of waste wood was investigated. Factors affecting the mobility of DOC were studied in a reduced 2(6-1) experimental design. Controlled factors were treatment with ultrasonic radiation, full carbonation (addition of CO2 until the pH was stable for 2.5h), liquid-to-solid (L/S) ratio, pH, leaching temperature and time. Full carbonation, pH and the L/S ratio were the main factors controlling the mobility of DOC in the bottom ash. Approximately 60 weight-% of the total organic carbon (TOC) in the bottom ash was available for leaching in aqueous solutions. The L/S ratio and pH mainly controlled the mobilization of DOC from the APC residue. About 93 weight-% of TOC in the APC residue was, however, not mobilized at all, which might be due to a high content of elemental carbon. Using the European standard EN 13 137 for determination of total organic carbon (TOC) in MSWI residues is inappropriate. The results might be biased due to elemental carbon. It is recommended to develop a TOC method distinguishing between organic and elemental carbon.  相似文献   

15.
Long-term biodegradation of MSW in an aerobic landfill bioreactor was monitored as a function of time during 510 days of operation. Operational characteristics such as air importation, temperature and leachate recirculation were monitored. The oxygen utilization rates and biodegradation of organic matter rates showed that aerobic biodegradation was feasible and appropriate to proceed in aerobic landfill bioreactor. Leachate analyses showed that the aerobic bioreactor could remove above 90% of chemical oxygen demand (COD) and close to 100% of biochemical oxygen demand (BOD5) from leachate. Ammonium (NH4+), nitrate (NO3-) and sulphate (SO4(2-)) concentrations of leachate samples were regularly measured. Results suggest that nitrification and denitrification occurred simultaneously, and the increase in nitrate did not reach the levels predicted stoichiometrically, suggesting that other processes were occurring. Leachate recirculation reduced the concentrations of heavy metals because of the effect of the high pH of the leachate, causing heavy metals to be retained by processes such as sorption on MSW, carbonate precipitation, and hydroxide precipitation. Furthermore, the compost derived from the aerobic biodegradation of the organic matter of MSW may be considered as soil improvement in the agricultural plant production. Bio-essays indicated that the ecotoxicity of leachate from the aerobic bioreactor was not toxic at the end of the experiment. Finally, after 510 days of degradation, waste settlement reached 26% mainly due to the compost of the organic matter.  相似文献   

16.
Total organic carbon (TOC) concentrations and fluxes in throughfall, forest floor leachate, soil solution (15 and 35 cm depths), and groundwater for coniferous forest sites in the boreal zone throughout Finland are described. Eight upland forest stands and one peatland forest stand are included in the study and the samples were collected during 1991–1997. Carbon (C) pools in the living tree biomass and soil compartments are presented, and the hydrophobic/hydrophilic and acidic components of dissolved organic carbon (DOC) in samples collected in autumn 1999 and spring 2000 from two of the sites are compared. Biomass (aboveground and belowground) pools of C averaged 88 Mg ha-1 and soil (humus layer + 20 cm soil layer) averaged 55 Mg ha-1. Stand throughfall TOC monthly mean concentrations ranged from 4.0 to 18.6 mg L-1 and annual fluxes averaged 4.0 g m-2 yr-1. TOC concentrations in the water passing through the forest floor and soil decreased with depth. Plot mean concentrations at 35 cm depth values ranged from 4.1 to 21.2 mg L-1 and fluxes averaged 3.7 g m-2 yr-1. Throughfall TOC concentrations were lowest during the winter, snowfall period and highest during the growing season. No monotonic trends in throughfall TOC concentrations over the 1991–1997 period were found. Soil solution TOC concentrations varied considerably, both within and between years. DOC in throughfall, forest floor, and soil solutions and in both autumn and spring seasons was dominated by hydrophobic fractions, particularly acids. Spruce canopies and litter appear to be important sources of soluble organic carbon, particularly acidic and hydrophobic compounds. Further studies on the nature and dynamics of organic carbon fluxing through coniferous, boreal forest ecosystems are needed.  相似文献   

17.
Research on leachate recirculation from different types of landfills   总被引:5,自引:0,他引:5  
Landfills can produce a great amount of leachate containing highly concentrated organic matter. This is especially true for the initial leachate from landfilled municipal solid wastes (MSW) that generally has concentrations of COD(Cr) and BOD(5) up to 80,000 and 50,000mg/L, respectively. The leachate could be disposed by means of recirculating technique, which decomposes the organics through the action of proliferating microorganisms and thereby purifies the leachate, and simultaneously accelerates organic decomposition through water saturation control. Data from experimental results indicated that leachate recirculating could reduce the organic concentration considerably, with a maximum reduction rate of COD(Cr) over 95%; and, using a semi-aerobic process, NH(3)-N concentration of treated leachate could be under 10mg/L. In addition, the organic concentration in MSW decreased greatly.  相似文献   

18.
Extensive investigations of leachates and solid waste samples for organic sum parameters and environmentally relevant organic compounds were carried out at the hazardous waste landfill of Raindorf, which is operated in accordance with German Technical Instructions on Waste (TI Waste). The measurements showed that the majority of the waste samples contained only minor amounts of phenols, highly volatile chlorinated organic compounds (VCHC), benzene, toluene, ethylbenzene and xylene (BTEX), polychlorinated biphenyls (PCB) and polycyclic aromatic hydrocarbons (PAH). The concentrations ranged from less than 100μg/kg−1up to 1000μg/kg−1of dry substance. Only hydrocarbons were detected in higher concentrations (mg to g kg−1of dry substance). In most leachate and gas samples taken at the landfill, the concentrations of the abovementioned parameters were close to or even below the detection limit. The measurement of organic single compounds underlined the usefulness of the sum parameters, adsorbable organic halogen compounds and phenol index, for the estimation of the total amount of these substances. A comparison of organic sum parameter concentrations measured in leachates from landfills of differing ages indicates that the application of TI Waste leads to a reduction of the organic load in the leachate.  相似文献   

19.
Landfill functional stability provides a target that supports no environmental threat at the relevant point of exposure in the absence of active control systems. With respect to leachate management, this study investigates “gateway” indicators for functional stability in terms of the predictability of leachate characteristics, and thus potential threat to water quality posed by leachate emissions. Historical studies conducted on changes in municipal solid waste (MSW) leachate concentrations over time (longitudinal analysis) have concentrated on indicator compounds, primarily chemical oxygen demand (COD) and biochemical oxygen demand (BOD). However, validation of these studies using an expanded database and larger constituent sets has not been performed. This study evaluated leachate data using a mixed-effects regression model to determine the extent to which leachate constituent degradation can be predicted based on waste age or operational practices. The final dataset analyzed consisted of a total of 1402 samples from 101 MSW landfills. Results from the study indicated that all leachate constituents exhibit a decreasing trend with time in the post-closure period, with 16 of the 25 target analytes and aggregate classes exhibiting a statistically significant trend consistent with well-studied indicators such as BOD. Decreasing trends in BOD concentration after landfill closure can thus be considered representative of trends for many leachate constituents of concern.  相似文献   

20.
Practice review of five bioreactor/recirculation landfills   总被引:1,自引:0,他引:1  
Five landfills were analyzed to provide a perspective of current practice and technical issues that differentiate bioreactor and recirculation landfills in North America from conventional landfills. The bioreactor and recirculation landfills were found to function in much the same manner as conventional landfills, with designs similar to established standards for waste containment facilities. Leachate generation rates, leachate depths and temperatures, and liner temperatures were similar for landfills operated in a bioreactor/recirculation or conventional mode. Gas production data indicate accelerated waste decomposition from leachate recirculation at one landfill. Ambiguities in gas production data precluded a definitive conclusion that leachate recirculation accelerated waste decomposition at the four other landfills. Analysis of leachate quality data showed that bioreactor and recirculation landfills generally produce stronger leachate than conventional landfills during the first two to three years of recirculation. Thereafter, leachate from conventional and bioreactor landfills is similar, at least in terms of conventional indicator variables (BOD, COD, pH). While the BOD and COD decreased, the pH remained around neutral and ammonia concentrations remained elevated. Settlement data collected from two of the landfills indicate that settlements are larger and occur much faster in landfills operated as bioreactors or with leachate recirculation. The analysis also indicated that more detailed data collection over longer time periods is needed to draw definitive conclusions regarding the effects of bioreactor and recirculation operations. For each of the sites in this study, some of the analyses were limited by sparseness or ambiguity in the data sets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号