首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
广州市冬季PM_(2.5)污染过程二次水溶性无机离子组分特征   总被引:1,自引:0,他引:1  
为了解广州地区灰霾天气成因,基于城市超级站,对2013年12月1日—12月8日期间2次灰霾天气过程的水溶性无机离子污染特征进行研究。结果表明:监测期间二次离子(SNA)SO_4~(2-)、NO_3~-、NH_4~+分别占PM_(2.5)质量浓度的15.8%、7.4%、7.0%;2次污染过程SNA对PM_(2.5)贡献显著,机动车排放和燃煤是PM_(2.5)的主要污染来源。广州冬季属于富氨区,2次污染过程都伴随着NH_4~+显著增加,NH_4~+主要以(NH_4)_2SO_4和NH_4NO_3形式存在。  相似文献   

2.
以河源市区2016年3月27日—4月4日污染过程为研究对象,基于同期气象条件与空气质量监测数据,分析了PM_(2.5)与气象因子间的相关性,探究河源市区PM_(2.5)污染变化特征。结果表明,3月30日河源市ρ(PM_(2.5))/ρ(PM_(10))和ρ(PM_(2.5))/ρ(CO)分别为0.87和0.08,明显高于其他时段,说明当天细颗粒物污染老化和二次转化程度突出。在此次污染过程的2个不同阶段,河源市ρ(PM_(2.5))波动受到多项气象要素共同影响,其中与气压先后呈现较强负相关(R~2=0.646 2)和不明显正相关(R~2=0.006 5),与气温呈现不明显正相关(R~2=0.008 4,R~2=0.033 9),与风速先后呈现弱负相关(R~2=0.105 2)和不明显正相关(R~2=0.072 9),与相对湿度先后呈现弱正相关(R~2=0.391 3)和弱负相关(R~2=0.176 9)。通过比较该时段河源市与周边城市的ρ(PM_(2.5))变化趋势及后向轨迹分析,发现河源市与周边城市在相似的气象背景条件下,PM_(2.5)污染主要来源于本地源排放和珠三角区域传输。  相似文献   

3.
2014年使用EHM-X100型在线金属分析仪自动监测苏州市区大气PM2.5中Pb、Cu、K等24种元素质量浓度,并结合当地工业经济发展和降雨、土壤等环境状况对元素污染特征进行分析研究。结果表明:这24种元素的年均质量浓度在0.002μg/m3~0.834μg/m3之间,并总体呈现冬季质量浓度最高,春、秋季次之,夏季最低的变化趋势;Fe、Ca和Zn 3种元素在总质量浓度中占比较高,这可能与当地产业布局、建筑业及交通状况等有关,是人类活动所导致的污染。  相似文献   

4.
2020年3月2日—2021年2月28日在安庆市政务服务中心楼顶设置监测点,手工采集PM2.5样品,运用多波段碳分析仪(DRI Model 2015)分析样品中碳质组分有机碳(OC)和元素碳(EC)质量浓度;利用OC/EC法、相关分析法和主成分因子分析法对PM2.5中碳质组分的污染特征和可能来源进行解析。结果显示:安庆市手工采样期间PM2.5平均质量浓度为(45.9±28.1)μg/m3,OC和EC的平均浓度分别为(8.0±3.4)、(1.4±0.6)μg/m3,在PM2.5中占比为17.4%、3.1%。四季OC平均浓度分布为冬季(9.7±4.2)μg/m3 >春季(9.0±2.5)μg/m3 >秋季(8.3±2.9)μg/m3 >夏季(5.1±1.6)μg/m3,EC平均浓度分布为冬季(1.7±0.5)μg/m3 >春季(1.7±0.6)μg/m3 >秋季(1.3±0.4)μg/m3 >夏季(0.8±0.3)μg/m3。OC/EC范围为3.11~12.14,平均值为5.83,表明安庆市存在二次有机碳(SOC),SOC均值为(2.89±1.94)μg/m3,分别占OC和PM2.5浓度的36.1%、6.3%;四季OC、EC相关性不显著,r均小于0.85,说明安庆市的碳质组分较复杂;在不同空气质量等级条件下,OC质量浓度随着污染等级的升高而逐渐升高,EC质量浓度随着污染等级升高而先升高后降低。利用主成分分析法进行来源解析发现,道路扬尘、燃煤、柴油车尾气是碳质组分的主要来源。  相似文献   

5.
通过乌鲁木齐市2013年2月5日至26日一次重污染天气过程中,在6个采样点位进行细颗粒物PM_(2.5)的采集,并对其中的13种重金属(Cu、Sr、Mo、Cd、Pb、V、Cr、Mn、Fe、Co、Ni、As、Hg)含量、Mull污染指数、空间分布以及溯源进行了分析。结果显示:采样期间乌鲁木齐市重金属浓度在0.23~178 ng/m~3之间,浓度水平排序PbMnCrFeAsVCuNiSrCdMoCoHg,其中Cd、Hg、Pb、Cr、As浓度均高于乌鲁木齐市背景值和国内外其他城市水平,且Mull污染指数处于较严重的污染水平;在重金属元素浓度的空间分布上,铁招和南公园点位重金属浓度较高,31中学和市监测站相对较低。  相似文献   

6.
利用2013年佛山市8个国控大气自动监测站点ρ(PM_(2.5))监测数据,分析佛山市PM_(2.5)污染的时空分布特征,并诊断诱发PM_(2.5)高污染过程的关键天气类型。结果表明,佛山市2013年PM_(2.5)年均值为53μg/m3,高于国家二级标准,污染主要集中在三水区中部、南海区中部和禅城区北部。佛山市ρ(PM_(2.5))表现出明显的季节变化和日变化特征,秋、冬季是PM_(2.5)的高污染季节,其值夜间略高于白天,呈典型的双峰型分布,08:00—09:00短暂出现一个浓度的小峰值,推测与上班交通高峰有关。对PM_(2.5)持续高污染发生的地面天气形势分析表明,高压出海是诱发佛山市PM_(2.5)高污染事件最主要的天气类型。  相似文献   

7.
结合2018年10月15—20日国控站点监测数据、气象资料及激光雷达走航观测结果,对江淮地区一次重度污染过程进行了分析。利用拉格朗日粒子扩散模型和拉格朗日混合单粒子轨迹模型定性分析了区域污染来源,分别基于激光雷达和空气站实测数据提出了外来源占比的估算方法,结合嵌套网格空气质量预报模式(NAQPMS)的源解析结果,对比分析了外来源占比。以淮北市为例,结合NAQPMS和单颗粒气溶胶质谱的PM2.5在线源解析结果,对比分析此次污染过程的行业来源。结果表明,本地污染累积时段,主要以燃煤和机动车尾气混合源为主(占比>70%);受北方污染输送时段,机动尾气占比显著升高,从19.4%(16日00:00)升至66.7%(17日11:00),淮北市、蚌埠市、合肥市3个城市污染物外来输送占比分别为52.2%~70.6%、48.8%~58.8%、41.5%~59.0%。  相似文献   

8.
利用TEOM1405F型PM_(2.5)测量仪、MARGA水溶性离子在线分析仪和激光雷达对苏州市2016年8月24日—9月6日PM_(2.5)、水溶性离子和气溶胶垂直分布进行了观测,结合气象数据分析了水溶性离子的变化规律及其主要来源。结果表明,观测期间PM_(2.5)平均值为43.4μg/m3,与2014和2015年同期相比下降了42.9%和40.3%。总水溶性无机离子平均值为24.18μg/m~3,约占ρ(PM_(2.5))55.7%,其中ρ(SO_4~(2-))、ρ(NH_4~+)和ρ(NO_3~-)分别占ρ(总离子)的46.0%、25.8%、21.0%。夜间边界层降低,大气垂直扩散条件较差,是造成ρ(PM_(2.5))及ρ(水溶性离子)显著升高的主要原因。ρ(NO_3~-)/ρ(SO_4~(2-))为0.056~1.939,平均值为0.432,表明固定源(燃煤源)仍然是PM_(2.5)的主要来源;PCA方法表明苏州水溶性离子的主要来源于二次污染和燃烧源、海盐和土壤源以及地面扬尘、建筑尘。  相似文献   

9.
对石家庄市2016年12月14—23日一次重污染过程的逐时空气质量和气象资料进行了分析。结果表明,低压均压类天气控制下,较高的相对湿度和水汽压,<2.5 m/s的低风速以及<500 m的混合层高度是该次重污染形成和持续的重要原因。当风速<2.5 m/s,且相对湿度>45%或水汽压>3.6 hPa时,空气质量明显较差;当风速<2 m/s,且湿度>65%或水汽压>4 hPa时,污染级别达到严重污染;该次重污染形成与维持的地面气压临界值为1 017 hPa,当气压>1 017 hPa时,环境空气质量相对较好;当气压<1017 hPa时,更容易发生严重污染。  相似文献   

10.
冬季大气中PM_(10)和PM_(2.5)污染特征及形貌分析   总被引:6,自引:4,他引:2  
2008年冬季采集大气中PM10和PM2.5样品,利用SPSS软件进行分析。结果表明,PM10质量浓度在92.87~384.7μg/m3之间,平均值为201.09μg/m3,超标率71.43%。PM2.5浓度跨度为57.27~230.21μg/m3,平均值为133.82μg/m3,超标率89.47%。PM10和PM2.5空间分布略有差异。PM2.5/PM10在29.10%~94.76%之间,均值为66.55%。PM2.5与PM10质量浓度之间有显著相关性,相关方程:PM2.5=0.7993×PM10-55.984(R2=0.9524,置信度为95%)。通过颗粒物形貌分析,初步判定冬季大气主要污染源为燃煤和机动车尾气排放。  相似文献   

11.
通过采集淮南市6个功能区四季的PM_(2.5)样品,运用GC-MS仪测定样品中PAHs含量并分析其主要来源。结果表明:该市PM_(2.5)中PAHs质量浓度年均值为31.06 ng/m~3,呈现冬季污染程度最重,夏季最轻,采矿区商业区工业区文教区居民区对照区的特征;夏季PAHs以3环和4环为主,春、秋、冬季以4环、5环和6环为主;6个功能区均以4环PAHs为主;PAHs主要来源为煤燃烧、机动车尾气排放、生物质燃烧及焦炉挥发,其中燃煤和机动车尾气污染贡献最大。  相似文献   

12.
城市大气中PM2.5污染控制的意义与途径   总被引:8,自引:0,他引:8  
论述了控制城市大气中PM2.5污染的意义。在剖析PM2.5组成与来源的基础上。分析了控制PM2.5的途径,并对今后的研究提出了一些看法。  相似文献   

13.
基于臭氧(O3)及前体物监测数据,综合运用正定矩阵因子分解模型(PMF)、O3生成敏感性(EKMA)曲线、O3来源解析工具(OSAT)等方法,对苏州工业园区2022年春季一次典型O3污染过程成因开展研究。结果表明,高温及前体物的累积是导致园区O3超标的主要成因,个别污染时段O3及前体物受浙江、上海传输影响;污染期间园区处于典型VOCs控制区,VOCs主要来源为油气储运(35.6%)、区域背景(28.8%)、塑料制品生产(16.0%)、移动源(13.6%)、溶剂使用(6.0%)。为有效削减不利气象条件下O3峰值浓度,应重点加强本地溶剂使用、油品挥发、有机合成等污染环节VOCs的管控。  相似文献   

14.
采用单颗粒气溶胶飞行时间质谱仪(Single Particle Aerosol Mass Spectrometer,SPAMS)对西安市大气矿尘颗粒物进行连续12 d在线分析,共采集到107 425个同时含有正负质谱信息的矿尘颗粒,矿尘颗粒物占PM_(2.5)样本数的8.44%。结果表明,矿尘颗粒物的正离子碎片成分以Na~+、K~+、Al~+、Ca~+、CaO~+、Fe~+为主,同时还含有Pb~+等,负离子碎片成分以NO~-_2和NO~-_3为主,另外还含有HSO~-_4、SiO~-_3、HSiO~-_3、H(NO_3)~-_2等。在西安市大气细颗粒物中,矿尘颗粒物中贡献较大的几类(如含钙、含铁、铁氧颗粒物等)大多是老化的成分。将观测阶段采集到的矿尘颗粒纳入本地污染源谱进行来源分析,其主要来源为扬尘源、工业源、燃煤源和汽车尾气源等。  相似文献   

15.
淮安市区大气中颗粒物PM_(10)、PM_(2.5)污染水平   总被引:1,自引:0,他引:1  
通过对淮安市大气颗粒物中PM10、PM2.5的监测与污染水平分析,得出了淮安市区PM10与PM2.5浓度呈冬秋季高,夏春季低的特征。PM2.5和PM10的比值范围在0.62~0.65之间,即PM2.5在PM10以下颗粒物中所占比例大约为63%。  相似文献   

16.
2006年春季石家庄市沙尘天气与PM_(10)污染   总被引:2,自引:2,他引:2  
文章应用气象资料和环境监测逐时资料,对2006年春季石家庄市出现的沙尘天气过程中PM10浓度变化,及其与污染源、天气形势、风、周边环境等的关系进行分析。结果表明,沙尘天气的首要污染物均是PM10,PM10的变化曲线呈正态分布,春季中度及以上污染日均出现在污染日当日或次日。造成石家庄沙尘天气污染源分本地型、外来型以及两者共同影响型三种。本地型沙尘污染强度取决于风速大小及强风持续时间,PM10浓度变化与风速呈正相关。而外来型污染多发生在地面弱气压场,PM10浓度变化与风速呈反相关。文章总结出沙尘天气污染预警的几个必要条件,可供实际的空气质量预警参考。  相似文献   

17.
通过2015年1月、4月、8月、11月对苏州工业园区大气中PM_(2.5)及Pb、Cr、Cd、As、Ni 5种元素质量浓度的监测,并采用《污染场地风险评估技术导则》(HJ 25.3—2014)中推荐模型对该5种元素通过呼吸途径引起的人体健康风险进行评价。结果表明,Pb、Cr、Cd、As、Ni 5种元素平均质量浓度分别为76.2 ng/m3、6.92 ng/m3、1.45 ng/m3、4.14 ng/m3和5.71 ng/m3,平均质量浓度从高到低依次为PbCrNiCdAs;5种元素的致癌风险与危害熵分别为6.89×10-15~6.84×10~(-12)和2.57×10~(-9)~4.80×10~(-7),分别低于可接受致癌风险水平(10-6)与可接受危害熵(1)。整体而言,苏州工业园区大气重金属污染程度相对较低。  相似文献   

18.
我国4个大城市空气PM_(2.5)、PM_(10)污染及其化学组成   总被引:49,自引:3,他引:49  
报告了 1 995~ 1 996年在中国的广州、武汉、兰州、重庆 4大城市 8个采样点 PM2 .5 、PM2 .5~ 1 0 和 PM1 0 的监测结果。结果表明 ,1 995年 PM2 .5 年均值浓度为 57~ 1 60 μg/m3,比美国 1 997年颁布的标准值 (1 5μg/m3)高 2 .8~ 9.7倍。PM1 0 年日均值为 95~ 2 73μg/m3。除武汉市 1个对照点外 ,其余 7个监测点的 PM1 0 均超过我国空气质量二极标准 (1 0 0μg/m3)2 8%~ 1 73 % ,比美国标准 (50μg/m3)超过更多 ,说明污染是相当严重的。用 XRF分析了 PM2 .5 、PM2 .5~ 1 0 中 4 2种化学元素 ,结果表明 ,燃煤、燃油和其它工业污染的元素 As、Pb、Se、Zn、Cu、Cl、Br、S在这些颗粒物中有明显富集 ,特别是在PM2 .5 中的富集倍数达数十倍至数万倍 ,对人体健康有很大危害  相似文献   

19.
根据南通市大气超级站的观测结果和气象因素,对南通市2019年10月29日—11月2日一次典型沙尘污染过程、颗粒物化学组分、颗粒物消光和退偏进行分析。结果表明,在沙尘影响期间,PM10小时峰值达311 μg/m3, ρ(Ca2+)较污染前上升了7.4倍;在沙尘颗粒物碱性环境条件下,二次组分OM和NO-3的快速生成,浓度分别较污染前上升了96.6 %和34.0 %;ρ(NO-3)/ρ(SO-24)污染中(2.5)高于污染前(1.7),ρ(EC)/ρ(PM2.5)污染中(4.2%)高于污染前(3.6%),受到明显的沙尘传输影响,而移动源排放也有一定贡献,在本地地面气压场较弱情况下,导致沙尘污染过程长时间持续。  相似文献   

20.
2013—2014年采集贵阳市大气PM_(2.5)样品357个,利用ICP-OES和ICP-MS检测样品中无机元素的含量。结果表明:23种元素的年均值高低依次为Na Ca Al K Mg Fe Cu Zn Mn Pb Ba Cr Ni Sr As=Zr WRb Ga Bi=Ge Co U,其中Cr、As的年均值分别为(30±20) ng/m3和(8±5) ng/m3,超过《环境空气质量标准》(GB3095—2012)的年均参考限值。运用正定矩阵因子分解法(PMF)来源解析表明:该市大气PM_(2.5)的主要来源为燃煤排放源、生物质燃烧源、交通源、建筑水泥尘源、土壤风沙尘源和残油燃烧源,其贡献率分别为46. 6%、21. 7%、14. 8%、9. 0%、6. 2%和1. 7%,且有显著的季节变化特征。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号