首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The Kyoto Protocol is the first step towards achieving the objectives of the United Nations Framework Convention on Climate Change and aims among others to promote ‘the protection and enhancement of carbon sinks and reservoirs’. To encourage afforestation for carbon sequestration a project must be economically viable. This study uses a model to analyse the impact on project viability of a range of carbon monitoring options, international carbon credit value and discount rate, applied to a Pinus radiata afforestation project in New Zealand. Monitoring carbon in conjunction with conventional forest inventory shows the highest return. Long-term average carbon accounting has lower accounting costs, compared to annual and 5 yearly accounting, as monitoring is only required every 5–10 years until the long-term average is attained. In this study we conclude that monitoring soil carbon stocks is not economically feasible using any of the accounting methods, when carbon is valued at US$ 10/t. This conclusion may be relevant to forest carbon sequestration projects elsewhere in the world and suggests care is needed in selecting the appropriate carbon monitoring options to avoid the risk that costs could be higher than any monetary benefits from terrestrial carbon sequestration. This would remove any commercial incentive to afforest for carbon sequestration reasons and severely limit the use of forest sinks as part of any package of measures addressing the ultimate objective of the UNFCCC.  相似文献   

2.
准确评估中国森林碳汇潜力与增汇成本的经济可行性,是科学制定碳中和林业行动方案的基础。然而针对中国森林碳汇潜力与增汇成本的不同结果差异明显,可靠性需要进一步验证。为此,基于相关文献,采用Meta分析方法,对中国森林碳汇潜力与增汇成本及其导致差异的原因展开评估。研究表明:(1)中国森林碳汇量呈现不断增长的态势,但不同研究对森林碳汇潜力测度结果存在较大差异。(2)中国森林增汇的平均成本为220.45元/t CO2e(区间值为3.9~1457.02元/t CO2e),与工业减排成本相比,中国森林增汇更具有经济可行性,但波动幅度较大。(3)评估方法采用、碳库数量选择等因素是导致已有森林碳汇潜力文献估计结果差异的关键因素;森林增汇成本差异则主要受碳汇成本测度研究方法、成本收益数据来源等因素影响。(4)中国森林增汇对碳中和的贡献将会持续增加。基于研究结果,提出进一步深化森林碳汇潜力与成本测算相关研究等方面的政策建议。  相似文献   

3.
Agroforestry is recognized as a strategy for soil carbon sequestration (SCS) under the afforestation/reforestation activities, but our understanding of soil carbon (C) dynamics under agroforestry systems (AFS) is not adequate. Although some SCS estimates are available, many of them lack scientific rigor. Several interrelated and site-specific factors ranging from agroecological conditions to system management practices influence the rate and extent of SCS under AFS, so that generalizations tend to become unrealistic. Furthermore, widely and easily adoptable methodologies are not available for estimating the SCS potential under different conditions. In spite of these, there is an increasing demand for developing “best-bet estimates” based on the current level of knowledge and experience. This document presents an attempt in that direction. The appraisal validates the conjecture that AFS can contribute to SCS, and presents indicative ranges of SCS under different AFS in the major agroecological regions of the tropics. The suggested values range from 5 to 10 kg C ha?1 in about 25 years in extensive tree-intercropping systems of arid and semiarid lands to 100–250 kg C ha?1 in about 10 years in species-intensive multistrata shaded perennial systems and homegardens of humid tropics.  相似文献   

4.
Soil organic carbon sequestration rates over 20 years based on the Intergovernmental Panel for Climate Change (IPCC) methodology were combined with local economic data to determine the potential for soil C sequestration in wheat-based production systems on the Indo-Gangetic Plain (IGP). The C sequestration potential of rice-wheat systems of India on conversion to no-tillage is estimated to be 44.1 Mt C over 20 years. Implementing no-tillage practices in maize-wheat and cotton-wheat production systems would yield an additional 6.6 Mt C. This offset is equivalent to 9.6% of India's annual greenhouse gas emissions (519 Mt C) from all sectors (excluding land use change and forestry), or less than one percent per annum. The economic analysis was summarized as carbon supply curves expressing the total additional C accumulated over 20 year for a price per tonne of carbon sequestered ranging from zero to USD 200. At a carbon price of USD 25 Mg C−1, 3 Mt C (7% of the soil C sequestration potential) could be sequestered over 20 years through the implementation of no-till cropping practices in rice-wheat systems of the Indian States of the IGP, increasing to 7.3 Mt C (17% of the soil C sequestration potential) at USD 50 Mg C−1. Maximum levels of sequestration could be attained with carbon prices approaching USD 200 Mg C−1 for the States of Bihar and Punjab. At this carbon price, a total of 34.7 Mt C (79% of the estimated C sequestration potential) could be sequestered over 20 years across the rice-wheat region of India, with Uttar Pradesh contributing 13.9 Mt C.  相似文献   

5.
Voluntary markets transacted over $66 million USD of forest carbon offsets in 2016, according to Forest Trends, and over 99% of those offset projects were audited to a standard, primarily the Verified Carbon Standard (VCS). We provide a table characterizing all 70 validated and verified forest carbon projects employing the VCS version 3.0 currently-in-use (December 2011–July 2017). We also examine two separate aspects of the audit process––impact and thoroughness––to assess the effectiveness of the costly audit process, which can consume up to one-third of offset revenue. Audit impact we measure in terms of reduction in the number of offsets from ex ante estimated to ex post approved. Audit thoroughness we measure both directly in terms of the number of auditor hours worked per project and also indirectly in terms of the total number of Corrective Action Requests (CARs)/Non-Conformity Reports (NCRs) auditors prescribe. In terms of impact, we find that Afforestation/Reforestation/Restoration (A/R/R) and Improved Forest Management (IFM) projects, though only constituting 5% of total verified offsets, demonstrate significant (p < = 0.05) reductions from ex ante estimated to ex post approved offsets, likely because auditors can easily scrutinize carbon stocks/emission factors for the commercial tree species involved in these project types. In terms of thoroughness, we find that higher ex ante estimates correlate with more total auditor hours worked and total CARs/NCRs prescribed for three of four project activity types, likely because auditors perceive larger ex ante projects as higher risk. We conclude with recommendations for the VCS to empower auditors to scrutinize carbon stocks/emissions factors from avoided deforestation projects, and also to continue to flag high ex ante projects as higher risk.  相似文献   

6.
The role of forestry projects in carbon conservation and sequestration is receiving much attention because of their role in the mitigation of climate change. The main objective of the study is to analyze the potential of the Upper Magat Watershed for a carbon sequestration project. The three main development components of the project are forest conservation: tree plantations, and agroforestry farm development. At Year 30, the watershed can attain a net carbon benefit of 19.5 M tC at a cost of US$ 34.5 M. The potential leakage of the project is estimated using historical experience in technology adoption in watershed areas in the Philippines and a high adoption rate. Two leakage scenarios were used: baseline and project leakage scenarios. Most of the leakage occurs in the first 10 years of the project as displacement of livelihood occurs during this time. The carbon lost via leakage is estimated to be 3.7 M tC in the historical adoption scenario, and 8.1 M tC under the enhanced adoption scenario.  相似文献   

7.
Potential for carbon sequestration in Canadian forests and agroecosystems   总被引:2,自引:0,他引:2  
The potential for carbon (C) sequestration was examined in selectedCanadian forest settings and prairie agroecosystems under severalmanagement scenarios. A simple C budget model was developed toquantitatively examine C sequestration potential in living biomass of forestecosystems, in associated forest-product C pools, and in displaced fossil-fuelC. A review of previous studies was conducted to examine C sequestrationpotential in prairie agroecosystems. In the forest settings examined, ourwork suggests that substantial C sequestration opportunities can be realizedin the short term through the establishment of protected forest-C reserves.Where stands can be effectively protected from natural disturbance, peaklevels of biomass C storage can exceed that under alternative managementstrategies for 200 years or more. In settings where it is not feasible tomaintain protected forest-C reserves, C sequestration opportunities can berealized through maximum sustained yield management with harvestedbiomass put towards the displacement of fossil fuels. Because there is afinite capacity for C storage in protected forest-C reserves, harvesting forestbiomass and using it to displace the use of fossil fuels, either directlythrough the production of biofuels or indirectly through the production oflong-lived forest products that displace the use of energy-intensive materialssuch as steel or concrete, can provide the greatest opportunity to mitigategreenhouse gas emissions in the long term. In Canadian prairieagroecosystems, modest C sequestration can be realized while enhancingsoil fertility and improving the efficiency of crop production. This can bedone in situations where soil organic C can be enhanced without relianceupon ongoing inputs of nitrogen fertilizer, or where the use of fossil fuelsin agriculture can be reduced. More substantial C offsets can be generatedthrough the production of dedicated energy crops to displace the use offossil fuels. Where afforestation or reconstruction of native prairieecosystems on previously cultivated land is possible, this represents thegreatest opportunity to sequester C on a per unit-area basis. However,these last two strategies involve the removal of land from crop production,and so they are not applicable on as wide a scale as some other Csequestration options which only involve modifications to currentagricultural practices.  相似文献   

8.
The objective of this paper is to assess how much carbon (C) is currently stored in a forest district in Thuringia, Germany, and how the carbon stocks will develop up to the year 2099 with a changing climate and under various management regimes (including no management), with different assumptions about carbon dioxide (CO2) fertilization effects. We applied the process-based model 4C and a wood product model to a forest district in Germany and evaluated both models for the period from 2002 to 2010, based on forest inventory data for the stands in the district. Then, we simulated the growth of the stands in the forest district under three different realizations of a climate change scenario, combined with different management regimes. Our simulations show that in 2099, between 630 and 1149 t C ha?1 will be stored in this district. The simulations also showed that climate change affects carbon sequestration. The no management strategy sequestered the highest amount of carbon (8.7 t C ha?1 year?1), which was greater than the management regimes. In the model, the possible fertilization effect of CO2 is an important factor. However, forest management remains the determining factor in this forest district.  相似文献   

9.
Microalgae: a promising tool for carbon sequestration   总被引:1,自引:1,他引:0  
Increasing trends in global warming already evident, the likelihood of further rise continuing, and their impacts give urgency to addressing carbon sequestration technologies more coherently and effectively. Carbon dioxide (CO2) is responsible for over half the warming potential of all greenhouse gases (GHG), due to the dependence of world economies on fossil fuels. The processes involving CO2 capture and storage (CCS) are gaining attention as an alternative for reducing CO2 concentration in the ambient air. However, these technologies are considered as short-term solutions, as there are still concerns about the environmental sustainability of these processes. A promising technology could be the biological capture of CO2 using microalgae due to its unmatched advantages over higher plants and ocean fertilization. Microalgae are phototrophic microorganisms with simple nutritional requirements, and comprising the major primary producers on this planet. Specific pathways include autotrophic production via both open pond or closed photobioreactor (PBR) systems. Photosynthetic efficiency of microalgae ranged from 10?C20 % in comparison with 1?C2 % of most terrestrial plants. Some algal species, during their exponential growth, can double their biomass in periods as short as 3.5 hours. Moreover, advantage of being tolerant of high concentration of CO2 (flue gas), low light intensity requirements, environmentally sustainable, and co-producing added value products put these as the favoured organisms. Advantages of microalgae in comparison with other sequestration methodologies are discussed, which includes the cultivation systems, the key process parameters, wastewater treatment, harvesting and the novel bio-products produced by microalgal biomass.  相似文献   

10.
Ants belong to the most important groups of arthropods, inhabiting and commonly dominating most terrestrial habitats, especially tropical rainforests. Their highly collective behavior enables exploitation of various resources and is viewed as a key factor for their evolutionary success. Accordingly, a great variety of life strategies evolved in this group of arthropods, including seed harvesters, gardeners, and planters, fungus growers, nomadic hunters, life stock keepers, and slave makers. This study reports the discovery of a new lifestyle in ants. In a Southeast Asian rainforest habitat, Euprenolepis procera is specialized in harvesting a broad spectrum of naturally growing mushrooms, a nutritionally challenging and spatiotemporally unpredictable food source. While unfavorable to the vast majority of animals, E. procera has developed exceptional adaptations such as a shift to a fully nomadic lifestyle and special food processing capabilities, which allow it to rely entirely on mushrooms. As a consequence, E. procera is the most efficient and predominant consumer of epigeic mushrooms in the studied habitat and this has broad implications for the tropical rainforest ecosystem.  相似文献   

11.
Mitigation and adaptation synergy in forest sector   总被引:1,自引:1,他引:1  
Mitigation and adaptation are the two main strategies to address climate change. Mitigation and adaptation have been considered separately in the global negotiations as well as literature. There is a realization on the need to explore and promote synergy between mitigation and adaptation while addressing climate change. In this paper, an attempt is made to explore the synergy between mitigation and adaptation by considering forest sector, which on the one hand is projected to be adversely impacted under the projected climate change scenarios and on the other provide opportunities to mitigate climate change. Thus, the potential and need for incorporating adaptation strategies and practices in mitigation projects is presented with a few examples. Firstly, there is a need to ensure that mitigation programs or projects do not increase the vulnerability of forest ecosystems and plantations. Secondly, several adaptation practices could be incorporated into mitigation projects to reduce vulnerability. Further, many of the mitigation projects indeed reduce vulnerability and promote adaptation, for example; forest and biodiversity conservation, protected area management and sustainable forestry. Also, many adaptation options such as urban forestry, soil and water conservation and drought resistant varieties also contribute to mitigation of climate change. Thus, there is need for research and field demonstration of synergy between mitigation and adaptation, so that the cost of addressing climate change impacts can be reduced and co-benefits increased.  相似文献   

12.
Although many factors influencing the forest C cycle are beyond direct human control, decisions made in forestry and the forest product sector (FPS) can either mitigate or aggravate the net C balance of terrestrial ecosystems. The Canadian Budget Model of the Forest Product Sector (CBM-FPS) described here, was designed to work with a national scale model of forest ecosystem dynamics (the Carbon Budget Model of the Canadian Forest Sector, CBM-CFS). The CBM-FPS accounts for harvested forest biomass C from the time that it enters the manufacturing process until it is released into the atmosphere. It also accounts for the use and production of energy by the FPS, and emission of CO2 during FPS processing. The CBM-FPS accounting framework uses the characteristics of different forest product types to estimate changes in the storage of C in forest products; it tracks C from the transportation of the harvested raw material through various processing steps in sawmills or pulp mills, to its final destination (product, pulp, landfill, atmosphere or recycled). Because not all harvested biomass C is released into the atmosphere in the year it is harvested, the model tracks C retained in various short- and long-lived products, and in landfills. Model results are in general agreement with available data from 1920–1989. Average changes in net C stocks in the FPS, estimated as the difference between harvest C input to the FPS and total losses from the forest product sector is estimated to be 23.5 Tg C yr−1 for the 1985–1989 period. The total FPS pool size at the end of this period is estimated to be 837 Tg C, of which only a fraction (32%) is retained in Canada. The total FPS C stock is small compared to that in the forest ecosystems from which they derive (estimated to contain 86 Pg C in 1989). Nevertheless, the changes in these C stocks contribute significantly to a reduction of the total net atmospheric exchange of the total forest sector (ecosystem and product sector) for that period.  相似文献   

13.
One of the largest sources of global greenhouse gas emissions can be addressed through conservation of tropical forests by channeling funds to developing countries at a cost-savings for developed countries. However, questions remain to be resolved in negotiating a system for including reduced emissions from deforestation and forest degradation (REDD) in a post-Kyoto climate treaty. The approach to determine national baselines, or reference levels, for quantifying REDD has emerged as central to negotiations over a REDD mechanism in a post-Kyoto policy framework. The baseline approach is critical to the success of a REDD mechanism because it affects the quantity, credibility, and equity of credits generated from efforts to reduce forest carbon emissions. We compared outcomes of seven proposed baseline approaches as a function of country circumstances, using a retrospective analysis of FAO-FRA data on forest carbon emissions from deforestation. Depending upon the baseline approach used, the total credited emissions avoided ranged over two orders of magnitude for the same quantity of actual emissions reductions. There was also a wide range in the relative distribution of credits generated among the five country types we identified. Outcomes were especially variable for countries with high remaining forest and low rates of deforestation (HFLD). We suggest that the most credible approaches measure emissions avoided with respect to a business-as-usual baseline scenario linked to historic emissions data, and allow limited adjustments based on forest carbon stocks.  相似文献   

14.
Livestock [inclusive of ruminant species, namely cattle (Bos Taurus and Bos indicus), sheep (Ovis aries), goats (Capra hircus), and buffaloes (Bubalus bubalis), and non-ruminant species, namely pigs (Sus scrofa domesticus) and chickens (Gallus domesticus)] are both affected by climate change and contribute as much as 14.5 % of global anthropogenic greenhouse gas (GHG) emissions, most of which is from ruminant animals (Gerber et al. 2013). This study aims to estimate the marginal costs of reducing GHG emissions for a selection of practices in the ruminant livestock sector (inclusive of the major ruminant species—cattle, sheep, and goats) globally. It advances on previous assessments by calculating marginal costs rather than commonly reported average costs of abatement and can thus provide insights about abatement responses at different carbon prices. We selected the most promising abatement options based on their effectiveness and feasibility. Improved grazing management and legume sowing are the main practices assessed in grazing systems. The urea (CO(NH2)2) treatment of crop straws is the main practice applied in mixed crop–livestock systems, while the feeding of dietary lipids and nitrates are confined to more intensive production systems. These practices were estimated to reduce emissions by up to 379 metric megatons of carbon dioxide (CO2) equivalent emissions per year (MtCO2-eq yr?1). Two thirds of this reduction was estimated to be possible at a carbon price of 20 US dollars per metric ton of CO2 equivalent emissions ($20 tCO2-eq?1). This study also provides strategic guidance as to where abatement efforts could be most cost effectively targeted. For example, improved grazing management was particularly cost effective in Latin America and Sub-Saharan Africa, while legume sowing appeared to work best in Western Europe and Latin America.  相似文献   

15.
Soil carbon sequestration in a changing global environment   总被引:1,自引:0,他引:1  
Throughout its long history the Earth has undergone warm periods with high atmospheric concentrations of greenhouse gases (GHG), and has responded with different buffering mechanisms whereby atmospheric C has been transferred to other geochemical compartments. Strategies for the mitigation and adaptation to the current climatic forcing may thus be generated by the acceleration of such natural mechanisms, especially those involved in short cycles, mainly in the biosphere and the pedosphere. Although these contain smaller C stocks than other compartments (< 0.01% of the total C), they circulate large amounts of C from the atmosphere through photosynthesis and mineral weathering (e.g., 120 Pg C are circulated through terrestrial ecosystems and total C in the atmospheric compartment is 805 Pg C). Increased C sequestration can thus be achieved in terrestrial ecosystems, by: (1) favouring growth of biomass; (2) promoting and facilitating carbonation processes; (3) reducing erosion and favouring pedogenesis; (4) developing organic matter-rich horizons; (5) recovering degraded or contaminated soils, and/or (6) managing waste by use of systems that minimize emissions of GHG. Within the latter option, the following actions are considered here in more detail: 1) production of Technosols, and 2) production of biochar. All of the above options should form part of a strategy for the mitigation and adaptation to global climate change. In this review, we analyze those focused on promoting soil conservation, soil restoration and soil formation.  相似文献   

16.
There is growing interest in the useof forestry-offset projects to mitigate increasingconcentrations of carbon dioxide in the atmosphere. If forestry-offset projects are to be employed broadlyand successfully there need to be accounting rulesthat are easy to operationalize and effective inpreventing cheating. Since carbon is both tangibleand predictable in where it occurs it is feasible todevelop simple accounting rules. Such rules must beconservative with respect to the amount of carboncredited.If accounting practices based on the following simplerules are employed, costs will be kept low andprojects will credit only carbon that is physicallypresent:Changes in living aboveground biomass must always be measured in forestry –offset projects.Belowground living biomass can be estimated from aboveground living biomass in forestry-offset projects. Generalized root/shoot ratios can be used as long as conservative ratios are applied.Not all changes in soil carbon stocks need to be measured, only those for which there is a possibility the stock is declining.The necromass pool need not be measured except when there has been a recent disturbance (interval varies with ecosystem). To insure that inaccurate techniques do not lead to overestimating of carbon stock changes, imprecise estimates of the carbon content of an ecosystem compartment should be discounted.There should be no required level of accuracy associated with estimates of carbon stock changes in forestry-offset projects, but the creditable carbon should be discounted proportional to the uncertainty.  相似文献   

17.
Climate change is projected to impact forest ecosystems, including biodiversity and Net Primary Productivity (NPP). National level carbon forest sector mitigation potential estimates are available for India; however impacts of projected climate change are not included in the mitigation potential estimates. Change in NPP (in gC/m2/yr) is taken to represent the impacts of climate change. Long term impacts of climate change (2085) on the NPP of Indian forests are available; however no such regional estimates are available for short and medium terms. The present study based on GCM climatology scenarios projects the short, medium and long term impacts of climate change on forest ecosystems especially on NPP using BIOME4 vegetation model. We estimate that under A2 scenario by the year 2030 the NPP changes by (−5) to 40% across different agro-ecological zones (AEZ). By 2050 it increases by 15% to 59% and by 2070 it increases by 34 to 84%. However, under B2 scenario it increases only by 3 to 25%, 3.5 to 34% and (−2.5) to 38% respectively, in the same time periods. The cumulative mitigation potential is estimated to increase by up to 21% (by nearly 1 GtC) under A2 scenario between the years 2008 and 2108, whereas, under B2 the mitigation potential increases only by 14% (646 MtC). However, cumulative mitigation potential estimates obtained from IBIS—a dynamic global vegetation model suggest much smaller gains, where mitigation potential increases by only 6% and 5% during the period 2008 to 2108.  相似文献   

18.
The personal road transport sector is one of the largest and fastest growing sources of CO2 emissions. This paper investigates a tradable permit policy for mitigating carbon emissions from personal road transport and discusses various issues of permit allocation. As tradable permits will effectively raise the price of fuel, the policy has important distributional implications. The distribution of burden depends on permit allocation strategies and on the consumer response to an increase in price. The behavioural response varies among different segments of the population depending on their travel needs, which in turn are contingent upon their income, location of residence and other factors. A model previously estimated by [Wadud, Z., Graham, D.J., Noland, R.B., 2007. Modelling gasoline demand for different socio-economic groups. In: Proceedings of the 86th Annual Meeting of the Transportation Research Board, Washington, DC, USA, January 2007] with group-wise aggregated US consumer expenditure survey data for 20 years provides behavioural responses for different income groups. The resulting welfare distribution in the USA is evaluated in this paper. Different permit allocation schemes are also considered in the analysis.  相似文献   

19.
No mandatory national program currently exists to mitigate climate change in the US Consequently, voluntary programs and mandatory state-level programs are multiplying to allow users to register emission-offset activities, creating multiple often contradictory measurement and recording standards.For the land use sector we examined a hypothetical project: tree planting on rangelands in California. We apply four sets of protocols from the following registries – the California Climate Action Registry, the Chicago Climate Exchange (CCX), the Regional Greenhouse Gas Initiative and the USDOE 1605(b) program – and compare the results to the ‘actual’ net sequestration and also briefly compare them to international protocols such as the relevant Clean Development Mechanism methodology. Carbon in land use can be estimated accurately, precisely and cost-effectively, but to achieve this requires good protocols. As predicted, the consequence of applying different protocols for reportable carbon was significant. The choice of measurement pools, the handling of the baseline and the issue of uncertainty led to a baseline estimate of 0–66,690 t CO2-e, and final sequestered carbon totals (after 60 years) that varied between 118,044 and 312,685 t CO2-e—a factor of 2.5 difference. The amount reported under 1605(b) is the closest to “actual” with CCX entity reporting the most divergent.  相似文献   

20.
A full account for carbon dioxide (CO2) and other greenhouse gas balance is presented for the Dutch forest and nature areas for 1990–2002 at a Tier 2.5 level. The paper outlines how complex guidelines can be turned into a practical system, appropriate for a small country, making use of the best knowledge and data available. The net total sink of all processes of the forest and other nature terrains balance is very stable through time around an average of 1.74 million tonnes of CO2 per year. The sink is to a large extent determined by the growth of forest remaining forest, and the harvest taking place in there. Newly added processes in this new National System are significant as well, but they compensate each other. The sources from deforestation and nitrous oxide (N2O) emissions (around 900 ktonne CO2) are for two thirds compensated by the sinks from afforestation, dead wood, soil C changes due to land use changes, and trees outside the forest. The land use changes between 1990 and 2000 showed that The Netherlands has an annual deforestation of 2504 ha (0.7% of the forest area) and an afforestation of 3124 ha. Deforestation led in total over the 13 years of 1990–2002 to an emission of 11.2 million tonne CO2 compensated by only 1.9 million tonne CO2 due to afforestation.
G. J. NabuursEmail:
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号