首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Blends of water—soluble polymers based on Poly vinyl alcohol (PVA) and Polyethylene glycol (PEG) have been prepared by the solution casting technique. The effect of various doses of γ-radiation on the structural properties of PVA/PEG polymer blends with all its compositions has been investigated. From the visual observation of all the blend compositions, it was found that, the best compatibility of the blend is up to 40% PVA/60%PEG. The structure–Property behavior of all the prepared blends before and after γ-irradiation was investigated by IR Spectroscopy, thermogravimetric analysis (TGA), mechanical properties and Scanning electron microscope (SEM). The gel content and the swelling behavior of the PVA/PEG blends were investigated. It was found that the gel content increases with increasing irradiation dose and PVA concentration in the blend. Swelling percent increased as the composition of PEG increased in the blend. The results obtained by FTIR analysis and SEM confirm the existence of possible interaction between PVA and PEG homopolymers. TGA of PVA/PEG blend, before and after γ-irradiation, showed that the unirradiated and irradiated PVA/PEG blends are more stable against thermal decomposition than pure PVA. Improvement in tensile mechanical properties of PVA/PEG blends was occurred.  相似文献   

2.
This paper gives the results of partial oxidation experiments of polyethylene (PE) in supercritical water (SCW). The experiments were carried out at a reaction temperature of 693K and a reaction time of 30 min using 6 cm3 of a batch-type reactor. The loaded sample weight was 0.3 g and there was 2.52 g water (0.42 g/cm3). The ratio of oxygen atoms to carbon atoms was 0.3. The results show a significant CO formation in O2–SCW, and the 1-alkene/n-alkane ratio in partial oxidation was higher than that in SCW pyrolysis. These results suggest the possibility of the hydrogenation of hydrocarbon through partial oxidation followed by a water–gas shift reaction. Received: July 19, 2000 / Accepted: September 28, 2000  相似文献   

3.
The optimum middle-phase microemulsion used for remediation of oily contaminated soils is often obtained by mixing a certain amount of a surfactant/alcohol mixture with oil and adjusting the salinity concentrations at a constant water–oil ratio. Upon introduction to the subsurface, however, the system may not be in the optimum state throughout the remediation process owing to the change in the water–oil ratio. This research has attempted to investigate the effect of the water–oil ratio on the phase behavior of systems containing brine, anionic surfactant, alcohols, and different oils. By systematically changing the water–oil ratio, while keeping the others variables constant, the systems exhibited different phase behavior. The results revealed that the effect of the water–oil ratio on system behavior was significant, and analogous to that of salinity. Increasing the water–oil ratio led the system change from winsor I → winsor III → winsor II. The greater the water–oil ratio the lower the salinity required to produce the middle-phase microemulsion, but the narrower the salinity range of the three-phase region. An empirical correlation has been developed in order to predict the changes in phase behavior with the changes in water–oil ratio. This provides a useful tool for designing optimum formulations suitable for soil remediation. Received: October 5, 1999 / Accepted: March 27, 2000  相似文献   

4.
The catalytic decomposition of mixed plastics consisting of polypropylene (PP) and polyethylene terephthalate (PET) has been investigated over titania/silica catalysts at 698 K. The yield of oil produced was about 70%, and the large amounts of C18+ hydrocarbons this contained was from the aromatics in PET. Gas was also produced, including C3–C5 hydrocarbons. The carbon-number fractions in the oil was influenced by the PET/(PP + PET) ratios and the catalyst weight. The titania/silica catalysts could be used repeatedly, and after they had been fouled, could be regenerated. From the Fourier Transform Infrared (FT–IR) spectroscopic data of adsorbed pyridine on the catalyst surface, most of the acid sites of the titania/silica catalysts were found to be Lewis sites where the hydride abstracted from PP pyrolysates react with PET pyrolysates to form oil and gas. Received: July 19, 2000 / Accepted: October 20, 2000  相似文献   

5.
Biodiesel from waste cooking oil (WCO) and soybean oil (SO) mixture was produced by changing the alkali catalyst (NaOH) content and the WCO to SO ratio in the feedstock. All the prepared biodiesel samples satisfied the standard requirement in terms of free glycerol, density, and acid value. The minimum catalyst content and the highest WCO composition to get biodiesel from the WCO/SO mixture feedstock without ruining the biodiesel properties were 1.0 and 60 wt %, respectively. This conclusion implies that the waste cooking oil mixture, which contains 40 wt % fresh soybean oil, could be treated like the fresh soybean oil to produce biodiesel, and that this behavior would be helpful to reduce the biodiesel production cost when waste cooking oil used as feedstock. The unsaturated methyl esters such as linoleic, and oleic acid were dominant (almost 80 % w/w) in the fresh soybean oil. However the saturated methyl ester was increased due to the double bond breaking during the frying process. These results may deteriorate the biodiesel quality by changing the methyl ester composition.  相似文献   

6.
The blends of polylactide (PLA) and poly(ethylene glycol) (PEG) with different contents (0, 5, 10, 15, and 20 wt%) and molecular weights (\( \overline{M}_{w} \) 6000, 10,000 and 20,000, called respectively as PEG 6000, PEG 10,000, and PEG 20,000) were prepared by means of melt blending method. The effects of tensile speed, content and molecular weight of the PEG on the tensile properties of the PLA/PEG blends were investigated using a universal testing machine at 24 °C. With increasing tensile speed, the tensile modulus, strength and stress at break of the PLA/PEG blends marginally increased, while the tensile modulus and stress at break declined non-linearly, and the tensile strength dropped nearly linearly with increasing PEG 10,000 content. When the PEG 10,000 content was 5–15 wt%, the tensile strain at break of the PLA/PEG 10,000 blend markedly increased, and then decreased as the PEG 10,000 content exceeded 15 wt%. With increasing the molecular weight of PEG, tensile modulus and strength increased, whereas the tensile strain at break decreased. This showed that the application of right amount of lower molecular weight PEG was more conducive to improving the tensile toughness of the PLA/PEG blends, which was attributed to its better miscibility with PLA and increased mobility of PLA molecular chains.  相似文献   

7.
This paper describes the chemical degradation of waste poly(ethylene terephthalate) (PET) with polyamines or triethanolamine, the characteristics of the products, and a search for ways to use these products. Solvolysis of the polymer ester bonds was caused by diethylenetriamine, triethylenetetramine, and their mixtures, as well as mixtures of triethylenetetramine and p-phenylenediamine or triethanolamine. Products of aminolysis or aminoglycolysis of PET obtained in reactions performed at 200–210°C (with a molar ratio of the recurrent polymer unit to amine of 1 : 2) have been characterized using nuclear magnetic resonance (NMR). Viscosity and hydroxyl number measurements have been done for PET/triethanolamine products. Substances from aminolytical reactions with polyamines were tested as hardeners for liquid epoxy resins, and the product of polymer aminoglycolysis with triethanolamine was tested as an epoxy resin hardener, e.g., for water-borne paints, and a polyol component for rigid polyurethane foams. The compositions of epoxy resin hardeners have been characterized using DSC and rheometry. Comparative analyses of the hardened epoxy materials have been done on the basis of glass temperature and mechanical properties data, as well as some specific properties of the coating materials and rigid polyurethane foams. Received: September 15, 2000 / Accepted: September 21, 2000  相似文献   

8.
This article describes the gasification of polyethylene–wood mixtures to form syngas (H2 and CO) with the aim of feedstock recycling via direct fermentation of syngas to ethanol. The aim was to determine the effects of four process parameters on process properties that give insight into the efficiency of gasification in general, and particularly into the optimum gasification conditions for the production of ethanol by fermentation of producer gas. Gasification experiments (fluidized bed, 800°–950°C) were done under different conditions to optimize the composition of syngas suitable for fermentation purposes. The data obtained were used for statistical analysis and modeling. In this way, the effect of each parameter on the process properties was determined and the model was used to predict the optimum gasification conditions. The parameters varied during the experiment were gasification temperature, equivalence ratio, the ratio of plastic to wood in the feed, and the amount of steam added to the process. The response models obtained proved to be statistically significant in the experimental domain. The optimum gasification conditions for maximization of carbon monoxide and hydrogen production were identified. The conditions are: temperature 900°C, equivalence ratio 0.15, amount of plastic in the feed 0.11 g/g feed, and amount of steam added 0.42 g/g feed. These optimum conditions are at the edge of the present experimental domain. The maximum combined CO and H2 efficiency was 42%, and for the maximum yield of CO and H2 it is necessary to minimize the polyethylene content, minimize the added steam and the equivalence ratio, and maximize temperature.  相似文献   

9.
Soybean polyols prepared by ring opening reactions of epoxidized soybean oil with hydrogen active compounds (water, alcohols, organic or inorganic acids, thiols, hydrogen etc.) have a low reactivity in the reaction with isocyanates because the hydroxyl groups are secondary. This paper presents a simple and convenient method to increase the reactivity of soybean polyols with secondary hydroxyl groups by ethoxylation reactions with the preservation of triglyceride ester bonds. The method uses mild reaction conditions: low alkoxylation temperature of 35–45 °C, low pressure of 0.1–0.2 MPa (15–30 p.s.i.) and a superacid as catalyst (HBF4). The new soybean polyols have a higher reactivity toward isocyanates in polyurethane formation due to the high percentage of primary hydroxyl groups. The primary hydroxyl content was determined by the second order kinetics of polyol reaction with phenyl isocyanate.  相似文献   

10.
Adsorbable organic halides (AOX) and AOX formation potential (AOXFP) were investigated in 46 landfill lea-chates as potentially toxic parameters. AOX in landfill leachate was within the range <10–2200 μg Cl/l, and AOXFP was within 51–15 000 μg Cl/l. AOX and AOXFP correlated with chemical oxygen demand (COD). AOX discharge from closed landfills was generally lower than that from operating landfills. The molar ratio of AOXFP/total organic carbon (TOC) suggested that organic compounds in a leachate have a double bond every 15–190 carbons under the supposition that one chlorine would add to one double bond. The five landfills discharging high-level AOXFP (>4000 μg Cl/l) were all landfills where sludge had been dumped. The removal efficiencies of three parameters through leachate treatment processes were as follows: polychlorinated dibenzo-dioxins/dibenzo-furans (PCDDs/DFs) > TOC > AOX. PCDDs/DFs were substantially removed at p.p.t. levels, while AOX was hardly removed at relatively low levels. Received: February 14, 2000 / Accepted: January 9, 2001  相似文献   

11.
The chemical modification of Acrylamidomethyl Cellulose Acetate Propionate (AMCAP) was carried out by radical addition of acrylic acid. The structural modification was confirmed with the aid of FTIR, MS and NMR techniques. Thermal properties of hydrophilic cellulose derivative (AMCAP–H2O2) such as glass transition (Tg 153 °C) and thermal stability (372.7 °C) were determined by DSC and TGA techniques, respectively. These thermal properties confirmed the introduction of carboxylic groups into AMCAP structure, which causes an impact in their properties. The AMCAP–H2O2 shows minor contact angle compared to AMCAP, giving a more hydrophilic characteristic, due to acrylic acid addition into the side chains of AMCAP polymer.  相似文献   

12.
Soybean polyols prepared by ring opening reactions of epoxidized soybean oil with hydrogen active compounds (water, alcohols, organic or inorganic acids, thiols, hydrogen etc.) have a low reactivity in the reaction with isocyanates because the hydroxyl groups are secondary. This paper presents a simple and convenient method to increase the reactivity of soybean polyols with secondary hydroxyl groups by ethoxylation reactions with the preservation of triglyceride ester bonds. The method uses mild reaction conditions: low alkoxylation temperature of 35–45 °C, low pressure of 0.1–0.2 MPa (15–30 p.s.i.) and a superacid as catalyst (HBF4). The new soybean polyols have a higher reactivity toward isocyanates in polyurethane formation due to the high percentage of primary hydroxyl groups. The primary hydroxyl content was determined by the second order kinetics of polyol reaction with phenyl isocyanate.  相似文献   

13.
A soypolyol based on epoxidized soybean oil (ESO) was prepared in the presence of HBF4 and diethanolamine (DEA) was used as ring opener. A series of polyurethane rigid foam were prepared by mixing polyol with TDI using an isocyanate index of 1.1. The polyol used in this paper were a mixture of soypolyol and a commercial PL-5601 polyester polyol and the mass fraction of PL-5601 was in the range of 0–60%. The thermal properties of the resins were characterized by DSC and TG. The results showed that these rigid foams possess high thermal stability. There were two glass transition temperature of each foam and Tg1 was increasing with the increasing of OH value. The compression strength of the foam was also recorded, and the effect of mass ratio of soypolyol and PL-5601 polyester polyol on the compression strength was discussed.  相似文献   

14.
Polyurethane networks from soybean oil have a number of valuable properties, which are determined by their chemical composition and cross-linking density. Changing the molar ratio of reacting groups can vary the latter. In this work we have varied the NCO/OH molar ratio (isocyanate index) from 1.05 to 0.40 in a soy polyol/MDI system, and tested physical and mechanical properties. The degree of swelling in toluene increased from 52–206% by decreasing isocyanate index from 1.05–0.4. The sol fractions and network densities determined from swelling in toluene were compared with ones obtained using the network formation theory based on branching processes. The comparison of experimental sol fractions and network densities with those predicted by theory of network formation suggest that 5–10% of bonds are lost in cycles and that high entanglement contributions increase the network densities. Polymers prepared with NCO/OH ratios from 1.05–0.8 were glassy while the others were rubbery, and that was reflected in their properties. Glass transition temperature (DSC) of the networks decreased from 64–7°C, tensile strength from 47–0.3 MPa, and elongation at break increased from 7–232%. The activation energy of the glass transition, determined from dielectric spectra, varied from 222–156 kJ/mol as the molar ratio of NCO to OH groups decreased from 1.05–0.4.  相似文献   

15.
Organophosphoric acid triester (OPE) concentration levels in water and bottom sediment at the Osaka North Port Sea-Based Solid Waste Disposal Site were investigated, and the behavior of OPEs in the water environment of the waste disposal site was examined. The more highly water-soluble OPEs were frequently detected in raw water. Of the OPEs detected, TCEP and TCPP showed very high concentrations (1.0–90 μg/l), followed by TEP (0.3–10 μg/l) > TBXP (0.8–6.3 μg/l) > TDCPP (0.6–6.2 μg/l) > TBP (0.2–1.5 μg/l) > TPP (<0.1 μg/l). Most OPEs detected in water were eluted from the disposal waste to the water phase immediately and behaved as dissolved forms with no distribution in suspended solids (SS). On the other hand, the less water-soluble OPEs, such as TCP or TEHP, were detected in bottom sediment but hardly at all in water samples. All OPEs were detected at the waste disposal site, within which their concentration levels were uniform. It appeared that the less water-soluble OPEs were present as SS-associated forms and behaved in line with the floating surface sludge at the bottom. Received: July 6, 1998 / Accepted: February 25, 1999  相似文献   

16.
Soybean Oil-Based Photo-Crosslinked Polymer Networks   总被引:1,自引:0,他引:1  
Novel soybean oil-based crosslinked polymer networks were prepared by UV photopolymerization and their mechanical properties were evaluated. Poly(ethylene glycol) diacrylate (PEGDA) and biodegradable poly(ε-caprolactone) diacrylate (PCLDA) were synthesized and used as crosslinking agent to form crosslinked polymer networks by UV-initiated free-radical polymerization with acrylated epoxidized soybean oil (AESO). The synthesis of acrylate end-capped macromers was confirmed using FT-IR and 1H NMR spectroscopic techniques. Photopolymerization time, the composition of reaction mixture, and the type and length of crosslinking agent were changed to obtain crosslinked polymer networks with various mechanical properties. Polymers prepared from AESO and PCL degraded 6% of the initial weight in 24 days in phosphate buffer solution (pH 7.2) containing lipase enzyme. These potentially biodegradable and biocompatible polymers can be used as ecofriendly materials for biomedical and other applications to replace the existing petroleum-based polymers currently used.  相似文献   

17.
Soy protein plastics are a renewable, biodegradable alternative to fossil fuel-based plastic resins. Processing of soy protein plastics using conventional methods (injection molding, extrusion) has met with some success. Viscosities of processable formulations that contain soy protein along with the necessary additives, such as glycerol and cornstarch, have not been reported, but are necessary for extrusion modeling and the design of extrusion dies. Resins consisting of soy protein isolate-cornstarch ratios of 4:1, 3:2, and 2:3 were plasticized with glycerol and soy oil, compounded in a twin screw extruder and adjusted to 10% moisture. The effects on viscosity of added sodium sulfite, a titanate coupling agent and recycling were evaluated using a screw-driven capillary rheometer at shear rates of 100–800/s. The viscosities fit a power-law model and were found to be shear thinning with power-law indices, n, of 0.18–0.46 and consistency indices, m, of 1.1 × 104–1.0 × 105. Power-law indices decreased and consistency indices increased with increasing soy protein-to-cornstarch ratio and in the absence of sodium sulfite. Addition of the titanate coupling agent resulted in increased power-law index and decreased consistency index. Viscosities at a shear rate of 400/s decreased with recycling, except for the 4:1 soy protein isolate to cornstarch formulation, which displayed evidence of wall slip. Power-law indices were unaffected by recycling. Viscosities in the tested shear rate range were comparable to polystyrene and low-density polyethylene indicating soy protein plastics are potential drop-in replacements for commodity resins on conventional plastics processing equipment.  相似文献   

18.
Azotobacter vinelandii UWD, ATCC 53799, an engineered strain derived from Azotobacter vinelandii UW was used in the poly(ethylene glycol) (PEG)-modulated synthesis of poly(-hydroxybutyrate) (PHB). To the best of our knowledge, this is the first report on modulating the production of PHB by amending the fermentation broth with PEG using A. vinelandii UWD. It was determined that A. vinelandii UWD is prone to back-mutation to the parent strain; hence fermentation experiments require the use of the antibiotic rifampicin. Diethylene glycol (DEG) and PEGs with molecular weights of 400, 2000, and 3400 Da and pentaerythritol ethoxylate (PEE) were used in the modulated fermentation experiments in a concentration of 2% (w/v). The molecular weight of the resulting polymers was reduced by up to 78%. No impact on the productivity of the strain was observed. Spectroscopic evidence showed that PEG-modulated synthesis resulted in the covalent attachment of the ethylene glycol moiety only when a small molecule, DEG, was used. PEGs had the same effects on the polymer formation in terms of molecular weight reduction as DEG, but no spectroscopic evidence was found for the formation of a covalent linkage between PHB and higher molecular weight PEGs.  相似文献   

19.
Reuse of thermosetting plastic waste for lightweight concrete   总被引:1,自引:0,他引:1  
This paper presents the utilization of thermosetting plastic as an admixture in the mix proportion of lightweight concrete. Since this type of plastic cannot be melted in the recycling process, its waste is expected to be more valuable by using as an admixture for the production of non-structural lightweight concrete. Experimental tests for the variation of mix proportion were carried out to determine the suitable proportion to achieve the required properties of lightweight concrete, which are: low dry density and acceptable compressive strength. The mix design in this research is the proportion of plastic, sand, water-cement ratio, aluminum powder, and lignite fly ash. The experimental results show that the plastic not only leads to a low dry density concrete, but also a low strength. It was found that the ratio of cement, sand, fly ash, and plastic equal to 1.0:0.8:0.3:0.9 is an appropriate mix proportion. The results of compressive strength and dry density are 4.14N/mm(2) and 1395kg/m(3), respectively. This type of concrete meets most of the requirements for non-load-bearing lightweight concrete according to ASTM C129 Type II standard.  相似文献   

20.
The waterborne polyurethane (PU) prepolymer was prepared based on isophorone diisocyanate (IPDI), polyester polyol (N220), dimethylol propionic acid (DMPA) and hydroxyethyl methyl acrylate (HEMA). The modified waterborne polyurethane–acrylate (PUA) emulsions were obtained with different proportions of acrylate (butyl acrylate and methyl methacrylate) and initiating agent by in situ dispersion technique. The structures and thermal properties of prepared PU and PUA were analyzed and characterized with FT-IR, UV–Vis spectroscopy and DSC. The PUA hybrid samples had lower glass transition temperature of hard segment and higher decomposition temperatures than PU sample. Performances of the emulsion and film were studied by means of apparent viscidity, particle size and polydispersity, surface tension and mechanical properties. The results indicated that the particle sizes of the PUA dispersions were larger than those of the pure PU and the solvent resistance, mechanical properties of PUA films was improved compare with the unmodified polyurethane film. The film had the biggest hardness and the least water absorption when the BA/MMA mass ratio 5:5 modified PU. The obtained PUA have great potential application such as coatings, leather finishing, adhesives, sealants, plastic coatings and wood finishes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号