首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
采用直接进样一超高效液相色谱-三重四级杆串联质谱法,建立了对地表水中丙烯酰胺的分析方法。该方法不需要衍生化等前处理步骤。结果表明,丙烯酰胺含量在0.100~10.0μg/L范围内具有很好的线性相关性,实际水样加标回收率为80.0%-105%。该方法的检出限和测定下限分别为0.025μg/L和0.100μg/L,能够满足地表水环境质量标准中关于饮用水中丙烯酰胺最高安全浓度指南的要求,提高了引用水源丙烯酰胺的检测要求。  相似文献   

2.
Nonylphenol (NP) is a representative environmental endocrine-disrupting chemical and persistent toxic pollutant. Previous studies have shown that the average concentration of NP in environmental waters was approximately tens to hundreds of ng L(-1) and it could even reach up to tens of μg L(-1). A simple, fast and accurate method employing a novel solid-phase extraction element named "Magic Chemisorber" (MC) followed by high-performance liquid chromatography (HPLC) using a fluorescence detector (FLD) was used for detecting NP. The most important parameters that affect the extraction process, including extraction time, desorption time, desorption solvent and repeatability, were optimized. The MC-HPLC method showed good linearity with concentrations of NP from 10 to 200 μg L(-1), a correlation coefficient of 0.9995 and the limit of detection (LOD) and limit of quantification (LOQ) of this method was 0.44 and 1.47 μg L(-1), respectively. Compared to commercial polydimethylsiloxane (PDMS) glass fiber, MC had both higher capacity and recovery and it could be used repeatedly. Using the MC-HPLC method we found that the concentration of NP in river water from Hangzhou city ranged from 8.54 ± 1.23 μg L(-1) (Qiantang River) to 65.77 ± 3.69 μg L(-1) (Tiesha River), which was similar to that of international regions heavily polluted with NP and higher than that of Bohai Bay, the Yellow River and the Pearl River Delta in China. This level of NP pollution is possibly related to the rapid development of the textile, printing and paper industries of Zhejiang province.  相似文献   

3.
采用固相萃取-高效液相色谱法同时测定水中12种磺酰脲类除草剂,样品经磷酸调节pH值为2后,经Watens Oasis HLB SPE柱净化浓缩,乙腈洗脱,选择检测波长为230 nm,以乙腈-水溶液(0.02%磷酸)为流动相梯度洗脱,保留时间在14 min~32 min范围内.12种磺酰脲类除草剂在0.050 mg/L~...  相似文献   

4.
Indirect competitive immunoassays were developed on protein microarrays for the sensitive and simultaneous detection of multiple environmental chemicals in one sample. In this assay, a DNA/SYTOX Orange conjugate was employed as an antibody label to increase the fluorescence signal and sensitivity of the immunoassays. Epoxy-modified glass slides were selected as the substrate for the production of 4 × 4 coating antigen microarrays. With this signal-enhancing system, competition curves for 17β-estradiol (E2), benzo[a]pyrene (BaP) and 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) were obtained individually on the protein microarray. The IC(50) and calculated limit of detection (LOD) are 0.32 μg L(-1) and 0.022 μg L(-1) for E2, 37.2 μg L(-1) and 24.5 μg L(-1) for BaP, and 31.6 μg L(-1) and 2.8 μg L(-1) for BDE-47, respectively. LOD of E2 is 14-fold lower than the value reported in a previous study using Cy3 labeled antibody (Du et al., Clin. Chem, 2005, 51, 368-375). The results of the microarray immunoassay were within 15% of chromatographic analysis for all three pollutants in spiked river water samples, thus verifying the immunoassay. Simultaneous detection of E2, BaP and BDE-47 in one sample was demonstrated. There was no cross-reaction in the immunoassay between these three environmental chemicals. These results suggest that microarray-based immunoassays with DNA/dye conjugate labels are useful tools for the rapid, sensitive, and high throughput screening of multiple environmental contaminants.  相似文献   

5.
采用高效液相色谱(HPLC)-电感耦合等离子体质谱(ICP/MS)联用测定废水中可滤态的甲基汞和无机汞,优化了仪器工作条件,讨论了方法干扰及校正办法。甲基汞和无机汞在0.500μg/L~25.0μg/L范围内线性良好,检出限分别为0.03μg/L和0.07μg/L,废水样品平行测定的RSD分别为6.5%~7.6%和6.2%~6.8%,加标回收率分别为84.0%~87.0%和88.0%~92.4%。  相似文献   

6.
采用C18固相膜萃取对地下水中15种多环芳烃进行富集净化,以二氯甲烷作洗脱溶剂,高效液相色谱法,荧光检测器测定。对萃取、浓缩和色谱条件进行优化,在1.ooixg/L~40.0μg/L范围内测定标准系列溶液并绘制标准曲线,相关系数R2〉0.999;15种多环芳烃的仪器检出限为0.4ng/L~3.0ng/L;对地下水样品加标,平均回收率在75.7%~96.7%之间;标准溶液平行测定7次的RSD为3.1%~11.9%。  相似文献   

7.
主要研究用反相高效液相色谱法同时测定水样中的阿特拉津和甲萘葳。结果表明,低浓度水样:可取500ml,加入5%的氯化钠,经一定量的二氯甲烷萃取、浓缩、甲醇定容后,上机测定;高浓度水样:可将水样过滤后直接进样测定。该方法的阿特拉津和甲萘葳检出限分别为0.006μg/L和0.036μg/L,加标回收率分别可达74.2%~11...  相似文献   

8.
高效液相色谱-原子荧光光谱联用分析土壤中形态砷   总被引:4,自引:0,他引:4  
采用高效液相色谱(HPLC)-原子荧光光谱(AFS)联用技术分析土壤中亚砷酸盐[As(Ⅲ)]、二甲基砷(DMA)、一甲基砷(MMA)和砷酸盐[As(Ⅴ)]等4种形态砷,以磷酸为提取剂、抗坏血酸为还原剂,优化了水浴提取条件。As(Ⅲ)、DMA、MMA和As(Ⅴ)在7 min之内实现了完全分离,在1.00μg/L~100μg/L范围内线性良好,实验室检出限分别为0.25μg/L、0.36μg/L、0.39μg/L和0.51μg/L,土壤标准样品平行测定的RSD≤7.4%,加标回收率为79.5%~95.0%,提取率为74.6%~90.4%。  相似文献   

9.
以二氯甲烷-丙酮(体积比1∶1)为混合溶剂,用加速溶剂萃取仪萃取土壤样品中的阿特拉津,提取液通过凝胶渗透色谱净化,用高效液相色谱仪在220 nm波长下测定,试验表明,在0.05 mg/L~5.00 mg/L范围内线性良好。方法检出限为0.22μg/kg,对空白土壤进行加标回收,平行测定6次,平均回收率为88.2%~102%,RSD为4.5%~7.6%,符合农药残留分析的要求。  相似文献   

10.
高效液相色谱法测定地表水中四乙基铅   总被引:1,自引:1,他引:0  
系统研究了地表水中四乙基铅的液相色谱分析方法,水中四乙基铅经二氯甲烷萃取浓缩后,用高压液相色谱柱分离,在280 nm波长处检测,根据保留时间定性,外标法定量,检出限及测定下限分别为0.02μg/L和0.06μg/L,低于地表水限值0.1μg/L,地表水平行测定的相对标准偏差均小于5%,地表水和废水样品加标回收率分别为79.4%~82.0%和62.5%~106.6%。  相似文献   

11.
Magnetic microsphere confined ionic liquid was synthesized by covalently bonding N-methylimidazolium on magnetic microspheres. The functionalized magnetic microspheres were characterized by Fourier transform infrared (FT-IR) spectrometry, thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The prepared material was used for the preconcentration of three chlorophenols (CPs) in water combined with high-performance liquid chromatography (HPLC). Several conditions that probably affected the extraction efficiency such as standing time, eluent and its volume, sample pH and volume, were optimized. Under the optimal conditions, good recoveries (70.3-88.8%) were achieved with satisfactory relative standard deviations (RSDs) of less than 6.0%. The limits of detection for the three CPs were 0.20-0.35 μg L(-1). The results indicated that the ionic liquid-functionalized magnetic microspheres show significant promise for the analysis of CPs in environmental samples.  相似文献   

12.
Bromate (BrO(3)(-)) is a disinfection by-product formed during ozonation of potable water supplies containing bromide (Br(-)). Bromate has been classed by the World Health Organisation as a 'possible human carcinogen', leading to implementation of 10-25 microg L(-1)(as BrO(3)(-)) drinking water limits in legislative areas including the United States and European Union. Techniques have been developed for bromate analysis at and below regulatory limits, with Ion Chromatography (IC) coupled with conductivity detection (IC-CD), post-column reaction and ultra-violet (UV) detection (IC-PCR), or inductively coupled plasma-mass spectrometry detection (IC-ICPMS) in widespread use. The recent discovery of bromate groundwater contamination in a UK aquifer has led to a requirement for analysis of bromate in a groundwater matrix, for environmental monitoring and development of remediation strategies. The possibility of bromate-contaminated water discharge into sewage treatment processes, whether accidental or as a pump-and-treat strategy, also required bromate analysis of wastewater sources. This paper summarises techniques currently available for trace bromate analysis in potable water systems and details studies to identify a methodology for routine analysis of groundwater and wastewater samples. Strategies compared were high performance liquid chromatography (HPLC) with direct UV or PCR/UV detection, IC-CD, IC-PCR, and a simple spectrophotometric technique. IC-CD was the most cost-effective solution for simultaneous analysis of bromate and bromide within groundwater samples, having a 5 microg L(-1) detection limit of both anions with limited interference from closely-eluting species. Wastewater samples were successfully analysed for bromate only using HPLC with PCR/UV detection, with detection limits below 20 microg L(-1)(as BrO(3)(-)) and low interference. HPLC with direct UV detection was unsuitable for bromate analysis within the concentration range 50-5000 microg L(-1) which was required for this project, but column choice was shown to be a major factor in determining limits of detection. Spectrophotometry could not reproducibly determine bromate concentration, although the technique showed promise as a quick field method for high-level groundwater bromate analysis.  相似文献   

13.
实验采用优化条件,对甲苯萃取水和废水中黄磷进行测定。萃取液经气相色谱仪毛细色谱柱分离后,氮磷检测器(NPD)或火焰光度检测器(FPD,带磷滤光片)检测,根据色谱峰的保留时间定性,外标法定量。使用NPD检测器分析时,本方法检出限为0.04μg/L;使用FPD检测器分析时,本方法检出限为0.1μg/L。  相似文献   

14.
通过试验建立了煤化工厂烟气中苯并(a)芘的液相色谱监测分析方法.通过条件优化,用配有荧光检测器的高效液相色谱仪分析烟气样品中苯并(a)芘的含量,该方法以乙腈、水梯度比例混合作为流动相;流速为1.0 ml/min;激发波长为255nm、发射波长为420nm;保留时间为27.38 min,测定检出限为2×10-3μg/m3...  相似文献   

15.
Antimony is a naturally occurring and cumulatively toxic element. With increasing concern as an inorganic contaminant, research on its environmental behavior is becoming a necessity. However, very little is known about this element. To further understand its biogeochemical behaviors and roles in the ecosystem, the main species of dissolved inorganic antimony (Sb(iii) and Sb(v)) in Yangtze River Estuary and its adjacent waters were determined by hydride generation and atomic fluorescence (HG-AFS) in our study. Results show that in surface water, the concentration for Sb(iii) and Sb(v) were in the range 0.029 μg L(-1)~ 0.736 μg L(-1) and 0.121 μg L(-1)~ 2.567 μg L(-1), with averages of 0.152 μg L(-1) and 0.592 μg L(-1), respectively. While concentrations of Sb(iii) and Sb(v) in the bottom layer were much lower, ranging from 0.023 μg L(-1) to 0.116 μg L(-1) (average of 0.050 μg L(-1)) and from 0.047 μg L(-1) to 0.441 μg L(-1) (average of 0.194 μg L(-1)), respectively. Data analysis further demonstrates that the major processes controlling antimony geochemistry in the area are riverine input, atmospheric deposition, incursion of Taiwan Warm Current, and release from particulate phase. The surface-enrichment and bottom-depletion depth profile reveals it does appear as a mildly scavenged element but is less like arsenic than previously believed. Sb(v) was the predominant speciation in aquatic environment of our research, and Sb(iii) was a minor constituent of the total antimony. Regarding the adsorption-desorption process onto SPM, Sb(iii) has a higher affinity to particulate phase than Sb(v). Furthermore, the significant correlation between antimony and nutrients indicates it is an element with great biological potential, which is also an important behavior for antimony.  相似文献   

16.
采用高效液相色谱-氢化物发生-原子荧光光谱联用技术测定水中亚砷酸盐[As(Ⅲ)]、二甲基砷(DMA)、一甲基砷(MMA)和砷酸盐[As(V)]等4种形态砷,以磷酸盐缓冲溶液为流动相,硼氢化钾为还原剂,优化了仪器主要技术参数.As(Ⅲ)、DMA、MMA和As(V)在7 min内实现了良好的基线分离,在5.00 μg/L~...  相似文献   

17.
建立了加速溶剂提取、凝胶渗透色谱法净化-超高效液相色谱/串联质谱快速测定土壤中20种磺酰脲类除草剂的方法。土壤经过冷冻干燥、粉碎过筛,用加速溶剂仪提取(ASE),经凝胶渗透色谱净化(GPC),以超高效液相色谱/串联质谱(UPLC-MS/MS)多级监测模式(MRM)外标法进行定性定量分析。结果表明:土壤中20种磺酰脲类除藻剂的检出限为2~5 ng/kg。对同一环境样品进行了3个不同添加量(1、5、10μg/L)的加标回收实验,平均回收率为65. 7%~106. 1%,相对标准偏差为2. 3%~12. 1%。该方法快速、灵敏、准确,可有效应用于土壤中20种磺酰脲类除草剂的快速监测。  相似文献   

18.
采用固相萃取-高效液相色谱法测定水中7种氯酚类化合物,Waters OASIS WAX柱萃取效率最高,最佳萃取时间和洗脱时间分别为60和5 min。该法的线性范围为1.0~40 mg/L,检出限为0.015~0.5μg/L,精密度为0.558%~2.22%,回收率为83.2%~105%。该法适用于地表水及饮用水中氯酚类化合物的检测。  相似文献   

19.
采用固相萃取-高效液相色谱(SPE - HPLC)二极管阵列检测器同时测定水中呋喃丹、甲萘威和阿特拉津,以甲醇-水为流动相,采用梯度洗脱方式,选择220 nm为检测波长,二氯甲烷为洗脱剂.呋喃丹在0.200 mg/L ~5.00 mg/L、甲萘威和阿特拉津在0.020 mg/L~5.00 mg/L范围内线性良好,检出限...  相似文献   

20.
采用二氯甲烷萃取水样,气相色谱-串联质谱法同时测定水中有机磷农药和甲萘威。试验表明:方法在20.0μg/L ~1000μg/L范围内,各目标化合物线性良好;方法检出限为0.004μg/L~0.01μg/L;对实际水样进行3个质量浓度水平的加标回收试验,回收率在71.8%~94.5%之间,RSD为3.7%~8.5%,满足水中痕量有机磷农药和甲萘威的测定要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号