首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wang CC  Lee CM  Kuan CH 《Chemosphere》2000,41(3):447-452
In this experiment, Bacillus insolitus was isolated and selected from a mixed culture that have been acclimated to chlorophenols. Decomposition of chlorophenolic compounds will be studied using this pure culture in both suspended and immobilized form. The results are: at lower initial concentrations of 2,4-dichlorophenol (10-50 mg/l), immobilized Bacillus insolitus shows a higher removal of 2,4-dichlorophenol than Bacillus insolitus in suspended growth. When the 2,4-dichlorophenol concentration becomes higher (50-200 mg/l), both immobilized and suspended Bacillus insolitus have approximately the same efficiency for removal of 2,4-dichlorophenol. Higher concentrations of 2,4-dichlorophenol are inhibitive to the growth of either suspended or immobilized Bacillus insolitus. At lower concentrations of 2,4-dichlorophenol, immobilized mixed culture may have the same removal efficiency of 2,4-dichlorophenol as immobilized pure culture of Bacillus insolitus. But with regard to the overall 2,4-dichlorophenol removal efficiency, immobilized pure culture is considered to be superior to immobilized mixed culture.  相似文献   

2.
The inhibitory effect of the herbicides 2-methyl-4-chlorophenoxyacetic acid (MCPA) and 2,4-dichlorophenoxyacetic acid (2,4-D) in Saccharomyces cerevisiae growth is strongly dependent on medium pH (range 2.5-6.5). Consistent with the concept that the toxic form is the liposoluble undissociated form, at values close to their pK(a) (3.07 and 2.73, respectively) the toxicity is high, decreasing with the increase of external pH. In addition, the toxicity of identical concentrations of the undissociated acid form is pH independent, as observed with 2,4-dichlorophenol (2,4-DCP), an intermediate of 2,4-D degradation. Consequently, at pH values above 3.5 (approximately one unit higher than 2,4-D pK(a)), 2,4-DCP becomes more toxic than the original herbicide. A dose-dependent inhibition of growth kinetics and increased duration of growth latency is observed following sudden exposure of an unadapted yeast cell population to the presence of the herbicides. This contrasts with the effect of 2,4-DCP, which essentially affects growth kinetics. Experimental evidences suggest that the acid herbicides toxicity is not exclusively dependent on the liposolubility of the toxic form, as may essentially be the case of 2,4-DCP. An unadapted yeast cell population at the early stationary-phase of growth under nutrient limitation is significantly more resistant to short-term herbicide induced death than an exponential-phase population. Consequently, the duration of growth latency is reduced, as observed with the increase of the size of the herbicide stressed population. However, these physiological parameters have no significant effect either on growth kinetics, following growth resumption under herbicide stress, or on the growth curve of yeast cells previously adapted to the herbicides, indicating that their role is exerted at the level of cell adaptation.  相似文献   

3.
This study investigated the fate and behaviour of [UL-(14)C] 2,4-dichlorophenol (DCP) in planted (Lolium perenne L.) and unplanted soils over 57 days. Extractability of [UL-(14)C] 2,4-DCP associated activity was measured using calcium chloride (CaCl(2)), acetonitrile-water and dichloromethane (DCM) extractions. Biodegradability of [UL-(14)C] 2,4-DCP associated activity was assessed through measurement of (14)CO(2) production by a degrader inoculum (Burkholderia sp.). Although extractability and mineralisation of [UL-(14)C] 2,4-DCP associated activity decreased significantly in both planted and unplanted soils, plants appeared to enhance the sequestration process. After 57 days, in unplanted soil, 27% of the remaining [UL-(14)C] 2,4-DCP associated activity was mineralised by Burkholderia sp., and 13%, 48%, and 38% of (14)C-activity were extracted by CaCl(2), acetonitrile-water and DCM, respectively. However, after 57 days, in planted soils, only 10% of the [UL-(14)C] 2,4-DCP associated activity was available for mineralisation, whilst extractability was reduced to 2% by CaCl(2), 17% by acetonitrile-water and 11% by DCM. This may be due to the effect of plants on soil moisture conditions, which leads to modification of the soil structure and trapping of the compound. However, the influence of plants on soil biological and chemical properties may also play a role in the ageing process.  相似文献   

4.
Chu W  Kwan CY  Chan KH  Chong C 《Chemosphere》2004,57(9):1165-1171
The Fenton's oxidation kinetics of herbicide 2,4-D at various [Fe(II)] and [H(2)O(2)] combinations was investigated and modelled through an unconventional approach. The reaction kinetics of 2,4-D degradation demonstrated a two-stage pattern of decay, where a very fast reactive stage was followed by a retardation stage due to the depletion of oxidants and to the competitive side-reactions of the intermediates (including 2,4-dichlorophenol, chlorohydroquinone and 2,6-dichlororesorcinol). A model characterized by two newly established constants, the initial decay rate and the maximum oxidative capacity, was proposed and proven capable of describing the two-stage process, which cannot easily be described by conventional first- or second-order kinetics approaches.  相似文献   

5.
Tsai TY  Okawa K  Nakano Y  Nishijima W  Okada M 《Chemosphere》2004,57(9):1151-1155
The effects of chemical characteristics of organic solvents on the decomposition rate constants of undissociative trichloroethylene (TCE) and dissociative 2,4-dichlorophenol (2,4-DCP) by ozonation were studied. The TCE and 2,4-DCP decomposition by ozonation in organic solvents followed to the first-order reaction kinetics with respect to TCE or 2,4-DCP concentration. The orders of the rate constants among organic solvents for undissociative TCE and dissociative 2,4-DCP were different indicating that the ozonation rates for undissociative and dissociative compounds were dependent on the chemical property of organic solvent. The decomposition of undissociative TCE by ozonation was a simple electrophilic reaction, which was dependent on acceptor number (AN) of the solvent. On the other hand, the decomposition of dissociative 2,4-DCP was dependent on by the dissociation of the compounds and would be dependent on donor number (DN) of the solvent. Finally, TCE in acetic acid was transformed to chlorinated intermediates and chloride ion and then these intermediates were continuously oxidized to chlorine gas.  相似文献   

6.
The effects of different environmental parameters, i.e., pH, temperature, time and enzyme concentration on the biodegradation of 2,4-dichlorophenol (2,4-DCP) in aqueous phase was evaluated with laccase from Pleurotus sp. using response surface methodology (RSM) in the present investigation. The Box-Behnken design of experiments was used to construct second order response surfaces with the investigated parameters. It was observed that the maximum degradation efficiency of approximately 98% was achieved at pH 6, temperature of 40 degrees C, time 9h and an enzyme concentration of 8IUml(-1). The adequacy of the model was confirmed by the coefficient of multiple regression, R(2) and adjusted R(2) which were adjudged to be 87.9% and 73.6%, respectively indicating a reasonably good model for practical implementation. Despite the fact that many successful attempts have been taken in the past for biodegradation of 2,4-DCP using whole cells, the present study emphasizes the fastest biodegradation of 2,4-DCP, a potent xenobiotic compound.  相似文献   

7.
Ralstonia sp. SA-3, Ralstonia sp. SA-4 and Pseudomonas sp. SA-6 are natural strains with a novel capacity to utilize meta-substituted dichlorobiphenyls (diCBs) hitherto not known to serve as a sole source of carbon and energy for polychlorobiphenyl-degraders. In growth experiments, axenic cultures of isolates grew logarithmically on 3,3'-diCB with generation times that ranged insignificantly (t-test, P>0.05) from 30.4 to 33.8 h. Both 3-chlorobenzoate (3-CBA) and chloride produced as metabolites were recovered in non-stoichiometric quantities. The release of chloride by the cultures lagged substantially, indicating that the initial dioxygenase attack preceded cleavage of carbon-chloride bonds and that chloride must have been released from the chlorinated hydroxypentadienoate. In the case of 3,5-diCB, SA-3 and SA-6 metabolised this substrate primarily to 3,5-CBA. The lack of chloride in the culture media coupled with stoichiometric recovery of 3,5-CBA suggests that growth by these strains occurred predominantly at the expense of the unsubstituted phenyl ring. The unique metabolic properties of these three aerobic isolates point to their potential usefulness as seeds for bioremediation of PCBs polluted environments without the need for repeated inoculation or supplementation by a primary growth substrate such as biphenyl.  相似文献   

8.
Wang SG  Liu XW  Zhang HY  Gong WX  Sun XF  Gao BY 《Chemosphere》2007,69(5):769-775
Development of aerobic granules for the biological degradation of 2,4-dichlorophenol (2,4-DCP) in a sequencing batch reactor was reported. A key strategy was involving the addition of glucose as a co-substrate and step increase in influent 2,4-DCP concentration. After operation of 39d, stable granules with a diameter range of 1-2mm and a clearly defined shape and appearance were obtained. After granulation, the effluent 2,4-DCP and chemical oxygen demand concentrations were 4.8mgl(-1) and 41mgl(-1), with high removal efficiencies of 94% and 95%, respectively. Specific 2,4-DCP biodegradation rates in the granules followed the Haldane model for substrate inhibition, and peaked at 39.6mg2,4-DCPg(-1)VSS(-1)h(-1) at a 2,4-DCP concentration of 105mgl(-1). Efficient degradation of 2,4-DCP by the aerobic granules suggests their potential application in the treatment of industrial wastewater containing chlorophenols and other inhibitory chemicals.  相似文献   

9.
高盐废水盐度变化是影响微生物生长的重要因素之一。研究以中度嗜盐菌Halomonassp.STSY.3为例,测定其在不同盐度下生长对数期末OD600,并以葡萄糖为限制性基质,利用Monod方程,对菌株进行生长动力学拟合。结果表明,Halomonassp.STSY-3的最适生长盐度为7%(以NaCl计),此盐度下其OD600 为2.56,而0%和34%盐度下OD600分别为0.47和0.06;Halomonassp.STSY-3的生长动力学模型与实验数据能较好地拟合,在最适生长盐度下动力学模型参数μmax 为2.257h-1,Ks为0.0082g/L。比较不同盐度下STSY-3生长动力学参数,得出中度嗜盐菌STSY-3的生长存在3个明显分区:最适盐度区(盐度2%~9%)、嗜盐过渡区(盐度9%~20%和0.68%~1.76%)及生长抑制区(盐度≤2%或≥20%)。其中嗜盐过渡区0.68%~1.76%由于范围较小,实际意义小,忽略不计。  相似文献   

10.
Reductive transformation of 2,4-dichlorophenoxyacetic acid (2,4-D) by nanoscale and microscale Fe3O4 was investigated and compared. Disappearance of the parent species and formation of reaction intermediates and products were kinetically analyzed. Results suggest that the transformation of 2,4-D followed a primary pathway of its complete reduction to phenol and a secondary pathway of sequential reductive hydrogenolysis to 2,4-dichlorophenol (2,4-DCP), chlorophenol (2-CP, 4-CP) and phenol. About 65% of 2,4-D with initial concentration of 50 μ M was transformed within 48 h in the presence of 300 mg L?1 nanoscale Fe3O4, and the reaction rates increased with increasing dosage of nanoscale Fe3O4. The decomposition of 2,4-D proceeded rapidly at optimum pH 3.0. Chloride was identified as a reduction product for 2,4-D in the magnetite–water system. Reductive transformation of 2,4-D by microscale Fe3O4 was slower than that by nanoscale Fe3O4. The reactions apparently followed pseudo-first-order kinetics with respect to the 2,4-D transformation. The degradation rate of 2,4-D decreased with the increase of initial 2,4-D concentration. In addition, anions had a significant adverse impact on the degradation efficiency of 2,4-D.  相似文献   

11.

In this study, a novel thermo-responsive polymer was synthesized with efficient grafting of N-isopropylacrylamide as a thermosensitive polymer onto the graphene oxide surface for the efficient removal of phenol and 2,4-dichlorophenol from aqueous solutions. The synthesized polymer was conjugated with 2-allylphenol. Phenol and 2,4-dichlorophenol were monitored by ultra-performance liquid chromatography system equipped with a photodiode array detector. The nanoadsorbent was characterized by different techniques. The nanoadsorbent revealed high adsorption capacity where the removal percentages of 91 and 99% were found under optimal conditions for phenol and 2,4-dichlorophenol, respectively (for phenol; adsorbent dosage = 0.005 g, pH = 8, temperature= 25 °C, contact time = 60 min; for 2,4-dichlorophenol; adsorbent dosage = 0.005 g, pH = 5, temperature = 25 °C, contact time = 10 min). Adsorption of phenol and 2,4-dichlorophenol onto nanoadsorbent followed pseudo-second-order kinetic and Langmuir isotherm models, respectively. The values of ΔG (average value = ? 11.39 kJ mol?1 for phenol and 13.42 kJ mol?1 for 2,4-dichlorophenol), ΔH (? 431.72 J mol?1 for phenol and ? 15,721.8 J mol?1 for 2,4-dichlorophenol), and ΔS (35.39 J mol?1 K?1 for phenol and ? 7.40 J mol?1 K?1 for 2,4-dichlorophenol) confirmed spontaneous and exothermic adsorption. The reusability study indicated that the adsorbent can be reused in the wastewater treatment application. Thermosensitive nanoadsorbent could be used as a low-cost and efficient sorbent for phenol and 2,4-dichlorophenol removal from wastewater samples.

  相似文献   

12.
Ninety strains of fungi from the collection of our mycology laboratory were tested in Galzy and Slonimski (GS) synthetic liquid medium for their ability to degrade the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) and its by-product, 2,4-dichlorophenol (2,4-DCP) at 100 mg l(-1), each. Evolution of the amounts of each chemical in the culture media was monitored by HPLC. After 5 days of cultivation, the best results were obtained with Aspergillus penicilloides and Mortierella isabellina for 2,4-D and with Chrysosporium pannorum and Mucor genevensis for 2,4-DCP. The data collected seemed to prove, on one hand, that the strains responses varied with the taxonomic groups and the chemicals tested, and, on the other hand, that 2,4-D was less accessible to fungal degradation than 2,4-DCP. In each case, kinetics studies with the two most efficient strains revealed that there was a lag phase of 1 day before the onset of 2,4-D degradation, whereas there was none during 2,4-DCP degradation. Moreover, 2,4-DCP was detected transiently during 2,4-D degradation. Finally, M. isabellina improved its degradation potential in Tartaric Acid (TA) medium relative to GS and Malt Extract (ME) media.  相似文献   

13.
Gao J  Liu L  Liu X  Zhou H  Huang S  Wang Z 《Chemosphere》2008,71(6):1181-1187
The chlorophenol pollutants (CPs) have been reported to occur at relatively high concentrations in some Chinese waters. To map the distribution of CPs in the surface water throughout China, samples were collected from over 600 sites in the seven major watersheds and three drainage areas. The samples were analyzed for the representative CPs including 2,4-dichlorophenol, 2,4,6-trichlorophenol, and pentachlorophenol. In general, it was observed that 2,4-dichlorophenol and 2,4,6-trichlorophenol were more frequently detected at higher concentrations in the rivers of North China compared with those of South China. High concentration sites of 2,4-dichlorophenol and 2,4,6-trichlorophenol mainly occurred in the Yellow River, Huaihe River, and Haihe River watersheds, while pentachlorophenol contamination mainly occurred in the Yangtze River watershed. The pentachlorophenol was the most ubiquitous CPs being detected in 85.4% of samples (median=50.0ngl(-1); range <1.1-594.0ngl(-1)), 2,4-dichlorophenol was detected in 51.3% (median=5.0ngl(-1); range <1.1-19960.0ngl(-1)) and the 2,4,6-trichlorophenol was detected in 54.4% of water samples (median=2.0ngl(-1), range <1.4-28650.0ngl(-1)). The results of this investigation indicated that 2,4-dichlorophenol and 2,4,6-trichlorophenol contaminations of Yellow River, Huaihe River, and Haihe River watersheds were of particular concern, while the pentachlorophenol contamination mainly occurred in the Yangtze River watershed. These results showed that CPs contamination in the surface water of China was similar to other places of the world.  相似文献   

14.
W S Kuo 《Chemosphere》1999,39(11):1853-1860
Synergistic effects including TOC elimination, ozone consumption and microtoxicity reduction for combination of photolysis and ozonation compared to those of direct photolysis and ozonation alone on destruction of chlorophenols including 2-chlorophenol, 4-chlorophenol and 2,4-dichlorophenol were studied. It was found that the synergistic effects of combination of photolysis and ozonation increased obviously with increasing initial pH of solution to basic pH levels. Results showed that the synergistic effects of photolytic ozonation under the conditions imposed was notable with mineralization rate enlarging more than 100%, oxidation index (OI) decreasing 50%, and microtoxicity being reduced by 30%, indicating that the potentialities of photolytic ozonation compared to direct photolysis and ozonation alone was remarkable for treatment of industrial wastewater containing chlorophenols.  相似文献   

15.
Adsorption of phenols by papermill sludges   总被引:8,自引:0,他引:8  
In this paper we studied the sorption capacity of paper mill sludges for phenols. Phenol, 2-chlorophenol (2-CP), 3-chlorophenol 3-CP). 4-chlorophenol (4-CP), 2-nitrophenol (2-NP), 4-nitrophenol (4-NP), 2.4-dichlorophenol (2,4-DCP), 3,4-dichlorophenol (3,4-DCP) 3,5-dichlorophenol (3,5-DCP) and 2,4,5-trichlorophenol (2,4,5-TCP) were chosen for the sorption tests. Kinetic experiments showed that substituted-phenol sorption on papermill sludge was rapid (equilibrium was reached after 3 h); conversely, the time taken by the phenol to reach equilibrium conditions was 260 h. Experimental data showed that particle diffusion was involved in the sorption process but was not the only rate-limiting mechanism; several other mechanisms were involved. The adsorption isotherms showed the following order of retention capacity of papermill sludge: 2-NP = 4-NP < < 2-CP < phenol < 4-CP < or = 3-CP < 2,4 DCP<3,4 DCP=2,4,5 TCP<3,5 DCP. In all cases the experimental data showed a good fit with the Hill equation. which is mathemratically equivalent to the Langmuir-Freundlich model obtained by assuming that the surface is homogeneous, and that the adsorption is a cooperative process influenced by adsorbate-adsorbate interactions.  相似文献   

16.
An Al(OH)x-montmorillonite (chlorite) complex (AM18) was prepared and 2,4-dichlorophenoxyacetic acid (2,4-D) sorbed to saturation. After several washing cycles the 'strongly sorbed' 2,4-D was 507 micrograms g-1 AM18. The bioavailability of sorbed 2,4-D was assessed in a minimal salts medium with the AM18-2,4-D as the sole C and energy source. Over a 28-day period a Pseudomonas sp. degraded 23% more of the sorbed 2,4-D than could be accounted for by desorption from AM18 in the non-inoculated controls. Possible explanations for the increase in bioavailability are presented.  相似文献   

17.
Numerous reports have indicated that hydrophobic organic compound bioaccessibility in sediment and soil can be determined by extraction using aqueous hydroxypropyl-β-cyclodextrin (HPCD) solutions. This study establishes the compatibility of HPCD with Selenastrum capricornutum and assesses whether its presence influences the toxicity of reference toxicants. Algal growth inhibition (72 h) showed no significant (P > 0.05) difference at HPCD concentrations up to and including 20 mM. HPCD presence did not influence the toxicity of the inorganic reference toxicant (ZnSO4), with IC50 values of 0.82 μM and 0.85 μM, in the presence and absence of HPCD (20 mM), respectively. However, HPCD presence (20 mM) reduced the toxicity of 2,4-dichlorophenol and the herbicides diuron and isoproturon. These reductions were attributed to inclusion complex formation between the toxicants and the HPCD cavity. Liberation of complexed toxicants, by sample manipulation prior to toxicity assessment, is proposed to provide a sensitive, high throughput, bioassay that reflects compound bioaccessibility.  相似文献   

18.
氧化树脂的制备及其对水溶液中2,4-二氯苯酚的吸附研究   总被引:1,自引:0,他引:1  
用H2O2或HNO3氧化的方法制备了新型吸附树脂ZH-07和ZH-08,同时研究了它们对不同温度下水溶液中2,4-二氯苯酚的静态吸附和脱附特征,并对其吸附机理进行了探讨。结果表明,经氧化后的树脂ZH-07和ZH-08对水溶液中2,4-二氯苯酚的吸附过程存在化学吸附作用,可以提高它们对水溶液中2,4-二氯苯酚的吸附容量。  相似文献   

19.
为了研究2,4-二氯苯酚在土壤中的吸附及比较其批实验与柱实验的分配系数Kd,开展了2,4-二氯苯酚的批实验(不同液固比条件下)和柱实验。通过分析结果可知,在批实验中,不同液固比条件下2,4-二氯苯酚达到平衡的时间类似,都在60~70 h,吸附动力学曲线符合伪二级动力学方程,吸附规律是:液固比越大,平衡吸附量增大,反应速率常数K2减小,初始吸附速率常数减小;Kd随液固比增大而降低,范围在2.91~2.12 L/kg。柱实验结果表明,2,4-二氯苯酚的贯穿曲线可以很好地用化学非平衡模型来拟合,通过模型拟合得到的Kd值要低于批实验的结果。该研究对表征2,4-二氯苯酚在环境中的行为、预测其对土壤和地下水的污染及其治理提供了依据。  相似文献   

20.
A series of experiments were conducted in a hydroponic system to investigate the uptake of oxytetracycline (OTC) and its toxicity to alfalfa (Medicago sativa L.). OTC inhibited alfalfa shoot and root growth by up to 61% and 85%, respectively. The kinetics of OTC uptake could be well described by Michaelis-Menten equation with Vmax of 2.25 micromol g-1 fresh weight h-1, and Km of 0.036 mM. The uptake of OTC by alfalfa was strongly inhibited by the metabolic inhibitor, 2,4-DNP (2,4-dinitrophenol), at pH 3.5 and 6.0, but not by the aquaporin competitors, glycerol and Ag+. OTC uptake, however, was significantly inhibited by Hg2+, suggesting that the inhibition of influx was due to general cellular stress rather than the specific action of Hg2+ on aquaporins. Results from the present study suggested that OTC uptake into alfalfa is an energy-dependent process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号