首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The facility with which hydrocarbons can be removed from soils varies inversely with aging of soil samples as a result of weathering. Weathering refers to the result of biological, chemical and physical processes that can affect the type of hydrocarbons that remain in a soil. These processes enhance the sorption of hydrophobic organic contaminants (HOCs) to the soil matrix, decreasing the rate and extent of biodegradation. Additionally, pollutant compounds in high concentrations can more easily affect the microbial population of a recently contaminated soil than in a weathered one, leading to inhibition of the biodegradation process. The present work aimed at comparing the biodegradation efficiencies obtained in a recently oil-contaminated soil (spiked one) from Brazil and an weathered one, contaminated for four years, after the application of bioaugmentation and biostimulation techniques. Both soils were contaminated with 5.4% of total petroleum hydrocarbons (TPHs) and the highest biodegradation efficiency (7.4%) was reached for the weathered contaminated soil. It could be concluded that the low biodegradation efficiencies reached for all conditions tested reflect the treatment difficulty of a weathered soil contaminated with a high crude oil concentration. Moreover, both soils (weathered and recently contaminated) submitted to bioaugmentation and biostimulation techniques presented biodegradation efficiencies approximately twice as higher as the ones without the aforementioned treatment (natural attenuation).  相似文献   

2.
We investigated the toxicity of an emerging polynitramine energetic material hexanitrohexaazaisowurtzitane (CL-20) to the soil invertebrate species Enchytraeus crypticus by adapting then using the Enchytraeid Reproduction Test (ISO/16387:2003). Studies were designed to develop ecotoxicological benchmark values for ecological risk assessment of the potential impacts of accidental release of this compound into the environment. Tests were conducted in Sassafras Sandy Loam soil, which supports relatively high bioavailability of CL-20. Weathering and aging procedures for CL-20 amended into test soil were incorporated into the study design to produce toxicity data that better reflect soil exposure conditions in the field compared with the toxicity in freshly amended soils. Concentration-response relationships for measurement endpoints were determined using nonlinear regressions. Definitive tests showed that toxicities for E. crypticus adult survival and juvenile production were significantly increased in weathered and aged soil treatments compared with toxicity in freshly amended soil, based on 95% confidence intervals. The median effect concentration (EC50) and EC20 values for juvenile production were 0.3 and 0.1 mg kg-1, respectively, for CL-20 freshly amended into soil, and 0.1 and 0.035 mg kg-1, respectively, for weathered and aged CL-20 soil treatments. These findings of increased toxicity to E. crypticus in weathered and aged CL-20 soil treatments compared with exposures in freshly amended soils show that future investigations should include a weathering and aging component to generate toxicity data that provide more complete information on ecotoxicological effects of emerging energetic contaminants in soil.  相似文献   

3.

Selenium (Se) is an essential metalloid element for mammals. Nonetheless, both deficiency and excess of Se in the environment are associated with several diseases in animals and humans. Here, we investigated the interaction of Se, supplied as selenate (Se+6) and selenite (Se+4), with phosphorus (P) and sulfur (S) in a weathered tropical soil and their effects on growth and Se accumulation in Leucaena leucocephala (Lam.) de Wit. The P-Se interaction effects on L. leucocephala growth differed between the Se forms (selenate and selenite) supplied in the soil. Selenate was prejudicial to plants grown in the soil with low P dose, while selenite was harmful to plants grown in soil with high P dose. The decreasing soil S dose increased the toxic effect of Se in L. leucocephala plants. Se tissue concentration and total Se accumulation in L. leucocephala shoot were higher with selenate supply in the soil when compared with selenite. Therefore, selenite proved to be less phytoavailable in the weathered tropical soil and, at the same time, more toxic to L. leucocephala plants than selenate. Thus, it is expected that L. leucocephala plants are more efficient to phytoextract and accumulate Se as selenate than Se as selenite from weathered tropical soils, for either strategy of phytoremediation (decontamination of Se-polluted soils) or purposes of biofortification for animal feed (fertilization of Se-poor soils).

  相似文献   

4.
Experiments were conducted to assess the effect of seven organic acids [succinic, tartaric, malic, malonic, oxalic, citric, ethylene-diaminetetraacetic (EDTA)] over a concentration range of two orders of magnitude (0.001-0.10 M) on the abiotic desorption of weathered p,p'-DDE and the extraction of polyvalent inorganic ions from soil. At 0.05 M all organic acids significantly increased contaminant desorption by 19-80%. Organic acids also increased the aqueous concentration of eight inorganic constituents extracted from soil, with at least a six-fold increase in the release of Al, Fe, Mn, and P at 0.001 M. Zucchini seedlings grown for 28 d in soil containing weathered p,p'-DDE (300 ng/g, dry weight) were periodically amended with distilled water, citric or oxalic acids (0.01 M). Plants receiving water removed 1.7% of the p,p'-DDE from the soil. Seedlings amended with citric or oxalic acids removed 2.1 and 1.9% of the contaminant, respectively, and contained up to 66% more contaminant in the shoot system than unamended vegetation. A second crop of untreated (distilled water) zucchini in the same soil removed more contaminant than the first crop (2.5%), although the addition of organic acids did not further enhance contaminant uptake. The data indicate that the addition of low molecular weight organic acids causes the partial dissolution of the soil structure through the chelation of inorganic structural ions, potentially enhancing bioavailability and having implications for the phytoremediation of persistent organic pollutants in soil.  相似文献   

5.
A 96-microwell enzyme-linked immunosorbent assay (ELISA) method was evaluated to determine PCDDs/PCDFs in sediment and soil samples from an EPA Superfund site. Samples were prepared and analyzed by both the ELISA and a gas chromatography/high resolution mass spectrometry (GC/HRMS) method. Comparable method precision, accuracy, and detection level (8 ng kg(-1)) were achieved by the ELISA method with respect to GC/HRMS. However, the extraction and cleanup method developed for the ELISA requires refinement for the soil type that yielded a waxy residue after sample processing. Four types of statistical analyses (Pearson correlation coefficient, paired t-test, nonparametric tests, and McNemar's test of association) were performed to determine whether the two methods produced statistically different results. The log-transformed ELISA-derived 2,3,7,8-tetrachlorodibenzo-p-dioxin values and log-transformed GC/HRMS-derived TEQ values were significantly correlated (r=0.79) at the 0.05 level. The median difference in values between ELISA and GC/HRMS was not significant at the 0.05 level. Low false negative and false positive rates (<10%) were observed for the ELISA when compared to the GC/HRMS at 1,000 ng TEQ kg(-1). The findings suggest that immunochemical technology could be a complementary monitoring tool for determining concentrations at the 1,000 ng TEQ kg(-1) action level for contaminated sediment and soil. The ELISA could also be used in an analytical triage approach to screen and rank samples prior to instrumental analysis.  相似文献   

6.
A high-throughput screening method using selective pressurized liquid extraction (SPLE) and enzyme-linked immunosorbent assay (ELISA) for monitoring dioxins in sediment and soil is described. SPLE conditions were developed by extracting sediment or soil together with alumina, 10% AgNO3 in silica, and sulfuric acid impregnated silica (acid silica) using dichloromethane (DCM) as the solvent at 100 °C and 2000 psi. Post-extraction cleanups were not required for ELISA. Two reference sediments (National Institute of Standards and Technology SRM 1944 and Wellington Laboratories WMS01) were analyzed by the SPLE–ELISA method. The ELISA utilized a polyclonal antibody and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) as the calibrant. Recoveries of ELISA-derived TCDD equivalents (EQ) relative to the expected gas chromatography/high resolution mass spectrometry (GC/HRMS) derived dioxin toxic equivalent (TEQ) values were 116 ± 11% for SRM 1944 and 102 ± 13% for WMS01. ELISA TCDD EQs were consistent with the dioxin TEQs as measured by GC/HRMS for 25 soil/sediment samples from seven different contaminated sites. The ELISA had an approximate method detection limit of 10 pg g−1 with a precision of 2.6–29% based on the relative percentage difference (%RPD) for duplicate samples. Estimated sample throughput for the SPLE–ELISA was three times or more than that of the GC/HRMS method employing PLE with a multi-column cleanup.  相似文献   

7.
White JC 《Chemosphere》2002,49(2):143-152
Field experiments were conducted to assess the bioavailability of weathered p,p'-DDE in soil to plants in the Cucurbita (squash, pumpkin) and Cucumis (cucumber, melon) genera. As expected, significant variability exists in the uptake of p,p'-DDE between plants of different genera. Root:soil concentration factors, defined as the ratio of p,p'-DDE (ng/g, dry weight) in the roots to that in the soil, approach 1.8 for cucumbers/melons and 16 for squash/pumpkin. However, significant differences were also observed among varieties of squash and pumpkin, with greater than an order of magnitude variation in the root:soil concentration factors and up to two orders of magnitude difference in the absolute amount of contaminant present within the plant. Although root systems routinely contain the highest concentration of p,p'-DDE (ng/g), this compartment comprises less than 2% of the total plant biomass. In all varieties but one, more than 86% of the extracted pollutant was in the shoot system. For two of varieties of Cucurbita pepo, concentrations of p,p'-DDE in the stems reached 1.1-2.2 mg/g and estimations of percent contaminant extraction from the soil ranged from 0.40% to 2.4%. These values approach those observed in the phytoremediation of heavy metals by "hyperaccumulating" species and indicate the potential for a plant-based remediation approach to soils contaminated with persistent organic pollutants.  相似文献   

8.
The composition of amorphous and condensed soil/sediment organic matter (SOM) domains was investigated for one soil sample and four sediment samples. These samples were oxidized with persulfate to remove amorphous SOM, before and after which the composition of SOM was studied by thermogravimetric analysis, pyrolysis-GC/MS, and cross polarization magic angle spinning 13C-NMR. Comparison of the SOM composition before and after oxidation showed that condensed SOM was more thermostable and less polar than amorphous SOM. Condensed SOM was relatively low in O-alkyl C and carboxyl C and it was likely to contain only small amounts of labile organic components (carbohydrates, peptides, fatty acids). Apart from these general characteristics, the composition of the condensed and amorphous domains appeared to be highly dependent on the origin and nature of the SOM investigated. Condensed domains in relatively undecomposed SOM were enriched in aliphatic C, whereas condensed domains in relatively weathered SOM were enriched in aromatic C. Altogether, the compositional changes upon persulfate oxidation were similar to the compositional changes upon humification, which supports the idea that weathered SOM is more condensed than the original material.  相似文献   

9.
Three different calcareous soil samples from Lebanon were analyzed for total DDT pesticide residue using GC and ELISA methods. Two experiments were conducted on three different calcareous soil samples. In each experiment, triplicates of 5 gm soil samples were each fortified with standard solutions of DDE to reach concentrations of 0, 5, 25, 50, 100 and 200 ng g(-1) and allowed to equilibrate at room temperature for 6 hours. Each sample was then extracted with 25 mL of 90% methanol by shaking in glass bottles on a mechanical shaker for 16 hours. The bottles were allowed to stand for 30 minutes and aliquots were taken from the clear supernatant for analyses without further cleanup. The total DDT in the extract was measured in triplicate by GC and ELISA. The results indicated that the two methods were highly correlated (R = 0.955-0.994). Differences in soil properties did not affect the accuracy of the detection limits of ELISA. Immunoassay technique can be used for rapid and accurate measurement of total DDT residues in mineral calcareous soils in Lebanon.  相似文献   

10.
A low-cost, high throughput bioanalytical screening method was developed for monitoring cis/trans-permethrin in dust and soil samples. The method consisted of a simple sample preparation procedure [sonication with dichloromethane followed by a solvent exchange into methanol:water (1:1)] with bioanalytical detection using a magnetic particle enzyme-linked immunosorbent assay (ELISA). Quantitative recoveries (83–126 %) of cis/trans-permethrin were obtained for spiked soil and dust samples. The percent difference of duplicate ELISA analyses was within ± 20 % for standards and ± 35 % for samples. Similar sample preparation procedures were used for the conventional gas chromatography/mass spectrometry (GC/MS) analysis except that additional cleanup steps were required. Recoveries of cis/trans-permethrin ranged from 81 to 108 % for spiked soil and dust samples by GC/MS. The ELISA-derived permethrin concentrations were highly correlated with the GC/MS-derived sum of cis/trans-permethrin concentrations with a correlation coefficient (r) of 0.986. The ELISA method provided a rapid qualitative screen for cis/trans-permethrin in soil and dust while providing a higher sample throughput with a lower cost as compared to the GC/MS method. The ELISA can be applied as a complementary, low-cost screening tool to prioritize and rank samples prior to instrumental analysis for exposure studies.  相似文献   

11.
Tracking chlordane compositional and chiral profiles in soil and vegetation   总被引:4,自引:0,他引:4  
The cycling of chlordane and other persistent organic pollutants through the environment must be comprehensively elucidated to assess adequately the human health risks posed from such contaminants. In this study the compositional and chiral profiles of weathered chlordane residues in the soil and vegetative compartments were investigated in order to provide details of the fate and transport of this persistent pesticide. Zucchini was planted in a greenhouse in three bays containing chlordane-contaminated soil. At harvest the vegetation and soil were extracted and analyzed for chlordane content using chiral gas chromatography/ion trap mass spectrometry. Both achiral and chiral chlordane components were quantified. The chlordane concentration in the rhizosphere (soil attached to roots) was significantly less than that in the bulk soil. However, the enantiomeric ratio of the chiral components and overall component ratios had changed little in the rhizosphere relative to the bulk soil. Significant levels of chlordane were detected in the vegetation, the amount varying in different plant tissues from a maximum in roots to a minimum in fruit. In addition to the chlordane concentration gradient in plant tissues, significant shifts in compositional profile, as indicated by the component ratios, and in chiral profile, as indicated by the enantiomeric ratio, of the contaminant were observed in the plant tissues. The data indicate that abiotic processes dominate the transport of the chlordane components through the soil to the plant. This is the first report of the effect of rapid biotic processes within the plant compartment on chlordane compositional and chiral profiles.  相似文献   

12.
A preliminary evaluation of compound-specific isotope analysis (CSIA) as a novel, alternative method for identifying source correlation compounds in soils contaminated with residual heavy or weathered petroleum wastes is presented. Oil-contaminated soil microcosms were established using soil (sandy-loam, non-carbonaceous cley) amended with ballast-, crude- or No.6 fuel oil. Microcosms were periodically sampled over 256 days and delta(13)C values (which express the ratio of (13)C to (12)C) determined at each time point for five n-alkanes and the isoprenoid norpristane using gas chromatography-isotope ratio mass spectrometry (GC-IRMS). Although some temporal variation was observed, no significant temporal shifts in the delta(13)C values for the five n-alkanes were measured in all three oils. Isoprenoid isotope ratios (delta(13)C) appeared to be least affected by biotransformation, especially in the No.6 fuel oil. The research suggests that the delta(13)C of isoprenoids such as norpristane, may be of use as source correlation parameters.  相似文献   

13.
An indirect competitive enzyme-linked immunosorbent assay (ELISA) has been developed and optimized for atrazine determination in soil at different depths (0-10, 10-20, and 20-30 cm) before and after 48 h of application, corn shoot and cow milk samples collected from Dina farm, Egypt. This assay was based on a specific polyclonal antibodies (PAb) raised by immunizing New Zealand rabbits with an immunogen prepared by coupling 3-{4-(ethylamino)-6-(isopropylamino)-1,3,5-triazine-2-yl} thiopropanoic acid to bovine serum albumin (BSA) via N-hydroxysuccinimide (NHS) active ester method. The sensitivity (estimated as IC?? value) was 17.5 μg mL?1 with a detection limit of 0.1 ng mL?1. The maximum atrazine concentration was found in soil especially in the deepest layer (325 and 890 μg kg?1 before and after application, respectively). Atrazine concentration in corn shoot was 333.28, μg kg?1 dry plant, while there was no detectable amount in milk. All samples screened by ELISA were validated by gas chromatography mass spectrometer procedure (GC/MS). Good correlation was achieved between the two methods (r = 0.997 for soil and 0.9814 for plant). This study demonstrates the utility and convenience of the simple, practical and cost-effective ELISA method in the laboratory for analysis of environmental samples. The method is ideal for the rapid screening of large numbers of samples in laboratories where access to GC/MS facilities, is limited or lacking.  相似文献   

14.
Investigations have been undertaken at two integrated steelworks in the UK to characterise airborne organic micro-pollutants and to assess the contribution of iron ore sintering and coke making operations on the air quality. Concentrations of volatile organic compounds (VOCs), namely benzene, toluene and p-xylene, were measured continuously within the boundary of a coking plant using for the first time differential optical absorption spectrometry (DOAS) between 2004 and 2006. Concentrations were obtained along two monitoring paths surrounding the coke plant and the average benzene concentration measured along both paths over the campaign was 28 μg m?3. Highest benzene concentrations were associated with winds downwind of the coke oven batteries. Concentrations of polycyclic aromatic hydrocarbons (PAHs) in ambient air were measured during 27 consecutive days in 2005 at three different locations on an integrated steelworks. PAH profiles were determined for each sampling point and compared to coke oven and sinter plant emission profiles showing an impact from the steelworks. The mean benzo [a] pyrene concentration determined in the immediate vicinity of the coke ovens downwind from the battery was 19 ng m?3, whereas for the two other sites average benzo [a] pyrene concentrations were much lower (around 1 ng m?3). Data were analysed using principal components analysis (PCA) and results showed that coke making and iron ore sintering were responsible for most of the variation in the PAH concentrations in the vicinity of the investigated plant.  相似文献   

15.
Sorgoleone (SGL) exuded by sorghum roots inhibits the development of some weeds. Due to its high hydrophobicity, it is expected that SGL presents low soil mobility and limited allelopathic activity in the field. This work aims to evaluate the sorptivity of sorgoleone in octanol-water and in soil under two solvent systems. The two solvent systems were methanol:water (60:40) (MeOH:H2O) and pure methanol (MeOH). These two solvent systems promote different conditions for SGL solubility. Treatments were arranged in a 2 x 6 factorial (solvent systems x equilibrium concentrations in the solution (EC)). For each solvent, the sorption was achieved by shaking 500 mg of soil with 10 ml of 0, 5, 10, 15, 25, 40, and 60 mg L-1 of SGL solution, during 24 h. After centrifugation, the supernatant was filtered and the SGL concentration was determined by high performance liquid chromatography (HPLC). Data of sorbed amount of SGL were submitted to variance analysis, using a hierarchic factorial model. The data of sorbed amount (x/m) and equilibrium concentration (C) were fitted to the linear (x/m = a + KdC) and to the Freundlich (x/m = KfC1/n) models. The isotherm obtained for the MeOH:H2O system presented linear shape, whereas for the MeOH system a two subsequent linear isotherm was fitted. Sorgoleone is a highly hydrophobic compound, presenting a log Kow of 6.1. The sorption of sorgoleone to the soil was very high. The organic environment stimulated the sorgoleone sorption to the soil.  相似文献   

16.
Available information on soil contamination by trace elements in the Sudbury Cu/Ni mining and smelting region consists largely of total elemental concentration data. Little is known about the mode of occurrence and behaviour of Cu and Ni (the main metallic contaminants) in the soils of the region. In this study, sequential extraction and Scanning Electron Microscopy and Energy Dispersive X-ray Analysis (SEM/EDX) observations were complementarily used to define Cu and Ni forms in the Sudbury soils, so as to assess metal mobility. Most Cu (on average 75%) was associated with 'non-residual' soil forms, whereas Ni was mainly (on average 60%) associated with inorganic 'residual' forms of a sulphide and oxide nature. Therefore, Cu occurs in the soils in more mobile forms than Ni. Consequently, Cu should be removed from these soils at a faster rate than Ni. This is an unusual finding, because generally Ni is known to be more mobile in soils than Cu. SEM/EDX analysis confirmed the greater Cu mobility by showing that the metal was strongly associated with organic matter and was homogeneously distributed on the clay fraction surfaces. Nickel occurred alone or was associated with Fe oxides in various size fractions. Both elements were found as sulphides but Ni was often included in the silicate matrices of spherical particles in associations with Fe. SEM/EDX observations have shown that Cu and Ni are associated with soil forms which would not have been predicted by the sequential extraction alone, such as carbonaceous material, silicate spheres and carbonate particles, supporting complementary use of the two techniques.  相似文献   

17.
A heterologous indirect enzyme-linked immunosorbent assay (ELISA) was developed, which was based on monoclonal antibody (Mab) to determine parathion residue in agricultural and environmental samples. Eight Mabs were produced by introducing the heterologous indirect ELISA into the screening procedure. It was shown that these Mabs had more broad-reactivity with twenty competitors than that of 5H7 (Mab produced by homologous screening). So it became much easier using these new Mabs to develop heterologous immunoassays. In addition, all the developed heterologous ELISAs could be used to determine parathion residue in semiquantitative or quantitative level, and their detection limitation (LOD) was around 2 ng/mL. Compared with the previous heterologous ELISA (hapten 11/5H7) with IC50 of 13.3 ng/mL, a better heterologous ELISA (hapten 11/1E1) was obtained with IC50 of 3.8 ng/mL, which improved the sensitivity 3.5 times. Finally, the latter was applied to parathion residue determination in spiked agricultural and environmental samples without extraction or cleanup. The average recoveries of parathion added to water, soil, cucumber, Chinese cabbage and carrot were between 80.4 % and 111.8 %. The LOD for water and soil samples was 5 ng/mL, and the LOD for cucumber, rice and corn samples was 10 ng/mL.  相似文献   

18.
Metallurgical slags from primary lead smelting were submitted to a 30-day batch leaching procedure in 20 and 8 mM citric solutions in order to determine the kinetics of release of Pb, Cu, Zn and As. The experiment was coupled with the PHREEQC-2 speciation-solubility modelling and mineralogical study of newly formed products (SEM/EDS, XRD, TEM/EDS and Raman spectrometry). A strong scavenging of metals and metalloids from the 8 mM citric leachate was observed due to the formation of newly formed products. The secondary precipitate consisted of well-developed calcite (CaCO3) crystals and amorphous organo-mineral matrix composed of hydrous ferric oxides and amorphous SiO2. Metals (Pb, Zn, Cu) and arsenic released into the solution were subsequently bound onto the newly formed product (adsorption on oxides) or trapped within the calcite structure (Zn, Mn). Similar scavenging mechanism can be taken into account in real soil systems with lower concentration of citric acid. Then, the covering of slag dumps with a thick soil layer and subsequent re-vegetation might be a possible scenario for slag management on some metallurgical sites.  相似文献   

19.
An indirect competitive enzyme-linked immunosorbent assay (ELISA) has been developed and optimized for atrazine determination in soil at different depths (0–10, 10–20, and 20–30 cm) before and after 48 h of application, corn shoot and cow milk samples collected from Dina farm, Egypt. This assay was based on a specific polyclonal antibodies (PAb) raised by immunizing New Zealand rabbits with an immunogen prepared by coupling 3-{4-(ethylamino)-6-(isopropylamino)-1,3,5-triazine-2-yl} thiopropanoic acid to bovine serum albumin (BSA) via N-hydroxysuccinimide (NHS) active ester method. The sensitivity (estimated as IC50value) was 17.5 μg mL?1 with a detection limit of 0.1 ng mL?1. The maximum atrazine concentration was found in soil especially in the deepest layer (325 and 890 μg kg?1 before and after application, respectively). Atrazine concentration in corn shoot was 333.28, μg kg?1 dry plant, while there was no detectable amount in milk. All samples screened by ELISA were validated by gas chromatography mass spectrometer procedure (GC/MS). Good correlation was achieved between the two methods (r = 0.997 for soil and 0.9814 for plant). This study demonstrates the utility and convenience of the simple, practical and cost–effective ELISA method in the laboratory for analysis of environmental samples. The method is ideal for the rapid screening of large numbers of samples in laboratories where access to GC/MS facilities, is limited or lacking.  相似文献   

20.

Purpose  

In the ambit of a project searching for appropriate biological approaches for recovering a refinery soil contaminated with petroleum hydrocarbons (PHC), we compared results obtained in the absence and in the presence of the salt marsh plant Scirpus maritimus or Juncus maritimus or an association of these two plants, which were tested in the refinery environment. Synergistic effects caused by addition of a non-ionic surfactant and/or a bioaugmentation product were also investigated. Major challenges of this study were: field conditions and weathered contamination.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号