首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Forest degradation in the tropics is often associated with roads built for selective logging. The protection of intact forest landscapes (IFL) that are not accessible by roads is high on the biodiversity conservation agenda and a challenge for logging concessions certified by the Forest Stewardship Council (FSC). A frequently advocated conservation objective is to maximize the retention of roadless space, a concept that is based on distance to the nearest road from any point. We developed a novel use of the empty‐space function – a general statistical tool based on stochastic geometry and random sets theory – to calculate roadless space in a part of the Congo Basin where road networks have been expanding rapidly. We compared the temporal development of roadless space in certified and uncertified logging concessions inside and outside areas declared IFL in 2000. Inside IFLs, road‐network expansion led to a decrease in roadless space by more than half from 1999 to 2007. After 2007, loss leveled out in most areas to close to 0 due to an equilibrium between newly built roads and abandoned roads that became revegetated. However, concessions in IFL certified by FSC since around 2007 continuously lost roadless space and reached a level comparable to all other concessions. Only national parks remained mostly roadless. We recommend that forest‐management policies make the preservation of large connected forest areas a top priority by effectively monitoring – and limiting – the occupation of space by roads that are permanently accessible.  相似文献   

2.
Reducing Emissions from Deforestation and Forest Degradation (REDD) in efforts to combat climate change requires participating countries to periodically assess their forest resources on a national scale. Such a process is particularly challenging in the tropics because of technical difficulties related to large aboveground forest biomass stocks, restricted availability of affordable, appropriate remote-sensing images, and a lack of accurate forest inventory data. In this paper, we apply the Fourier-based FOTO method of canopy texture analysis to Google Earth's very-high-resolution images of the wet evergreen forests in the Western Ghats of India in order to (1) assess the predictive power of the method on aboveground biomass of tropical forests, (2) test the merits of free Google Earth images relative to their native commercial IKONOS counterparts and (3) highlight further research needs for affordable, accurate regional aboveground biomass estimations. We used the FOTO method to ordinate Fourier spectra of 1436 square canopy images (125 x 125 m) with respect to a canopy grain texture gradient (i.e., a combination of size distribution and spatial pattern of tree crowns), benchmarked against virtual canopy scenes simulated from a set of known forest structure parameters and a 3-D light interception model. We then used 15 1-ha ground plots to demonstrate that both texture gradients provided by Google Earth and IKONOS images strongly correlated with field-observed stand structure parameters such as the density of large trees, total basal area, and aboveground biomass estimated from a regional allometric model. Our results highlight the great potential of the FOTO method applied to Google Earth data for biomass retrieval because the texture-biomass relationship is only subject to 15% relative error, on average, and does not show obvious saturation trends at large biomass values. We also provide the first reliable map of tropical forest aboveground biomass predicted from free Google Earth images.  相似文献   

3.
Forest fire is one of the major disasters that distresses the terrestrial environment and causes economic disruptions for people and communities in areas prone to forest fire. Information on forest fire risk zones is therefore essential for effective and sound decision-making in forest management. Forest fire risk assessment is a critical part and the most important step in forest management because it enables us to know where the risk is higher in order to minimize threats to life, property and natural resources. This study used a hazard assessment model to assess forest fire risk in Missouri based on several measurable environmental parameters influencing forest fire risk vulnerability. Using the four ecological zones in Missouri as the basis of analysis, three forest risk zones were identified. These were high forest fire risk zones, moderate forest fire risk zone and low forest fire risk zone. Strategies for the mitigation of the hazard of forest fire in the state were also recommended.  相似文献   

4.
Development and maintenance of structurally complex forests in landscapes formerly managed for timber production is an increasingly common management objective. It has been postulated that the rate of forest structural development increases with site productivity. We tested this hypothesis for Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) forests using a network of permanent study plots established following complete timber harvest of the original old-growth forests. Forest structural development was assessed by comparing empirical measures of live tree structure to published values for Douglas-fir forests spanning a range of ages and structural conditions. The rate of forest structural development--resilience--exhibited a positive relationship with site index, a measure of potential site productivity. Density of shade-intolerant conifers declined in all study stands from an initial range of 336-4068 trees/ha to a range of 168-642 trees/ha at the most recent measurement. Angiosperm tree species declined from an initial range of 40-371 trees/ha to zero in seven of the nine plots in which they were present. Trends in shade-tolerant tree density were complex: density ranged from 0 to 575 trees/ha at the first measurement and was still highly variable (25-389 trees/ha) at the most recent measurement. Multivariate analysis identified the abundance of hardwood tree species as the strongest compositional trend apparent over the study period. However, structural variables showed a strong positive association with increasing shade-tolerant basal area and little or no association with abundance of hardwood species. Thus, while tree species succession and forest structural development occur contemporaneously, they are not equivalent processes, and their respective rates are not necessarily linearly related. The results of this study support the idea that silvicultural treatments to accelerate forest structural development should be concentrated on lower productivity sites when the management objective is reserve-wide coverage of structurally complex forests. Alternatively, high-productivity sites should be prioritized for restoration treatments when the management objective is to develop structurally complex forests on a portion of the landscape.  相似文献   

5.
Information about how vegetation composition and structure vary quantitatively and spatially with physical environment, disturbance history, and land ownership is fundamental to regional conservation planning. However, current knowledge about patterns of vegetation variability across large regions that is spatially explicit (i.e., mapped) tends to be general and qualitative. We used spatial predictions from gradient models to examine the influence of environment, disturbance, and ownership on patterns of forest vegetation biodiversity across a large forested region, the 3-million-ha Oregon Coast Range (USA). Gradients in tree species composition were strongly associated with environment, especially climate, and insensitive to disturbance, probably because many dominant tree species are long-lived and persist throughout forest succession. In contrast, forest structure was strongly correlated with disturbance and only weakly with environmental gradients. Although forest structure differed among ownerships, differences were blurred by the presence of legacy trees that originated prior to current forest management regimes. Our multi-ownership perspective revealed biodiversity concerns and benefits not readily visible in single-ownership analyses, and all ownerships contributed to regional biodiversity values. Federal lands provided most of the late-successional and old-growth forest. State lands contained a range of forest ages and structures, including diverse young forest, abundant legacy dead wood, and much of the high-elevation true fir forest. Nonindustrial private lands provided diverse young forest and the greatest abundance of hardwood trees, including almost all of the foothill oak woodlands. Forest industry lands encompassed much early-successional forest, most of the mixed hardwood-conifer forest, and large amounts of legacy down wood. The detailed tree- and species-level data in the maps revealed regional trends that would be masked in traditional coarse-filter assessment. Although abundant, most early-successional forests originated after timber harvest and lacked legacy live and dead trees important as habitat and for other ecological functions. Many large-conifer forests that might be classified as old growth using a generalized forest cover map lacked structural features of old growth such as multilayered canopies or dead wood. Our findings suggest that regional conservation planning include all ownerships and land allocations, as well as fine-scale elements of vegetation composition and structure.  相似文献   

6.
Rain forest fragmentation and the proliferation of successional trees   总被引:9,自引:0,他引:9  
The effects of habitat fragmentation on diverse tropical tree communities are poorly understood. Over a 20-year period we monitored the density of 52 tree species in nine predominantly successional genera (Annona, Bellucia, Cecropia, Croton, Goupia, Jacaranda, Miconia, Pourouma, Vismia) in fragmented and continuous Amazonian forests. We also evaluated the relative importance of soil, topographic, forest dynamic, and landscape variables in explaining the abundance and species composition of successional trees. Data were collected within 66 permanent 1-ha plots within a large (approximately 1000 km2) experimental landscape, with forest fragments ranging from 1 to 100 ha in area. Prior to forest fragmentation, successional trees were uncommon, typically comprising 2-3% of all trees (> or =10 cm diameter at breast height [1.3 m above the ground surface]) in each plot. Following fragmentation, the density and basal area of successional trees increased rapidly. By 13-17 years after fragmentation, successional trees had tripled in abundance in fragment and edge plots and constituted more than a quarter of all trees in some plots. Fragment age had strong, positive effects on the density and basal area of successional trees, with no indication of a plateau in these variables, suggesting that successional species could become even more abundant in fragments over time. Nonetheless, the 52 species differed greatly in their responses to fragmentation and forest edges. Some disturbance-favoring pioneers (e.g., Cecropia sciadophylla, Vismia guianensis, V. amazonica, V. bemerguii, Miconia cf. crassinervia) increased by >1000% in density on edge plots, whereas over a third (19 of 52) of all species remained constant or declined in numbers. Species responses to fragmentation were effectively predicted by their median growth rate in nearby intact forest, suggesting that faster-growing species have a strong advantage in forest fragments. An ordination analysis revealed three main gradients in successional-species composition across our study area. Species gradients were most strongly influenced by the standlevel rate of tree mortality on each plot and by the number of nearby forest edges. Species-composition also varied significantly among different cattle ranches, which differed in their surrounding matrices and disturbance histories. These same variables were also the best predictors of total successional-tree abundance and species richness. Successional-tree assemblages in fragment interior plots (>150 m from edge), which are subjected to fragment area effects but not edge effects, did not differ significantly from those in intact forest, indicating that area effects per se had little influence on successional trees. Soils and topography also had little discernable effect on these species. Collectively, our results indicate that successional-tree species proliferate rapidly in fragmented Amazonian forests, largely as a result of chronically elevated tree mortality near forest edges and possibly an increased seed rain from successional plants growing in nearby degraded habitats. The proliferation of fast-growing successional trees and correlated decline of old-growth trees will have important effects on species composition, forest dynamics, carbon storage, and nutrient cycling in fragmented forests.  相似文献   

7.
Habitat loss, fragmentation, and degradation have pervasive detrimental effects on tropical forest biodiversity, but the role of the surrounding land use (i.e., matrix) in determining the severity of these impacts remains poorly understood. We surveyed bird species across an interior-edge-matrix gradient to assess the effects of matrix type on biodiversity at 49 different sites with varying levels of landscape fragmentation in the Brazilian Atlantic Forest—a highly threatened biodiversity hotspot. Both area and edge effects were more pronounced in forest patches bordering pasture matrix, whereas patches bordering Eucalyptus plantation maintained compositionally similar bird communities between the edge and the interior and exhibited reduced effects of patch size. These results suggest the type of matrix in which forest fragments are situated can explain a substantial amount of the widely reported variability in biodiversity responses to forest loss and fragmentation.  相似文献   

8.
Contribution of Roads to Forest Fragmentation in the Rocky Mountains   总被引:18,自引:0,他引:18  
The contribution of roads to forest fragmentation has not been adequately analyzed. We quantified fragmentation due to roads in a 30,213-ha section of the Medicine Bow-Routt National Forest in sout heastern Wyoming with several indices of landscape structure using a geographic information system. The number of patches, mean patch area, mean interior area, mean area of edge influence, mean patch perimeter, total perimeter, and mean patch shape identified patch- and edge-related landscape changes. Shannon-Wiener diversity, dominance, contagion, contrast, and angular second moment indicated effects on landscape diversity and texture. Roads added to forest fragmentation more than clearcuts by dissecting large patches into smaller pieces and by converting forest interior habitat into edge habitat. Edge habitat created by roads was 1.54–1.98 times the edge habitat created by clearcuts. The total landscape area affected by clearcuts and roads was 2.5–3.5 times the actual area occupied by these disturbances. Fragmentation due to roads could be minimized if road construction is minimized or rerouted so that its fragmentation effects are reduced. Geographic information system technology can be used to quantify the potential fragmentation effects of individual roads and the cumulative effects of a road network on landscape structure.  相似文献   

9.
The Atlantic Rain Forest, an important biodiversity hot spot, has faced severe habitat loss since the last century which has resulted in a highly fragmented landscape with a large number of small forest patches (<100 ha). For conservation planning it is essential to understand how current and future forest regeneration depends on ecological processes, fragment size and the connection to the regional seed pool. We have investigated the following questions by applying the forest growth simulation model FORMIND to the situation of the Atlantic Forest in the state of São Paulo, SE Brazil: (1) which set of parameters describing the local regeneration and level of density regulation can reproduce the biomass distribution and stem density of an old growth forest in a reserve? (2) Which additional processes apart from those describing the dynamics of an old growth forest, drive forest succession of small isolated fragments? (3) Which role does external seed input play during succession? Therefore, more than 300 tree species have been classified into nine plant functional types (PFTs), which are characterized by maximum potential height and shade tolerance. We differentiate between two seed dispersal modes: (i) local dispersal, i.e. all seedlings originated from fertile trees within the simulated area and (ii) external seed rain. Local seed dispersal has been parameterized following the pattern oriented approach, using biomass estimates of old growth forest. We have found that moderate density regulation is essential to achieve coexistence for a broad range of regeneration parameters. Considering the expected uncertainty and variability in the regeneration processes it is important that the forest dynamics are robust to variations in the regeneration parameters. Furthermore, edge effects such as increased mortality at the border and external seed rain have been necessary to reproduce the patterns for small isolated fragments. Overall, simulated biomass is much lower in the fragments compared to the continuous forest, whereas shade tolerant species are affected most strongly by fragmentation. Our simulations can supplement empirical studies by extrapolating local knowledge on edge effects of fragments to larger temporal and spatial scales. In particular our results show the importance of external seed rain and therefore highlight the importance of structural connectivity between regenerating fragments and mature forest stands.  相似文献   

10.
Erosion control is one of the most important functions of forest ecosystems, and its accurate assessment is useful to illuminate the importance of forest ecosystem services for humans so as to rationally conserve forest resources. This paper examines Zhangjiajie National Forest Park, the first national forest park in China, to seek practical methods for assessment of the forest erosion control function using a geographical information system (GIS). The results show that the potential and actual amounts of soil erosion are 2.92 million ton and 0.14 million ton per year, respectively, in Zhangjiajie National Forest Park. The total reduction in soil loss reaches 2.77 million ton per year with the existence of a forest ecosystem. The erosion control function of near mature, mature and over mature broadleaf forest is excellent, and natural forest conservation and natural restoration of the degraded forest ecosystem can provide the largest benefits in soil erosion control. Nearly all the near mature, mature and over-mature forest in the park is at the top and in steep mountain areas, and could be rationally cut and utilized by local communities, but extensive timber felling should be strictly prohibited.  相似文献   

11.
In the global campaign against biodiversity loss in forest ecosystems, land managers need to know the status of forest biodiversity, but practical guidelines for conserving biodiversity in forest management are lacking. A major obstacle is the incomplete understanding of the relationship between site primary productivity and plant diversity, due to insufficient ecosystem‐wide data, especially for taxonomically and structurally diverse forest ecosystems. We investigated the effects of site productivity (the site's inherent capacity to grow timber) on tree species richness across 19 types of forest ecosystems in North America and China through 3 ground‐sourced forest inventory data sets (U.S. Forest Inventory and Analysis, Cooperative Alaska Forest Inventory, and Chinese Forest Management Planning Inventory). All forest types conformed to a consistent and highly significant (P < 0.001) hump‐shaped unimodal relationship, of which the generalized coefficients of determination averaged 20.5% over all the forest types. That is, tree species richness first increased as productivity increased at a progressively slower rate, and, after reaching a maximum, richness started to decline. Our consistent findings suggest that forests of high productivity would sustain few species because they consist mostly of flat homogeneous areas lacking an environmental gradient along which a diversity of species with different habitats can coexist. The consistency of the productivity–biodiversity relationship among the 3 data sets we examined makes it possible to quantify the expected tree species richness that a forest stand is capable of sustaining, and a comparison between the actual species richness and the sustainable values can be useful in prioritizing conservation efforts.  相似文献   

12.
The landscape pattern of Ma'anshan City was analyzed based on theories and methodologies of landscape ecology, remote sensing, global positioning, and a geographic information system (GIS). The study area encompassed the entire built-up area of 63.88 km2; a north–south transect 3-km wide and 13-km long was established along the long axis of the city. Five major landscape elements were assessed: urban land, urban forest, agriculture, water, and grass. Urban land was the dominant land cover type, and occupied 67% of total land area; while patches of urban forest occupied 16%, with a landscape element dominance of 0.42. Urban forest was classified according to land-use category and location into six types: scenic forest, yard forest, recreational forest, roadside forest, shelter forest, and nurseries. There were 2464 urban forest patches, the largest being 185.1 ha, with an average of 0.43 ha. The low nearest neighbor index and high patch density indicated that urban forest patches tend to be aggregated and have a high degree of fragmentation. This study also demonstrated that the spatial pattern of urbanization could be quantified using a combination of landscape metrics and gradient analysis. Urban forest has distinct spatial characters that are dependent on specific landscape metrics along the urbanization gradient.  相似文献   

13.
《Ecological modelling》2005,187(1):85-98
This study investigates how subsurface flowpaths are altered by forest roads and how these changes influence shallow landsliding susceptibility in steep, forested landscape. A simple conceptual model of the effect of forest roads on hillslope subsurface flow is developed. The model is incorporated into a hydro-geomechanical, threshold-based model for slope instability. In the model, the occurrence of shallow landsliding is evaluated in terms of drainage areas, ground slope and soil properties (i.e., hydraulic conductivity, bulk density, and friction angle). Model results allow to quantify the influence of roads on shallow landsliding hazard across a landscape and to generate hypotheses about the broader geomorphic effect of roads.Modelling results are compared with field data collected in four sites located in north-eastern Italy. Observed landslide patterns are broadly consistent with model estimates, a finding that underscores the utility of this simple approach for predicting the geomorphic effects of forest roads constructed on steep slopes. The approach used in this study may be useful for defining criteria for road design that reduce the effects of roads on geomorphic processes.  相似文献   

14.
杨思  孔德良 《生态环境》2012,21(2):286-292
道路作为景观廊道,与建设用地景观、林地景观之间存在着复杂的生态学联系。在道路网络迅猛扩展的同时,深圳市建设用地迅速扩张,并对林地景观产生了一定影响。基于土地利用变更调查数据,对1996-2008年快速城市化地区深圳市道路密度与建设用地扩张强度、道路密度与建设用地-林地边界动态的相互关系进行了研究。结果表明,建设用地规模与道路密度、建设用地扩张强度与道路拓展强度呈相关关系,道路网络对城市的社会经济发展有着重要的支撑能力。另一方面,研究期间深圳市林地退化严重,与建设用地接触的单个林地斑块的平均边界长度(林建边界长度)增加,建设用地-林地边界呈现出复杂化的趋势。林建边界长度与道路密度成相关关系,道路密度小于2.5 km.km-2时,道路密度越大,林建边界长度越大,建设用地景观和林地景观的生态学作用越剧烈。  相似文献   

15.
16.
In this study, we compared tree-growth rates (basal area increment) from recently dead and living Taurus fir (Abies cilicica Carr.) trees in the Kovada lake Forest of Isparta, Turkey. For each dead tree, tree-growth rates were analyzed for the presence of pre-death growth depressions in the study area (number of sample plots = 11) in 2006. However, we compared both the magnitude and rate of growth prior to death to a control (living) group of trees. Basal area increment (BAI) averaged substantially less during the last 10 years before death than for control trees. Trees that died started diverging in growth, on average, 50-60 years before death. About 18% of trees that died had chronically slow growth, 46% had pronounced declines in growth, whereas 36% had good growth up to death. However, tree-ring-based growth patterns of dead and living Taurus fir trees were compared and used 12 mortality models that were derived using logistic regression from growth patterns of tree-ring series as predictor variables. The four models with the highest overall performance correctly classified 43.8-56.3% of all dead trees and 75.0-87.5% of all living trees, and they predicted 25.0-43.8% of all dead trees to die within 0-15 years prior to the actual year of death.  相似文献   

17.
Forest biodiversity policies in multi-ownership landscapes are typically developed in an uncoordinated fashion with little consideration of their interactions or possible unintended cumulative effects. We conducted an assessment of some of the ecological and socioeconomic effects of recently enacted forest management policies in the 2.3-million-ha Coast Range Physiographic Province of Oregon. This mountainous area of conifer and hardwood forests includes a mosaic of landowners with a wide range of goals, from wilderness protection to high-yield timber production. We projected forest changes over 100 years in response to logging and development using models that integrate land use change and forest stand and landscape processes. We then assessed responses to those management activities using GIS models of stand structure and composition, landscape structure, habitat models for focal terrestrial and aquatic species, timber production, employment, and willingness to pay for biodiversity protection. Many of the potential outcomes of recently enacted policies are consistent with intended goals. For example, we project the area of structurally diverse older conifer forest and habitat for late successional wildlife species to strongly increase. 'Other outcomes might not be consistent with current policies: for example, hardwoods and vegetation diversity strongly decline within and across owners. Some elements of biodiversity, including streams with high potential habitat for coho salmon (Oncorhynchus kisutch) and sites of potential oak woodland, occur predominately outside federal lands and thus were not affected by the strongest biodiversity policies. Except for federal lands, biodiversity policies were not generally characterized in sufficient detail to provide clear benchmarks against which to measure the progress or success. We conclude that land management institutions and policies are not well configured to deal effectively with ecological issues that span broad spatial and temporal scales and that alternative policies could be constructed that more effectively provide for a mix of forest values from this region.  相似文献   

18.
Forest fire is regarded as one of the most significant factors leading to land degradation. While evaluating fire hazard or producing fire risk zone maps, quantitative analyses using historic fire data is often required, and during all these modeling and multi-criteria analysis processes, the fire event itself is taken as the dependent variable. However, there are two main problematic issues in analyzing historic fire data. The first difficulty arises from the fact that it is in point format, whereas a continuous surface is frequently needed for statistically analyzing the relationship of fire events with other factors, such as anthropogenic, topographic and climatic conditions. Another, and probably the most bothersome challenge is to overcome inaccuracy inherent in historic fire data in point format, since the exact coordinates of ignition points are mostly unknown. In this study, kernel density mapping, a widely used method for converting discrete point data into a continuous raster surface, was used to map the historic fire data in Mumcular Forest Sub-district in Mu?la, Turkey. The historic fire data was transferred onto the digital forest stand map of the study area, where the exact locations of ignition points are unknown; however, the exact number of ignition points in each compartment of the forest stand map is known. Different random distributions of ignition points were produced, and for each random distribution, kernel density maps were produced by applying two distinct kernel functions with several smoothing parameter options. The obtained maps were compared through correlation analysis in order to illustrate the effect of randomness, choice of kernel function and smoothing parameter. The proposed method gives a range of values rather than a single bandwidth value; however, it provides a more reliable way than comparing the maps with different bandwidths subjectively by eye.  相似文献   

19.
Forest succession is the base of establishing restoration reference which plays an important role in forest restoration and restoration estimation. The study presented the establishment of a Markov successional model (MSM) and its application to restoration reference in lower subtropical forest in China. The compositions of successional system in MSM were divided into three species types: pioneering pine trees, heliophytic trees and mesophytic trees. The successional system was divided into three subsystems: early successional stage, mid-successional stage and late-successional stage. Based on the site survey on the changes in the species and their individuals in 25 years, the transition matrices in various subsystems were determined. The predicted results were used to establish the restoration reference of the vegetation restoration in lower subtropical China. According to the ecological restoration reference established in this study, it would take 150 years for the forest to change from pioneer to mature communities in the region. Successional change of tree composition was forecast by the model, and the scenario forecast by the model reflects the actual conditions observed through 52 years of long-term permanent site research. The restoration experience in the region matches the forecast results. The application of a restoration reference model indicates that forest restoration can be accelerated by taking measures which change forest structure. The above results imply that a restoration reference established on the rule of regional forest succession could be very useful not only in directing, but also in assessing and managing regional forest restoration. Previously, one “ideal reference ecosystem” was used as a restoration reference in all correlative studies. In this study, the restoration “process” was used as the restoration reference.  相似文献   

20.
SUMMARY

The structure, conduct and performance, and the environmental impacts of the chainsaw lumber production sector in Guyana are investigated. Chainsaws are a highly mobile lumber technology that is used to rip or produce lumber within the forest. Chainsaw lumbering operations have become the dominant lumber producer for the domestic market. Production costs are only 53% of wholesale lumber prices. On a ms basis, chainsaw operations' net profit is 80% of the gross price paid for logs at sawmills and more than twice the profit of firms engaged in the harvesting and transportation of logs to sawmills. Sawmills recognize this cost advantage and are increasingly using chainsaws in the production of lumber.

The handling and transportation of chainsawn lumber within the forest is environmentally less damaging than log production. The log recovery rate is 10–15% for chainsaw operations, as compared to the sawmill average of 40–45%. Log residue from chainsaw operations is left within the forest which promotes faster forest regrowth, while that at sawmills is wasted. Chainsaw operations harvest immature trees, engage in the harvesting of selective species, over-harvest trees per unit area of land, and engage in frequent reentry of the forest. Because of these practices, the chainsaw lumber sector is not environmentally sustainable and will require regulation. Policies that follow a non-market solution will be required in regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号