首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到8条相似文献,搜索用时 15 毫秒
1.
The main aim of this study is to investigate the combined effect of different operating parameters like adsorbent dose, initial Cr6+ concentration and pH on the removal of Cr6+ from aqueous solution using neem bark powder (NBP). A series of batch experiments were performed to find out the adsorption isotherms and kinetic behaviour of Cr6+ in the aqueous solution. The adsorption process was examined with three independent variables viz. NBP dosage, initial Cr6+ concentrations and pH. Seventeen batch experiments designed by Box–Behnken using response surface methodology were carried out, and the adsorption efficiency was modelled using polynomial equation as the function of the independent variables. Based on the uptake capacity and economic use of adsorbent, the independent variables were optimized by two procedures. The desirability of first and second optimization procedures were found to be 1.00 and 0.84, respectively, which shows that the estimated function may well represent the experimental model. The kinetic study indicated that the rate of adsorption confirms to the pseudo-second-order rate equation. Thermodynamics study indicated that the adsorption process was spontaneous and endothermic in nature. The surface texture changes in NBP were obtained from FT-IR analysis. The optimized result obtained from RAMP plots revealed that the NBP was supposed to be an effective and economically feasible adsorbent for the removal of Cr6+ from an aqueous system.  相似文献   

2.
Abstract

The removal of 2, 4‐D (2, 4‐ dichlorophenoxyacetic acid) from aqueous solutions by activated spent bleaching earths (SBE) was studied at 20 °C. Experiments were performed as a function of time, initial concentration, dose and particle size of the adsorbent. The Langmuir and Freundlich adsorption equations were fitted by the adsorption data obtained. The values of Langmuir and Freundlich constants were determined. The adsorption kinetic was found to follow Lagergren equation. Both the boundary layer and intraparticle diffusion played important roles in the adsorption rate of 2, 4‐D. As the size of the adsorbent increased, the time to reach equilibrium increased but adsorption capacity decreased.  相似文献   

3.

Purpose

With the aim of enhanced degradation of azo dye alizarin yellow R (AY) and further removal of the low-strength recalcitrant matter (LsRM) of the secondary effluent as much as possible, our research focused on the combination of aerobic bio-contact oxidation (ABO) with iron/carbon microelectrolysis (ICME) process.

Materials and methods

The combined ABO (with effective volume of 2.4?l) and ICME (with effectively volume of 0.4?l) process were studied with relatively short hydraulic retention time (HRT) of 4 or 6?h.

Results

At the HRT of 6?h with the reflux ratio of 1 and 2, the AY degradation efficiency in the final effluent was >96.5%, and the total organic carbon (TOC) removal efficiency were 69.86% and 79.44%, respectively. At the HRT of 4?h and the reflux ratio of 2, TOC removal efficiency and AY degradation efficiency were 73.94% and 94.89%, respectively. The ICME process obviously enhanced the total AY removal and the generated micromolecule acids and aldehydes then that wastewater backflow to the ABO where they were further biodegraded.

Conclusion

The present research might provide the potential options for the advanced treatment azo dyes wastewater with short HRT and acceptable running costs.  相似文献   

4.
The aim of present study was to develop and evaluate sodium dodecyl sulfate (SDS) self-microemulsifying systems (SMES) for the removal of an anionic dye xylenol orange (XO) from its bulk aqueous media via liquid–liquid adsorption. The composition of SDS SMES was optimized by Box–Behnken statistical design for the maximum removal of XO from its aqueous solution. Various SDS formulations were prepared by spontaneous emulsification method and characterized for thermodynamic stability, self-microemulsification efficiency, droplet size, and viscosity. Adsorption studies were conducted at 8, 16, and 24 h by mixing small amounts of SDS formulations with relatively large amounts of bulk aqueous solution of XO. Droplet size and viscosity of SDS formulations were significantly influenced by oil phase concentration (triacetin), while surfactant concentration had little impact on droplet size and viscosity. However, the percentage of removal of XO was influenced by triacetin concentration, surfactant concentration, and adsorption time. Based on lowest droplet size (35.97 nm), lowest viscosity (29.62 cp), and highest percentage of removal efficiency (89.77 %), formulation F14, containing 2 % w/w of triacetin and 40 % w/w of surfactant mixture (20 % w/w of SDS and 20 % w/w of polyethylene glycol 400), was selected as an optimized formulation for the removal of XO from its bulk aqueous media after 16 h. These results indicated that SDS SMES could be suitable alternates of solid–liquid adsorption for the removal of toxic dyes such as XO from its aqueous solution through liquid–liquid adsorption.  相似文献   

5.
6.
Xenobiotics such as pesticides and pharmaceuticals are an increasingly large problem in aquatic environments. A fixed-bed adsorption filter, used as tertiary stage of sewage treatment, could be a solution to decrease xenobiotics concentrations in wastewater treatment plants (WWTPs) effluent. The adsorption efficiency of two mineral adsorbent materials (expanded clay (EC) and zeolite (ZE)), both seen as a possible alternative to activated carbon (AC), was evaluated in batch tests. Experiments involving secondary treated domestic wastewater spiked with a cocktail of ten xenobiotics (eight pharmaceuticals and two pesticides) known to be poorly eliminated in conventional biological process were carried out. Removal efficiencies and partitions coefficients were calculated for two levels of initial xenobiotic concentration, i.e, concentrations lower to 10 μg/L and concentrations ranged from 100 to 1,000 μg/L. While AC was the most efficient adsorbent material, both alternative adsorbent materials showed good adsorption efficiencies for all ten xenobiotics (from 50 to 100 % depending on the xenobiotic/adsorbent material pair). For all the targeted xenobiotics, at lower concentrations, EC presented the best adsorption potential with higher partition coefficients, confirming the results in terms of removal efficiencies. Nevertheless, Zeolite presents virtually the same adsorption potential for both high and low xenobiotics concentrations to be treated. According to this first batch investigation, ZE and EC could be used as alternative absorbent materials to AC in WWTP.  相似文献   

7.
8.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号