首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Polycyclic aromatic hydrocarbons (PAHs) associated with the inhalable fraction of particulate matter were determined for 1 year (2009–2010) at a school site located in proximity of industrial and heavy traffic roads in Delhi, India. PM10 (aerodynamic diameter ≤10 μm) levels were ~11.6 times the World Health Organization standard. Vehicular (59.5 %) and coal combustion (40.5 %) sources accounted for the high levels of PAHs (range 38.1–217.3 ng m?3) with four- and five-ring PAHs having ~80 % contribution. Total PAHs were dominated by carcinogenic species (~75 %) and B[a]P equivalent concentrations indicated highest exposure risks during winter. Extremely high daily inhalation exposure of PAHs was observed during winter (439.43 ng day?1) followed by monsoon (232.59 ng day?1) and summer (171.08 ng day?1). Daily inhalation exposure of PAHs to school children during a day exhibited the trend school hours?>?commuting to school?>?resting period in all the seasons. Vehicular source contributions to daily PAH levels were significantly correlated (r?=?0.94, p?<?0.001) with the daily inhalation exposure level of school children. A conservative estimate of ~11 excess cancer cases in children during childhood due to inhalation exposure of PAHs has been made for Delhi.  相似文献   

2.
3.
Eighty-seven soil samples collected from North China were analyzed for Dechlorane Plus (DP). The concentrations of DP ranged from not detectable (ND) to 12.21 ng/g with a mean of 0.55 ng/g. The mean concentrations of total DP and syn-DP in four regions of North China were in the following order: Jingjin (Beijing and Tianjin)?>?Shandong?>?Shanxi?>?Hebei, while the mean concentrations of anti-DP in the four regions were in a different order: Shandong?>?Jingjin?>?Shanxi?>?Hebei. The mean f syn values for Jingjin (0.27), Hebei (0.24), and Shanxi (0.24) were close to 0.25, while the mean f syn value for Shandong (0.31) was closer to 0.35. In addition, the f syn value for Shandong was significantly higher (P?<?0.01) than those of the other regions (Jingjin, Heibei, and Shanxi), indicating specific sources of DP. Syn-DP displayed a strong linear relationship with anti-DP (R 2?=?0.74), indicating that no obvious stereoselective process occurred in the soil of North China. Ordinary kriging was undertaken to map the spatial patterns of DP. High concentrations of DP in soils were present in south of Shanxi, central Hebei, south of Tianjin, and the south and northeast of Shandong, which were suggested to be connected with human activities such as e-waste dismantling.  相似文献   

4.
The goal was to determine dissolution potency of betulinol and wood sterols (WSs) from pulp and paper mill-contaminated sediments and the current stratification for assessment the load due to potential erosion in the river-like watercourse. Both compounds are wood extractives, which may be toxic to benthos and fish. This research continues a study in which other wood extractives, resin acids and their derivative, retene, were analysed. Sediments were collected from 1, 3.5, 12, 15, and 33 km downstream from the pulp and paper mills, and from 2 upstream reference sites. The dissolution potency into sediment–water elutriates (1?+?4?v/v) was studied by two agitation times and temperatures. The vertical amounts of extractives were determined from the uppermost 20 cm of sediment. The amounts of extractives potentially released were estimated from the sediment layers 0–2 and 2–5 cm by using spatial interpolation. According to the interpolation, the total amount of betulinol and β-sitosterol was calculated as kg/ha in the whole sediment area. Significant concentrations of betulinol (1,666 μg/g, dw) and WSs (2,886 μg/g, dw) were measured from the sediments. According spatial interpolation, the highest calculated amount of betulinol (4,726 kg/ha) and that of the most abundant WS, β-sitosterol (3,571 kg/ha), were in the lake where the effluents were discharged. In the dissolution experiment, the highest concentration of betulinol in sediment (0–10 cm) and elutriate was 412 μg/g (dw) and 165 μg/l, respectively. For WSs, concentrations were 768 μg/g (dw) in sediment and 273 μg/l in elutriate. In a worst-case scenario, betulinol may be desorbed to water in concentrations which are hazardous to aquatic animals. Instead WSs are not a risk in this study area. The amount of desorption varied depending on the concentration of contaminants in sediment, the nature of disturbance, and the sediment organic carbon content.  相似文献   

5.
Vegetables play an important role in the human diet, and the transfer of toxic contaminants from the soil to plants has been little studied for most tree species and their edible portions. In an area affected by hexachlorocyclohexane (HCH) contamination, in the Sacco River Valley (central Italy), measurements of β- and α-HCH isomers were made on different parts of two tree species: Juglans regia and Prunus spinosa. Concentrations were analysed in roots, branches, leaves, fruits, and seeds. A spatial evaluation of the results highlighted an inverse association of contamination with distance from the river, which is the main route of transport in the environment. Results in J. regia showed decreasing values in this order: branches > leaves > husks > nutmeat. Results in P. spinosa showed decreasing values in the following order: branches > leaves > fruits. In J. regia, nutmeat values were all below limit of detection (LOD, 0.0005 mg/kg), except in one case in which a very low concentration of β-HCH was found (0.006 mg/Kg), compliant with maximum residue limits (MRLs). The ability of J. regia to store large quantities of β-HCH in wooden and leafy parts but not in edible kernels makes this plant a potential and precious tool in remediation and economical reconversion of polluted areas. It is also valuable for food and wood manufacturing.  相似文献   

6.
Previous studies have not examined the adverse effects of microcystin-LR (MC-LR) at environmental relevant concentrations on the development and functions of nervous system. The neurotoxic effects of MC-LR exposure on neurotransmitter systems were investigated in Caenorhabditis elegans. After exposing L1 larvae to 0.1, 1, 10, and 100 μg?l?1 of MC-LR for 8 and 24 h, the adverse effects on GABAergic, cholinergic, serotonergic, dopaminergic, and glutamatergic neurons were examined. The expression levels of genes required for development and functions of GABAergic neurons were further investigated. Body bend frequency and head thrash frequency decreased significantly after MC-LR exposure for 8 h at concentrations more than 1 μg?l?1 and after MC-LR exposure for 24 h at concentrations more than 0.1 μg?l?1. Loss of GABAergic neurons increased significantly in a dose-dependent manner after MC-LR exposure at concentrations more than 0.1 μg?l?1. In contrast, no obvious neuronal losses or morphologic changes were observed in cholinergic, serotonergic, dopaminergic, and glutamatergic neurons in MC-LR-exposed nematodes. Quantitative real-time PCR assay further showed that expression levels of unc-30, unc-46, unc-47, and exp-1 genes required for development and function of GABAergic neurons decreased significantly in nematodes exposed to MC-LR at concentrations more than 0.1 or 1 μg?l?1. MC-LR at environmental relevant concentrations caused neurobehavioral defects, which may be largely due to the neuronal loss and the alterations of expression level of genes required for GABAergic neurotransmitter system in C. elegans.  相似文献   

7.
8.
Tordon is a widely used herbicide formulation of 2,4-dichlorophenoxyacetic acid (2,4-D) and 4-amino-3,5,6-trichloropicolinic acid (picloram), and it is considered a toxic herbicide. The purposes of this work were to assess the feasibility of a microbial consortium inoculated in a lab-scale compartmentalized biobarrier, to remove these herbicides, and isolate, identify, and evaluate their predominant microbial constituents. Volumetric loading rates of herbicides ranging from 31.2 to 143.9 g m?3 day?1, for 2,4-D, and 12.8 to 59.3 g m?3 day?1 for picloram were probed; however, the top operational limit of the biobarrier, detected by a decay in the removal efficiency, was not reached. At the highest loading rates probed, high average removal efficiencies of 2,4-D, 99.56?±?0.44; picloram, 94.58?±?2.62; and chemical oxygen demand (COD), 89.42?±?3.68, were obtained. It was found that the lab-scale biofilm reactor efficiently removed both herbicides at dilution rates ranging from 0.92 to 4.23 day?1, corresponding to hydraulic retention times from 1.087 to 0.236 days. On the other hand, few microbial strains able to degrade picloram are reported in the literature. In this work, three of the nine bacterial strains isolated cometabolically degrade picloram. They were identified as Hydrocarboniphaga sp., Tsukamurella sp., and Cupriavidus sp.  相似文献   

9.
10.
As part of a large study on assessing the impact of environmental contaminants in Indian avifauna, the presence of organochlorine pesticides (OCPs) in liver tissues of 16 species of birds collected from Ahmedabad, India during 2005–2007 was quantified. The higher concentrations of total organochlorine pesticides were detected in livers of shikra Accipiter badius (3.43?±?0.99 μg/g wet wt) and the lower levels in white ibis Pseudibis papillosa (0.02?±?0.01 μg/g wet wt). Marked differences in the concentrations of total OCPs occurred among species (p?<?0.05). Concentrations of DDT and its metabolites, hexachlorocyclohexane (HCH) and isomers, dieldrin, and heptachlor epoxide were lower than the concentrations reported for various species of birds in India. Accumulation pattern of organochlorine pesticides in birds was, in general, in the order HCH > DDT > heptachlor epoxide > dieldrin. Among various pesticides analyzed, p,p′-DDE and β-HCH contributed maximum towards the total OCPs and study indicates the continuous use of lindane and DDT for agriculture and public health purpose, respectively. Although no serious threat is posed by any of the organochlorine pesticides detected in the present study species, continued monitoring is recommended.  相似文献   

11.
The conventional treatment process of palm oil mill effluent (POME) produces a highly colored effluent. Colored compounds in POME cause reduction in photosynthetic activities, produce carcinogenic by-products in drinking water, chelate with metal ions, and are toxic to aquatic biota. Thus, failure of conventional treatment methods to decolorize POME has become an important problem to be addressed as color has emerged as a critical water quality parameter for many countries such as Malaysia. Aspergillus fumigatus isolated from POME sludge was successfully grown in POME supplemented with glucose. Statistical optimization studies were conducted to evaluate the effects of the types and concentrations of carbon and nitrogen sources, pH, temperature, and size of the inoculum. Characterization of the fungus was performed using scanning electron microscopy, Fourier transform infrared (FTIR) spectroscopy, and Brunauer, Emmet, and Teller surface area analysis. Optimum conditions using response surface methods at pH 5.7, 35 °C, and 0.57 % w/v glucose with 2.5 % v/v inoculum size resulted in a successful removal of 71 % of the color (initial ADMI of 3,260); chemical oxygen demand, 71 %; ammoniacal nitrogen, 35 %; total polyphenolic compounds, 50 %; and lignin, 54 % after 5 days of treatment. The decolorization process was contributed mainly by biosorption involving pseudo-first-order kinetics. FTIR analysis revealed that the presence of hydroxyl, C–H alkane, amide carbonyl, nitro, and amine groups could combine intensively with the colored compounds in POME. This is the first reported work on the application of A. fumigatus for the decolorization of POME. The present investigation suggested that growing cultures of A. fumigatus has potential applications for the decolorization of POME through the biosorption and biodegradation processes.  相似文献   

12.
The adverse effects of zinc oxide nanoparticles (ZnO NPs) with an average diameter of 25 nm on the aquatic plant Salvinia natans (L.) All. were determined. Growth, superoxide dismutase (SOD) activity, catalase (CAT) activity, peroxidase activity, and chlorophyll content of the plants were measured after 7 days of exposure to different concentrations of ZnO NPs (1 to 50 mg L?1). The particle distribution in the culture medium (without plants) during the first 24 h was determined using a Nanotrac 250 particle analyzer. We also investigated the zinc accumulation in leaves and roots of the plant after 7 days of exposure. Exposure to 50 mg L?1 ZnO NPs significantly increased SOD and CAT activities (P?<?0.05) and significantly depressed photosynthetic pigments (P?<?0.05). However, plant growth was not significantly affected (P?>?0.05). NPs completely precipitated at the bottom of the container at 8 h except for the portions of dissolution and aggregation on the roots. ZnO NPs at a concentration of 50 mg L?1 can adversely affect S. natans, and their stress is affected by their aggregation and dissolution.  相似文献   

13.
The accidents of aniline spill and explosion happened almost every year in China, whereas the toxic effect of aniline on soil microbial activity remained largely unexplored. In this study, isothermal microcalorimetric technique, glucose analysis, and soil enzyme assay techniques were employed to investigate the toxic effect of aniline on microbial activity in Chinese soil for the first time. Soil samples were treated with aniline from 0 to 2.5 mg/g soil to tie in with the fact of aniline spill. Results from microcalorimetric analysis showed that the introduction of aniline had a significant adverse effect on soil microbial activity at the exposure concentrations ≥0.4 mg/g soil (p?<?0.05) and ≥0.8 mg/g soil (p?<?0.01), and the activity was totally inhibited when the concentration increased to 2.5 mg/g soil. The glucose analysis indicated that aniline significantly decreased the soil microbial respiratory activity at the concentrations ≥0.8 mg/g soil (p?<?0.05) and ≥1.5 mg/g soil (p?<?0.01). Soil enzyme activities for β-glucosidase, urease, acid-phosphatase, and dehydrogenase revealed that aniline had a significant effect (p?<?0.05) on the nutrient cycling of C, N, and P as well as the oxidative capacity of soil microorganisms, respectively. All of these results showed an intensively toxic effect of aniline on soil microbial activity. The proposed methods can provide toxicological information of aniline to soil microbes from the metabolic and biochemical point of views which are consistent with and correlated to each other.  相似文献   

14.
This paper demonstrated the relative bactericidal activity of photoirradiated (6W-UV Torch, λ?>?340 nm and intensity?=?0.64 mW/cm2) P25–TiO2 nanoparticles, nanorods, and nanotubes for the killing of Gram-negative bacterium Agrobacterium tumefaciens LBA4404 for the first time. TiO2 nanorod (anatase) with length of 70–100 nm and diameter of 10–12 nm, and TiO2 nanotube with length of 90–110 nm and diameter of 9–11 nm were prepared from P-25 Degussa TiO2 (size, 30–50 nm) by hydrothermal method and compared their biocidal activity both in aqueous slurry and thin films. The mode of bacterial cell decomposition was analyzed through transmission electron microscopy (TEM), Fourier transform-infrared (FT-IR), and K+ ion leakage. The antimicrobial activity of photoirradiated TiO2 of different shapes was found to be in the order P25–TiO2?>?nanorod?>?nanotube which is reverse to their specific surface area as 54?<?79?<?176 m2 g?1, evidencing that the highest activity of P25–TiO2 nanoparticles is not due to surface area as their crystal structure and surface morphology are entirely different. TiO2 thin films always exhibited less photoactivity as compared to its aqueous suspension under similar conditions of cell viability test. The changes in the bacterial surface morphology by UV-irradiated P25–TiO2 nanoparticles was examined by TEM, oxidative degradation of cell components such as proteins, carbohydrates, phospholipids, nucleic acids by FT-IR spectral analysis, and K+ ion leakage (2.5 ppm as compared to 0.4 ppm for control culture) as a measure of loss in cell membrane permeability.  相似文献   

15.
Human serum samples (n?=?113) from Bizerte, northern Tunisia, collected between 2011 and 2012 were analyzed for 8 organochlorine pesticides (OCPs) including p,p′-dichlorodiphenyltrichloroethane (DDT) and its metabolites, hexachlorobenzene (HCB), hexachlorocyclohexane isomers, dieldrin, and heptachlor and 12 polychlorinated biphenyls (PCBs) congeners. Concentrations of these residues in serum were determined by gas chromatography with electron capture detector and total cholesterol (CHOL) and triglycerides (TG) levels were evaluated by enzymatic colorimetric method. HCB, p,p′-DDE, PCB-138, PCB-153, and PCB-180, were the most abundant organochlorine compounds (OCs) detected in >95 % of the study subjects. The mean levels of p,p′-DDE and HCB in serum were 168.8 and 49.1 ng?g?1 lipid, respectively. The sum PCBs concentrations ranged from 37.5 to 284.6 ng?g?1 lipid in the samples, with mean and median value of 136.1 and 123.2 ng?g?1 lipid, respectively. The PCB profile consisted of persistent congeners, such as PCB-138, PCB-153, and PCB-180 which contributed for approximately 82.7 % to the ∑PCBs. Statistical analysis showed that most OCs correlated significantly with age, considering all samples together or with gender differentiation. The present study shows that the levels of p,p′-DDE and ∑DDTs were significantly higher in females than in males (p?<?0.05), while PCBs levels were significantly higher in male (p?<?0.05) than in females. No statistically significant association was found between body mass index and concentration of any organochlorine pesticide or PCB congeners 153, 138, 180, or ∑PCBs.  相似文献   

16.
Understanding the removal mechanisms and kinetics of trace tetracycline by activated sludge is critical to both evaluation of tetracycline elimination in sewage treatment plants and risk assessment/management of tetracycline released to soil environment due to the application of biosolids as fertilizer. Adsorption is found to be the primary removal mechanism while biodegradation, volatilization, and hydrolysis can be ignored in this study. Adsorption kinetics was well described by pseudo-second-order model. Faster adsorption rate (k 2?=?2.04?×?10?2?g?min?1?μg?1) and greater adsorption capacity (q e?=?38.8 μg?g?1) were found in activated sludge treating freshwater sewage. Different adsorption rate and adsorption capacity resulted from chemical properties of sewage matrix rather than activated sludge surface characteristics. The decrease of tetracycline adsorption in saline sewage was mainly due to Mg2+ which significantly reduced adsorption distribution coefficient (K d) from 12,990?±?260 to 4,690?±?180 L?kg?1. Species-specific adsorption distribution coefficients followed the order of $ K_{\mathrm{d}}^{{ + 00}} \gg K_{\mathrm{d}}^{{ + - 0}} > K_{\mathrm{d}}^{{ + - - }} $ . Contribution of zwitterionic tetracycline to the overall adsorption was >90 % in the actual pH range in aeration tank. Adsorption of tetracycline in a wide range of temperature (10 to 35 °C) followed the Freundlich adsorption isotherm well.  相似文献   

17.
To investigate the spatial and seasonal variations of nitrous oxide (N2O) fluxes and understand the key controlling factors, we explored N2O fluxes and environmental variables in high marsh (HM), middle marsh (MM), low marsh (LM), and mudflat (MF) in the Yellow River estuary throughout a year. Fluxes of N2O differed significantly between sampling periods as well as between sampling positions. During all times of day and the seasons measured, N2O fluxes ranged from ?0.0051 to 0.0805 mg N2O m?2 h?1, and high N2O emissions occurred during spring (0.0278 mg N2O m?2 h?1) and winter (0.0139 mg N2O m?2 h?1) while low fluxes were observed during summer (0.0065 mg N2O m?2 h?1) and autumn (0.0060 mg N2O m?2 h?1). The annual average N2O flux from the intertidal zone was 0.0117 mg N2O m?2 h?1, and the cumulative N2O emission throughout a year was 113.03 mg N2O m?2, indicating that coastal marsh acted as N2O source. Over all seasons, N2O fluxes from the four marshes were significantly different (p?<?0.05), in the order of HM (0.0256?±?0.0040 mg N2O m?2 h?1)?>?MF (0.0107?±?0.0027 mg N2O m?2 h?1)?>?LM (0.0073?±?0.0020 mg N2O m?2 h?1)?>?MM (0.0026?±?0.0011 mg N2O m?2 h?1). Temporal variations of N2O emissions were related to the vegetations (Suaeda salsa, Phragmites australis, and Tamarix chinensis) and the limited C and mineral N in soils during summer and autumn and the frequent freeze/thaw cycles in soils during spring and winter, while spatial variations were mainly affected by tidal fluctuation and plant composition at spatial scale. This study indicated the importance of seasonal N2O contributions (particularly during non-growing season) to the estimation of local N2O inventory, and highlighted both the large spatial variation of N2O fluxes across the coastal marsh (CV?=?158.31 %) and the potential effect of exogenous nitrogen loading to the Yellow River estuary on N2O emission should be considered before the annual or local N2O inventory was evaluated accurately.  相似文献   

18.
19.
The present investigation demonstrated pretreatment of lignocellulosic biomass rice straw using natural deep eutectic solvents (NADESs), and separation of high-quality lignin and holocellulose in a single step. Qualitative analysis of the NADES extract showed that the extracted lignin was of high purity (>90 %), and quantitative analysis showed that nearly 60?±?5 % (w/w) of total lignin was separated from the lignocellulosic biomass. Addition of 5.0 % (v/v) water during pretreatment significantly enhanced the total lignin extraction, and nearly 22?±?3 % more lignin was released from the residual biomass into the NADES extract. X-ray diffraction studies of the untreated and pretreated rice straw biomass showed that the crystallinity index ratio was marginally decreased from 46.4 to 44.3 %, indicating subtle structural alterations in the crystalline and amorphous regions of the cellulosic fractions. Thermogravimetric analysis of the pretreated biomass residue revealed a slightly higher T dcp (295 °C) compared to the T dcp (285 °C) of untreated biomass. Among the tested NADES reagents, lactic acid/choline chloride at molar ratio of 5:1 extracted maximum lignin of 68?±?4 mg g?1 from the rice straw biomass, and subsequent enzymatic hydrolysis of the residual holocellulose enriched biomass showed maximum reducing sugars of 333?±?11 mg g?1 with a saccharification efficiency of 36.0?±?3.2 % in 24 h at 10 % solids loading.  相似文献   

20.
Degradation of total phenol (TPh) and organic matter, (expressed as total organic carbon TOC), of a simulated olive mill wastewater was evaluated by the Fenton oxidation process under batch and continuous mode conditions. A mixture of six phenolic acids usually found in these agro-industrial wastewaters was used for this purpose. The study focused on the optimization of key operational parameters of the Fenton process in a batch reactor, namely Fe2+ dosage, hydrogen peroxide concentration, pH, and reaction temperature. On the assessment of the process efficiency, > 99% of TPh and > 56% of TOC removal were attained when [Fe2+] = 100 ppm, [H2O2] = 2.0 g/L, T = 30 °C, and initial pH = 5.0, after 300 min of reaction. Under those operational conditions, experiments on a continuous stirred-tank reactor (CSTR) were performed for different space-time values (τ). TOC and TPh removals of 47.5 and 96.9%, respectively, were reached at steady-state (for τ = 120 min). High removal of COD (> 75%) and BOD5 (> 70%) was achieved for both batch and CSTR optimum conditions; analysis of the BOD5/COD ratio also revealed an increase in the effluent’s biodegradability. Despite the high removal of lumped parameters, the treated effluent did not met the Portuguese legal limits for direct discharge of wastewaters into water bodies, which indicates that coupled chemical-biological process may be the best solution for real olive mill wastewater treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号