首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The host size model, an adaptive model for maternal manipulation of offspring sex ratio, was examined for the parasitoid wasp Spalangia endius. In a Florida strain, as the model predicts, daughters emerged from larger hosts than sons, but only when mothers received both small and large hosts simultaneously. The pattern appeared to result from the mother's ovipositional choice and not from differential mortality of the sexes during development. If sex ratio manipulation is adaptive in the Florida strain, it appears to be through a benefit to daughters of developing on large hosts rather than through a benefit to sons of developing on small hosts. Both female and male parasitoids were larger when they developed on larger hosts. For females, developing on a larger host (1) increased offspring production, except for the largest hosts, (2) increased longevity, (3) lengthened development, and (4) had no effect on wing loading. For males, development on a larger host had no effect on any measure of male fitness – mating success, longevity, development duration, or wing loading. In contrast, a strain from India showed no difference in the size of hosts from which daughters versus sons emerged, although both female and male parasitoids were larger when they developed on larger hosts. These results together with previous studies of Spalangia reveal no consistent connection between host-size-dependent sex ratio and host-size-dependent parasitoid size among strains of S. endius or among species of Spalangia. Received: 28 October 1998 / Received in revised form: 20 May 1999 / Accepted: 30 May 1999  相似文献   

2.
Learning affects host discrimination behavior in a parasitoid wasp   总被引:4,自引:0,他引:4  
Learning is generally predicted not to be important in host discrimination by parasitoids, because the stimuli involved are less variable than those used in habitat location. However, Anaphes victus (Hymenoptera: Mymaridae), an egg parasitoid of Listronotus oregonensis (Coleoptera: Curculionidae) apparently learns to associate external pheromones with the presence of a conspecific in a host. In this species, females can reject a parasitized host either after antennal drumming (antennal rejection) or after the insertion of their ovipositor (sting rejection). When they encountered a series of parasitized hosts, females A. victus learned to associate the presence of the external pheromone with the presence of the internal one. Learning lasted less than 4 h and occurred earlier in a series when the female marking the egg and the one detecting that mark were close relatives. This behavior could be adaptive because antennal rejection is faster than sting rejection. Received: 11 March 1997 / Accepted after revision: 30 August 1997  相似文献   

3.
Summary Parasitoid wasps often lay male eggs in small hosts and female eggs in larger hosts. The selective advantage of this strategy can be explained by assuming wasp fitness increases with host size and that this fitness increase is greater in females than in males. I conducted experiments to test a model based on this explanation and found the results generally supported the model with one exception; unlike what the model assumed, these wasps were unable to adjust their offspring sex ratios in each generation to different host size distributions. This finding suggests an alternate view as to how selection might operate in the evolution of parasitoid sex ratios.  相似文献   

4.
Maternal manipulation of offspring sex ratio in response to conspecifics is considered in relation to sex ratio theory using the parasitoid wasp Spalangia endius. Females produced a greater proportion of sons in response to mated but not virgin females. This is the first demonstration of a differential sex ratio response to virgin versus mated females and provides support for local mate competition theory. More recent sex ratio models that predict sex ratio responses to conspecifics, specifically constrained, perturbation, and crowding models, were not supported. An increased proportion of sons in response to another mated female occurred on the second day of oviposition but not on the first, and the day effect resulted from experience not age. When females oviposited alone after 2 days' exposure to another female, they still produced a greater proportion of sons than if they had always been alone, but only if the other female was mated, not if she was virgin. Females do not seem to assess the presence of virgin versus mated females indirectly by using a low density of males or a long latency to mate as an indicator for virgin females: neither affected offspring sex ratio. That mated females adjusted their sex ratios in response to other mated females, but not virgin females or males, may be due proximally to mated females not often encountering the latter. Virgin females and males are not located as deep in the oviposition substrate as mated females.  相似文献   

5.
Despite common stereotypes, males are not always indiscriminate and eager when it comes to mating. In the parasitoid wasp Spalangia endius, the initial response of males to females was almost always one of apparent excitement; however, this was followed by a clear preference for virgin females over mated females in both no-choice and choice situations. The no-choice data were collected from videotapes of male-female pairs of all possible combinations of mated and virgin individuals. Neither female nor male mating status had a significant effect on likelihood of, or time until, contact or male courtship fanning. However, a males first retreat was sooner when the female was mated than when she was virgin; mated males exhibited their first retreat sooner than did virgin males; and mated females were less likely to be mounted than were virgin females. In addition to the videotapes, male-choice experiments were performed. When given a choice of a virgin and a mated female, both virgin and mated males were more likely to mount and copulate with the virgin. The difference in response to virgin versus mated females seemed to be less in virgin males than in mated males, perhaps due to virgin males greater eagerness to mate: when a virgin male and a mated male were presented with a dead virgin female, the virgin male was usually the first to respond to the female. That males preferentially retreated from and avoided mounting mated females appears to be adaptive given that mated females rarely copulated.Communicated by N. Wedell  相似文献   

6.
In behavioral ecology it is generally assumed that behavior is adaptive. This assumption is tested here for sex ratio manipulation in response to host size in the parasitoid wasp Spalangia cameroni. Females produce a greater proportion of daughters on larger hosts. If this behavior is adaptive, it is not through a positive effect of host size on the fitness of daughters, as theory suggests and as found for other species. Females that developed on larger hosts were not more successful at drilling into hosts, were not more successful at interspecific competition for hosts, and did not have greater dispersal ability as measured by wing loading (weight/area of wing and thorax). The possibility that S. cameroni's sex ratio manipulation may be adaptive through a negative effect of host size on the fitness of sons cannot be ruled out. Relative to males from larger hosts, males from smaller hosts had lower wing loading and thus potentially greater dispersal ability. The actual effect of wing loading on fitness remains to be tested.  相似文献   

7.
Sex allocation is an important reproductive decision for parents. However, it is often assumed that females have substantial control over sex allocation decisions, and this is particularly true in haplodiploid insects, in which females apparently determine sex by deciding whether to fertilise an egg (and produce a diploid daughter) or not (and produce a haploid son). Mechanisms by which males may influence sex allocation are not so straightforward, and their potential influence on sex ratios has been somewhat neglected. Here, we test whether males influence offspring sex ratios in the parasitoid wasp Nasonia vitripennis. We show that some of the variation in observed sex ratios can be attributed to males when comparing the affect of male strain on sex ratio. We did not find among-male variation in sex ratio with a less powerful experiment using males from only one strain or an effect of male mating environment. Our data suggest that males can influence female sex ratios and contribute to the variation around the sex ratios optimal for females. However, the influence is not large, suggesting that females have more influence on sex allocation than do males. We conclude by considering whether male influences on sex ratio represent differences in male reproductive competence or deliberate attempts by males to increase their fitness by influencing daughter production.  相似文献   

8.
In the parasitoid wasp Spalangia endius more offspring and a greater proportion of daughters were oviposited in, and emerged from 0-day-old versus 3-day-old hosts. Offspring that developed on the younger hosts (1) were larger at adulthood, (2) developed more quickly, (3) had higher survivorship to adulthood, and (4) were more often able to chew their way out of the host. Sons and daughters did not differ in how host age affected their size, development rate, or survivorship. The greater proportion of daughters from the younger hosts may be adaptive, as described by the host quality model (a variant of the Trivers and Willard hypothesis). It is adaptive if greater size or more rapid development has a more positive effect on a daughter’s than a son’s fitness and the positive effect is large enough to compensate for sons being trapped disproportionately to daughters in the older hosts. Despite greater success at drilling the younger hosts, mothers did not try to drill them sooner or more often. Having previously oviposited on the older rather than the younger hosts had no detrimental effect on the mother’s subsequent longevity or offspring production. Received: 8 March 2000 / Revised: 9 June 2000 / Accepted: 24 June 2000  相似文献   

9.
Males frequently mate multiply, but are there negative fitness consequences for their later mates? Potential costs include less sperm and less nutrition. In most hymenopterans, daughters, but not sons, are produced sexually. This mean that effects of being a later mate on sperm received versus on nutrients received should be distinguishable. If later mates receive less sperm, it should manifest as a reduction in daughter production, whereas a reduction in nutrients should affect production of both sexes. Any cost to being a later mate may in turn select for polyandry or for female choice of virgin males. Males of the parasitoid wasp Spalangia endius were presented with up to five females in succession. Offspring production was compared among first, third, and fifth females; and it did not differ. However, about half of fifth females had begun producing only sons by their tenth day, whereas first and third females rarely had. Despite the reduction in daughter production, even fifth females rarely remated. However, females tended to mate with virgin males rather than mated males when given a choice. This tendency was dependent on male, not female, behavior, but should benefit the female nevertheless. Sex ratios in this species are one male for every one and a half to three females. Thus, the number of times that males could mate before daughter production was reduced coincided roughly with the mean number of times that males likely mate in this species. Nevertheless, some females are likely to experience the cost of being a fifth female because of skewed mating success among males.  相似文献   

10.
We determined the sex, order, and clutch size of eggs laid by the parasitoid wasp, Trichogramma pretiosum Riley, in the eggs of one of its natural hosts, Trichoplusia ni (Hübner). The parasitoid allocated sex non-randomly to hosts in the laboratory with a variance significantly less than that of a binomial (random) distribution, our null model. More clutches of two or more eggs contained a single male egg as the second or third egg laid than would be expected by chance and none contained two or more male eggs. T. pretiosum also increased the sex ratio (% male) of its offspring with increasing foundress numbers by increasing the frequency of male offspring as the second egg in a two-egg clutch allocated to unparasitized hosts and as the single egg allocated to previously parasitized hosts. These results indicate that T. pretiosum allocates the sex of its offspring precisely. Precise sex allocation is favored under local mate competition because it reduces variation in the number of sons per patch thus maximizing the number of inseminated daughters emigrating from the patch. Similar combinations of female and male offspring emerged from T. ni eggs parasitized by T. pretiosum in the field, again with a sex ratio variance less than that expected for a binomial distribution. These results strongly suggest that this parasitoid species manifests local mate competition.  相似文献   

11.
Since the mating of the parasitoid wasp Melittobia australica occurs on their eclosed hosts, the sex ratio is predicted to follow the local mate competition (LMC) theory. However, while LMC models predict that the sex ratio will increase from female-biased toward a 1:1 ratio with an increase in the number of foundresses, the observed female-biased sex ratios (1–5% males) show little increase in response to an increased foundress number. Lethal combat among adult males may serve as an explanation for this observed phenomenon. Using a microsatellite DNA marker, we first examined the individual sex ratio of two foundresses who had sequentially parasitized the same host. Both foundresses produced an extremely female-biased clutch and the sex ratios of the second foundress were only slightly less biased than that of the first. A small number of sons from both foundresses emerged at a constantly low rate over a prolonged period, resulting in a temporal mixture of emerging males derived from both the foundresses. Second, we conducted a one-on-one arena experiment to examine the combat level in relation to the relatedness of the opponents. Almost all the later-emerging males were killed by previously eclosed males irrespective of whether they were sibs or non-sibs. These results suggest that each foundress should not produce males in a single burst, but continue to produce male eggs at a constantly low rate in order to avoid the high mortality of her own sons by lethal male-male combat. This combat may be one of factors in explaining the extremely female-biased sex ratio even with an increasing foundress number.Communicated by R.F.A. Moritz  相似文献   

12.
In solitary parasitoids, in which only one individual can emerge per host, the adaptive value of conspecific superparasitism is a function of the survival probability of the egg laid by the superparasitizing female. In the few cases which these probabilities are compared, the oldest immature has an advantage over the other individuals. We measured the acceptance rate of parasitized hosts and survival rate of supernumerary larvae in Anaphes victus (Hymenoptera: Mymaridae) in relation to the interval between ovipositions. When this interval was 5–7 days, the first immature was at the prepupa and pupa stage respectively, and female Anaphes victus changed their oviposition behavior markedly. They killed the developing parasitoid of their own species before ovipositing in it. The progeny of these females, which are normally primary parasitoids, developed thereafter as hyperparasitoids. Indeed, in contrast with other species, the survival of the second female's progeny increased with the time interval between ovipositions. This type of facultative intraspecific hyperparasitism is different from autoparasitism in Aphelinidae and has never been mentioned in other parasitoids; it would be adaptive if females of this short-lived species encounter low-quality patches.  相似文献   

13.
Summary. Feeding by Pieris brassicae or P. rapae caterpillars on Brussels sprouts plants induces the emission of synomones that attract natural enemies of the caterpillars, Cotesia glomerata, a generalist parasitoid, and C. rubecula, a specialist on P. rapae. Previous research on this tritrophic system has identified a large number of volatiles in the headspace of herbivore-damaged Brussels sprouts plants, and this paper addresses the question which of these volatiles are perceived by the two parasitoid species. Headspace odors from both P. brassicae- and P. rapae-damaged Brussels sprouts plants were analyzed by coupled gas chromatography electro- antennogram (GC-EAG) detection. Twenty volatiles evoked consistent EAG reactions in the antennae of both species and nineteen of these volatiles could be identified with GC-MS. One component that could not be identified due to its low concentration, evoked EAG responses in antennae of C. rubecula only. Possible consequences for searching behavior of the two parasitoid species are discussed.  相似文献   

14.
Local mate competition (LMC) occurs when brothers compete with each other for mating opportunities, resulting in selection for a female-biased sex ratio within local groups. If multiple females oviposit in the same patch, their sons compete for mating opportunities with non-brothers. Females, in the presence of other females, should thus produce relatively more sons. Sex ratio theory also predicts a more female-biased sex ratio when ovipositing females are genetically related, and sex-ratio responses to foundress size if it differentially affects fitness gains from sons versus daughters. The mating system of the parasitoid wasp Ooencyrtus kuvanae meets assumptions of LMC. Females insert a single egg into each accessible egg of gypsy moth, Lymantria dispar, host egg masses. Wasps complete development inside host eggs and emerge en masse, as sexually mature adults, resulting in intense competition among brothers. We tested the hypothesis that O. kuvanae exhibits LMC by manipulating the number of wasp foundresses on egg masses with identical numbers of eggs. As predicted by LMC theory, with increasing numbers of wasp foundresses on an egg mass, the proportions of emerging sons increased. In contrast, the presence of a sibling compared to a non-sibling female during oviposition, or the size of a female, did not affect the number or sex ratio of offspring produced. The O. kuvanae system differs from others in that larvae do not compete for local resources and thus do not distort the sex ratio in favor of sons. With no resource competition among O. kuvanae larvae, the sex ratio of emergent son and daughter wasps is due entirely to the sex allocation by ovipositing wasp foundresses on host egg masses.  相似文献   

15.
Reproductive skew theory has been an important component of efforts to design a unifying theory of social evolution, as it aims to explain patterns of reproductive partitioning in animal societies as a function of relatedness, group productivity, fighting ability and ecological constraints on independent reproduction. However, empirical tests of the theory have often provided ambiguous or non-conclusive results, assumptions behind alternative models have rarely been tested, and theoretical elaborations have shown the limitations of the reproductive skew approach. Here we analyse a relatively large sample of colonies of the Stenogastrine wasp Parischnogaster mellyi with a powerful set of DNA microsatellite markers. We show that various apparently stable forms of social organisation co-exist in a single population, and that sharing of reproduction between related and unrelated egg-laying females occurs in some of the nests. Present reproductive skew theory appears to be at best partly sufficient to account for the observed complexity of social organisation. The observed patterns of colony composition and reproductive sharing are weakly consistent with the hypothesis of reproductive transactions, while they can more parsimoniously be explained by the life-history characteristics of the species.Communicated by R.F.A. Moritz  相似文献   

16.
Summary Females of a digger wasp Crabro cribrellifer nested in a 234 nest aggregation covering 2x65 m in area. Variability in 3 edaphic factors (soil temperature, hardness, and per cent moisture) had no significant influence on the non-random spatial distribution of nests within the aggregation. A significant positive correlation between wasp nest density and the mean number of parasitic flies, Metopia campestris, present was shown (Fig. 1). Yet, based on 20 excavated nests, the probability of cell parasitism decreased as nest density increased (Fig. 2). This may give females nesting within a dense aggregation a selective advantage, and supports the selfish herd model developed by Hamilton (1971).  相似文献   

17.
A behavioral syndrome is a suite of behaviors correlated across multiple social contexts. In this study, boldness in the face of predation risk was assessed twice in fish across two different sensory modalities in both the field and lab to ascertain the biological relevance and complexity of this attribute. Individual fathead minnows were captured from a natural field population using traps that either contained chemical alarm cues (conspecific skin extract) or control (well water) and their responses to the presence of predator behind a glass partition assessed in the laboratory. Although fewer fish were captured in alarm cue-labeled traps, these bold fish performed longer predator inspections than shy fish captured in control traps. Thus, a shy/bold behavioral syndrome was expressed consistently across field and lab settings in response to both chemical and visual indicators of danger. Shy and bold individuals did not differ in sex, body length, secondary sexual characteristics, or parasite load but were of more robust physical condition.  相似文献   

18.
Sex allocation theory offers excellent opportunities for testing how animals adjust their behaviour in response to environmental conditions. A major focus has been on instances of local mate competition (LMC), where female-biased broods are produced to maximise mating opportunities for sons. However, the predictions of LMC theory can be altered if there is both local competition for resources during development and an asymmetry between the competitive abilities of the sexes, as has been seen in animals ranging from wasps to birds. In this paper, we test the extent to which asymmetric larval competition alters the predictions of LMC theory in the parasitoid wasp Nasonia vitripennis. We found that the body size of both sexes was negatively correlated with the number of offspring developing within the host. Further, we found that when faced with high levels of competition, the body size of females, but not males, was influenced by the sex ratio of the competing offspring; females were smaller when a higher proportion of the brood was female. This asymmetric competition should favour less biased sex ratios than are predicted by standard LMC theory. We then develop a theoretical model that can be parameterised with our data, allowing us to determine the quantitative consequences of the observed level of asymmetric larval competition for sex allocation. We found that although asymmetric competition selects for less biased sex ratios, this effect is negligible compared to LMC. Furthermore, a similar conclusion is reached when we re-analyse existing data from another parasitoid species where asymmetric larval competition has been observed; Bracon hebetor. Consequently, we suspect that asymmetric larval competition will have its greatest influence on sex ratio evolution in species that have smaller clutches and where local mate competition is not an issue, such as birds and mammals.  相似文献   

19.
With respect to nutrients, plants are rather non-homoeostatic while most metazoans have much more confined ranges of nutrient ratios. It was recently highlighted that the homoeostatic ability of microzooplankters lies in between these two extremes. Nevertheless, we know very little on the dynamics of stoichiometric changes. Hence, we investigated how the stoichiometry of the heterotrophic dinoflagellate Oxyrrhis marina is affected (1) during a starvation period and (2) when fed nutrient deplete Rhodomonas salina after having been pre-conditioned on nutrient replete algae and vice versa. We observed that the dinoflagellate was able to maintain its N:P ratio constant over 78 h of starvation. We inferred that under starvation, nitrogen-limited O. marina mainly used fat as energy source while nitrogen-rich individuals also used proteins as fuel in cellular respiration. Further, we showed that O. marina presents resistance to nutrient limitation, with stronger regulation against P-limitation than against N-limitation. This resilience in microzooplankton stoichiometry following food quality stress would have great implications for both top-down (nutrient remineralisation) and bottom-up controls (quality as food).  相似文献   

20.
Ormia ochracea is a parasitoid fly which lays its larvae on its hosts, the field crickets Gryllus integer and Gryllus rubens, in two distinct modes: (1) directly on the host and (2) around the host. In the field, 12.7% of male crickets were parasitized and 3.2% were super-parasitized. Despite the disadvantages of parasitizing infested hosts, there was no evidence that O. ochracea avoided superparasitism. This and other experiments suggest that the host assessment ability of O. ochracea is less than that reported for many hymenopteran parasitoids. by manipulating the number of larvae in each cricket, we determined that four to five larvae per host resulted in the largest number of adult flies. However, as larval number per host increased from one to six, pupal size, and hence adult size, declined. In the field, hosts were found with a mean of 1.7 ± 1.0 (SD) larvae per cricket, suggesting that there may be some selection pressure against larger clutch sizes. Nevertheless clutch sizes larger than the host can support were sometimes found in the field. During the first mode of larviposition, gravid flies deposited no more than three larvae directly onto the host. Larvae deposited directly on the host had a high probability of infesting it. During the second mode of larviposition, gravid flies laid a larger number of larvae around the host (6.1 ± 5.2). Larvae that were laid around the host were less likely to infest a cricket than were larvae that were deposited directly onto it. O. ochracea is unique in that its two different modes of larviposition have different probabilities of larval success. Even though the success rate for larvae laid during the second mode of larviposition was low, the possibility of parasitizing more hosts appears to have selected for flies laying more larvae (e.g. increasing clutch size) than is optimal if all the larvae successfully entered a single host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号