首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Eom H  Chung K  Kim I  Han JI 《Chemosphere》2011,85(4):672-676
In an effort to improve the efficiency and sustainability of microbial fuel cell (MFC) technology, a novel MFC reactor, the M2FC, was constructed by combining a ferric-based MFC with a ferrous-based fuel cell (FC). In this M2FC reactor, ferric ion, the catholyte in the MFC component, is regenerated by the FC system with the generation of additional electricity. When the MFC component was operated separately, the electricity generation was maintained for only 98 h due to the depletion of ferric ion in the catholyte. In combination with the fuel cell, however, the production of power was sustained because ferric ion was continually replenished from ferrous ion in the FC component. Moreover, the regeneration process of ferric ion by the FC produced additional energy. The M2FC reactor yielded a power density of up to 2 W m−2 (or time-averaged value of approximately 650 mW m−2), density up to 20 times (or approximately six times based on time-averaged value) higher than the corresponding MFC system.  相似文献   

2.
Anti-estrogenic activity in wastewater is gaining increased attention because of its endocrine-disrupting function. In this study, the level and removal efficiency by coagulation of anti-estrogenic activity in secondary effluents of domestic wastewater treatment plants were studied. Anti-estrogenic activity was detected in secondary effluent samples at a tamoxifen (TAM) equivalent concentration level of 0.38–0.94 mg-TAM L−1. Dissolved organic matters (DOM) with the molecular weight (MW) less than 3000 Da in hydrophobic acids (HOA) and hydrophobic neutrals (HON) fractions of the secondary effluent were the key fractions related to anti-estrogenic activity. Coagulation with FeCl3 and polyaluminium chloride (PAC) can remove the anti-estrogenic activity of the secondary effluents, but the removal efficiency was limited. The removal efficiency using FeCl3 coagulant was higher than that induced by PAC. Dissolved organic carbon was continuously removed with increased coagulant dose (0–120 mg L−1 FeCl3 or 0–60 mg L−1 PAC). However, the removal of anti-estrogenic activity was not enhanced further when the coagulant concentration was beyond a critical value (30 mg L−1 FeCl3 or 10 mg L−1 PAC). The highest removal of anti-estrogenic activity was about 36% by FeCl3 and 20% by PAC. Size exclusion chromatography results indicated difficulty in removing DOM with MW less than 3000 Da in the secondary effluent during coagulation even at a high coagulant concentration, which led to low removal efficiency of anti-estrogenic activity.  相似文献   

3.
Byun Y  Koh DJ  Shin DN  Cho M  Namkung W 《Chemosphere》2011,84(9):1285-1289
The effect of polarity on the oxidation of Hg0 was examined in the presence of O2 via a pulsed corona discharge (PCD). The experimental result showed no difference in the energy yield of Hg0 oxidation at both positive and negative PCDs (∼8 μg Hg W h−1 at following conditions: total flow rate = 2 L min−1 (Hg0 = 50 μg N m−3, O2 = 10%, and N2 balance), temperature = 150 °C, and specific energy density = 5-15 W h N m−3). This suggests that the positive PCD process used to control gaseous air pollutants may play an essential key role in Hg0 oxidation because it consumes enough energy (∼15 W h N m−3) but an electrical precipitator could not because it consumes less energy (∼0.3 W h N m−3) to oxidize Hg0.  相似文献   

4.
Phosphine migration at the water-air interface in Lake Taihu, China   总被引:1,自引:0,他引:1  
Han C  Geng J  Zhang J  Wang X  Gao S 《Chemosphere》2011,82(6):935-939
The diurnal atmospheric phosphine (PH3) concentrations and fluxes at the water-air interface in Lake Taihu were reported. The results showed that the PH3 flux at the water-air interface ranged from −69.9 ± 29.7 to 121 ± 42 ng m−2 h−1, with a mean flux of 14.4 ± 22.5 ng m−2 h−1. The fluxes were both negative and positive during the diurnal period, indicating that the lake can act as a sink and a source of PH3. In addition, the PH3 fluxes were positively correlated with water temperature, total soluble phosphorus and soluble reactive phosphorus, while they were negatively correlated with water redox potential. A similar diurnal variation curve of atmospheric PH3 concentrations was observed during all four seasons, with the maximum level occurring in early morning and the minimum appearing around midday. These findings suggest that light plays an important role in the elimination of atmospheric PH3. A significant positive correlation was also found between air temperature and atmospheric PH3 concentration. The mean flux of PH3 in Lake Taihu was higher than in other reported wetlands, with an estimated annual emission of PH3 to the atmosphere of 2.94 × 105 g y−1.  相似文献   

5.
Ambient air and dry deposition, and soil samples were collected at the Aliaga industrial site in Izmir, Turkey. Atmospheric total (particle + gas) ∑41-PCB concentrations were higher in summer (3370 ± 1617 pg m−3, average + SD) than in winter (1164 ± 618 pg m−3), probably due to increased volatilization with temperature. Average particulate ∑41-PCBs dry deposition fluxes were 349 ± 183 and 469 ± 328 ng m−2 day−1 in summer and winter, respectively. Overall average particulate deposition velocity was 5.5 ± 3.5 cm s−1. The spatial distribution of ∑41-PCB soil concentrations (n = 48) showed that the iron-steel plants, ship dismantling facilities, refinery and petrochemicals complex are the major sources in the area. Calculated air-soil exchange fluxes indicated that the contaminated soil is a secondary source to the atmosphere for lighter PCBs and as a sink for heavier ones. Comparable magnitude of gas exchange and dry particle deposition fluxes indicated that both mechanisms are equally important for PCB movement between air and soil in Aliaga.  相似文献   

6.
Aliphatic and aromatic hydrocarbon fluxes were measured in time series sediment trap samples at 200 m and at 1000 m depths in the open Northwestern Mediterranean Sea, from December 2000 to July 2002. Averaged fluxes of n-alkanes, UCM and T-PAH35 were 2.96 ± 2.60 μg m−2 d−1, 64 ± 60 μg m−2 d−1 and 0.68 ± 0.59 μg m−2 d−1, respectively. Molecular compositions of both hydrocarbon classes showed a contamination in petrogenic hydrocarbons well above the background levels of such an open site, whereas pyrolytic hydrocarbons stand in the range of other open Mediterranean locations. Fluxes displayed ample interannual and seasonal variabilities, mainly related to mass flux variation while concentration evolutions trigger secondary changes in pollutant fluxes. High lithogenic flux events exported particles with a larger pollutant load than biogenic particles formed during the spring bloom and during the summer. Sinking hydrocarbons were efficiently transported from 200 m to 1000 m.  相似文献   

7.
The current critical level for ammonia (CLENH3) in Europe is set at 8 μg NH3 m−3 as an annual average concentration. Recent evidence has shown specific effects of ammonia (NH3) on plant community composition (a true ecological effect) at much smaller concentrations. The methods used in setting a CLENH3 are reviewed, and the available evidence collated, in proposing a new CLENH3 for different types of vegetation. For lichens and bryophytes, we propose a new CLENH3 of 1 μg NH3 m−3 as a long-term (several year) average concentration; for higher plants, there is less evidence, but we propose a CLENH3 of 3 ± 1 μg NH3 m−3 for herbaceous species. There is insufficient evidence to provide a separate CLENH3 for forest trees, but the value of 3 ± 1 μg NH3 m−3 is likely to exceed the empirical critical load for N deposition for most forest ecosystems.  相似文献   

8.
The fate and transport of antibiotics in natural water systems is controlled in part by interactions with nanometer (10−9 m) metal oxide particles. Experiments were performed by mixing solutions of ampicillin (AMP), a common, penicillin-class human and veterinary antibiotic, with 25 nm-TiO2 (anatase) nanoparticles at different pH conditions. Both sorption and degradation of AMP were observed in the AMP-nanoparticle solutions. For AMP concentrations from ∼3 μM to 2.9 mM the overall AMP removal from solution can be described by linear isotherms with removal coefficients (Kr) of 3028 (±267) L kg−1 at pH 2, 11,533 (±823) L kg−1 at pH 4, 12,712 (±672) L kg−1 at pH 6, and 1941 (±342) L kg−1 at pH 8. Mass spectral analysis of AMP solutions after removal of the solid nanoparticles yielded ions that indicate the presence of peniclloic acid, penilloic acid and related de-ammoniated by-products as possible compounds resulting from the degradation of AMP at the TiO2 surface.  相似文献   

9.
Phosphine in paddy fields and the effects of environmental factors   总被引:1,自引:0,他引:1  
Ambient levels of phosphine (PH3) in the air, phosphine emission fluxes from paddy fields and rice plants, and the distribution of matrix-bound phosphine (MBP) in paddy soils were investigated throughout the growing stages of rice. The relationships between MBP and environmental factors were analyzed to identify the principal factors determining the distribution of MBP. The phosphine ambient levels ranged from 2.368 ± 0.6060 ng m−3 to 24.83 ± 6.529 ng m−3 and averaged 14.25 ± 4.547 ng m−3. The highest phosphine emission flux was 22.54 ± 3.897 ng (m2 h)−1, the lowest flux was 7.64 ± 4.83 ng (m2 h)−1, and the average flux was 14.17 ± 4.977 ng (m2 h)−1. Rice plants transport a significant portion of the phosphine emitted from the paddy fields. The highest contribution rate of rice plants to the phosphine emission fluxes reached 73.73% and the average contribution was 43.00%. The average MBP content of 111.6 ng kg−1fluctuated significantly in different stages of rice growth and initially increased then decreased with increasing depth. The peak MBP content in each growth stage occurred approximately 10 cm under the surface of paddy soils. Pearson correlation analyses and stepwise multiple regression analysis showed that soil temperature (Ts), acid phosphatase (ACP) and total phosphorus (TP) were the principal environmental factors, with correlative rankings of Ts > ACP > TP.  相似文献   

10.
Oxidation of bisphenol F (BPF) by manganese dioxide   总被引:1,自引:0,他引:1  
Bisphenol F (BPF), an environmental estrogen, is used as a monomer in plastic industry and its environmental fate and decontamination are emerging concern. This study focused on the kinetics, influencing factors and pathways of its oxidation by MnO2. At pH 5.5, about 90% of BPF was oxidized in 20 min in a solution containing 100 μM MnO2 and 4.4 μM BPF. The reaction was pH-dependent, following an order of pH 4.5 > pH 5.5 > pH 8.6 > pH 7.5 > pH 6.5 > pH 9.6. Humic acids inhibited the reaction at low (≤pH 5.5) and high pH (≥pH 8.6) at high concentrations. In addition, metal ions and anions also suppressed the reaction, following the order Mn2+ > Ca2+ > Mg2+ > Na+ and HPO42− > Cl > NO3 ≈ SO42−, respectively. A total of 5 products were identified, from which a tentative pathway was proposed.  相似文献   

11.
The residual levels of polycyclic aromatic hydrocarbons (PAHs) in the atmosphere and in dissolved phase from Lake Chaohu were measured by (GC–MS). The composition and seasonal variation were investigated. The diffusive air–water exchange flux was estimated by a two-film model, and the uncertainty in the flux calculations and the sensitivity of the parameters were evaluated. The following results were obtained: (1) the average residual levels of all PAHs (PAH16) in the atmosphere from Lake Chaohu were 60.85 ± 46.17 ng m−3 in the gaseous phase and 14.32 ± 23.82 ng m−3 in the particulate phase. The dissolved PAH16 level was 173.46 ± 132.89 ng L−1. (2) The seasonal variation of average PAH16 contents ranged from 43.09 ± 33.20 ng m−3 (summer) to 137.47 ± 41.69 ng m−3 (winter) in gaseous phase, from 6.62 ± 2.72 ng m−3 (summer) to 56.13 ± 22.99 ng m−3 (winter) in particulate phase, and 142.68 ± 74.68 ng L−1 (winter) to 360.00 ± 176.60 ng L−1 (summer) in water samples. Obvious seasonal trends of PAH16 concentrations were found in the atmosphere and water. The values of PAH16 for both the atmosphere and the water were significantly correlated with temperature. (3) The monthly diffusive air–water exchange flux of total PAH16 ranged from −1.77 × 104 ng m−2 d−1 to 1.11 × 105 ng m−2 d−1, with an average value of 3.45 × 104 ng m−2 d−1. (4) The results of a Monte Carlo simulation showed that the monthly average PAH fluxes ranged from −3.4 × 103 ng m−2 d−1 to 1.6 × 104 ng m−2 d−1 throughout the year, and the uncertainties for individual PAHs were compared. (5) According to the sensitivity analysis, the concentrations of dissolved and gaseous phase PAHs were the two most important factors affecting the results of the flux calculations.  相似文献   

12.
Lindstrom SM  White JR 《Chemosphere》2011,85(4):625-629
Treatment wetlands have a finite period of effective nutrient removal after which treatment efficiency declines. This is due to the accumulation of organic matter which decreases the capacity and hydraulic retention time of the wetland. We investigated four potential solutions to improve the soluble reactive P (SRP) removal of a municipal wastewater treatment wetland soil including; dry down, surface additions of alum or calcium carbonate and physical removal of the accreted organic soil under both aerobic and anaerobic water column conditions. The flux of SRP from the soil to the water column under aerobic conditions was higher for the continuously flooded controls (1.1 ± 0.4 mg P m−2 d−1), dry down (1.5 ± 0.9 mg P m−2 d−1) and CaCO3 (0.8 ± 0.7 mg P m−2 d−1) treatments while the soil removal and alum treatments were significantly lower at 0.02 ± 0.10 and −0.07 ± 0.02 mg P m−2 d−1, respectively. These results demonstrate that the two most effective management strategies at sequestering SRP were organic soil removal and alum additions. There are difficulties and costs associated with removal and disposal of soils from a treatment wetland. Therefore our findings suggest that alum addition may be the most cost effective and efficient means of increasing the sequestering of P in aging treatment wetlands experiencing reduced P removal rates. However, more research is needed to determine the longer term effects of alum buildup in the organic soil on the wetland biota, in particular, on the macrophytes and invertebrates. Since alum effectiveness is time limited, a longer term solution to P flux may favor the organic soil removal.  相似文献   

13.
Chi KH  Hsu SC  Lin CY  Kao SJ  Lee TY 《Chemosphere》2011,83(6):745-752
In this study, polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/F) concentrations and depositions in ambient air, water column and sediment were measured at a coupled reservoir-watershed system in northern Taiwan. The atmospheric PCDD/F concentration measured in the vicinity of the reservoir ranged from 4.9 to 39 fg I-TEQ m−3 and the Asian dust storm in February accounted for the peak value, which corresponded to a total suspended particle concentration of 128 μg m−3. The atmospheric PCDD/F deposition ranged from 1.4 to 19 pg I-TEQ m−2 d−1, with higher deposition occurring during winter and spring (long-range transport events). During summer, when atmospheric deposition is lower, consecutive tropical cyclones (typhoons) bring heavy rainfall that enhances soil erosion and creates turbidity-driven intermediate flow. This results in significantly higher PCDD/F deposition in water column of the reservoir at 70 m water depth (179 pg I-TEQ m−2 d−1) than at 20 m (21 pg I-TEQ m−2 d−1) during typhoon event. The accumulation rate of PCDD/Fs (9.1 ng I-TEQ m−2 y−1) in the reservoir sediments (depth: 0-2 cm) was consistent with PCDD/F deposition obtained from water column (6.1 and 8.3 ng I-TEQ m−2 y−1); however, it is significantly higher when compared to the atmospheric deposition (2.0 ng I-TEQ m−2 y−1). Based on the mass balance between the measurements of atmospheric deposition and sinking particles in water column, around 54-74% of PCDD/F inputs into the reservoir were contributed by the catchment erosion during normal period. However, the PCDD/F input contributed by the enhanced catchment erosion significantly increased to 90% during intensive typhoon events.  相似文献   

14.
Hunt GT  Lihzis MF 《Chemosphere》2011,85(11):1664-1671
The Connecticut Department of Environmental Protection (CTDEP) commenced monitoring for PCDDs/PCDFs (polychlorinated dibenzodioxins and polychlorinated dibenzofurans) in ambient air in 1987 and adopted the long term (30 d) sampling approach in 1993. The CTDEP method represents the first use of isotopically labeled PCDDs/PCDFs as field surrogates to monitor the behavior of native PCDDs/PCDFs present in actual ambient air samples. This feature first introduced in 1987 was later adopted by US EPA in revisions to sampling methods for PCDDs/PCDFs in ambient air (EPA Method TO9A) as well as development of EPA Reference Method 23 for measurement of PCDDs/PCFDs in stationary source emissions. Results are provided here for a total of twenty-three (23) samples (reported as pairs) representing twelve (12) 30 d sampling events conducted at a site located in metropolitan Hartford CT. Samples were collected in winter months during calendar years 2002-2008. PCDDs/PCDFs concentration data (pg m−3) are reported as both congener sums (Cl4-Cl8) and 2378-substitued congeners. Total PCDDs/PCDFs concentrations for these twelve (12) sampling events ranged from 0.68 pg m−3 (2003) to 4.18 pg m−3 (2004) with a mean concentration of 2.04 pg m−3.Method performance was monitored through use of collocated samples, in field isotopically labeled compounds, isotopically labeled laboratory applied internal standards and field blank samples. Method performance consistently exceeded goals established in USEPA Method TO9A for these same parameters. Average recoveries of in field labeled PCDDs/PCDFs ranged from 97.5% to 104.2%. Average (mean) recoveries for each of the ten (10) isotopically labeled internal standards ranged from 77.0% (13C-OCDF) to 95.5% (13C-2,3,7,8-TCDF). Method precision defined as % RPD data for collocated sampler pairs ranged from 8% to 14% for PCDDs and from 5% to 12% for PCDFs. The mean RPD for all PCDDs/PCDFs combined is 9.6%. Field monitoring results demonstrate method sensitivity for all PCDDs/PCDFs congeners and 2378-substituted congeners to be well below concentrations typically found for these compounds in ambient air (all reported data represent measured concentrations). Quantities (pg) found in field blanks represent the major determinant to achieving further enhancements in method sensitivity for selected congeners (OCDD < 42 fg m−3; 1,2,3,4,6,7,8-HpCDD < 5.7 fg m−3; and 1,2,3,4,6,7,8-HpCDF < 2.1 fg m−3). The CTDEP method represents a highly sensitive and reliable technique for monitoring of PCDDs/PCDFs congeners and other persistent organic pollutants (POPs) at ultra trace levels in ambient air (fg m−3).  相似文献   

15.
Particle-bound polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs) in ambient air were monitored together with particulate matter less than 10 μm (PM10) at three sampling sites of the Andean city of Manizales, Colombia; during September 2009 and July 2010. PCDD/Fs ambient air emissions ranged from 1 fg WHO-TEQ m−3 to 52 fg WHO-TEQ m−3 in particulate fraction. The PM10 concentrations ranged from 23 μg m−3 to 54 μg m−3. Concentrations of PM10 and PCDD/Fs in ambient air observed for Manizales - a medium sized city with a population of 380 000 - were comparable to concentrations in larger cities. The highest concentrations of PCDD/Fs and PM10 found in this study were determined at the central zone of the city, characterized by public transportation density, where diesel as principal fuel is used. In addition, hypothetical gas fractions of PCDD/Fs were calculated from theoretical Kp data. Congener profiles of PCDD/Fs exhibited ratios associated with different combustion sources at the different sampling locations, ranging from steel recycling to gasoline and diesel engines. Taking into account particle and gas hypothetical fraction of PCDD/Fs, Manizales exhibited values of PCDD/Fs equivalent to rural and urban-industrial sites in the southeast and center of the city respectively. Poor correlation of PCDDs with PM10 (r = −0.55 and r = 0.52) suggests ambient air PCDDs were derived from various combustion sources. Stronger correlation was observed of PCDFs with PM10. Poor correlation between precipitation and reduced PM10 concentration in ambient air (r = −0.45) suggested low PM10 removal by rainfall.  相似文献   

16.
Li X  Li Y  Zhang Q  Wang P  Yang H  Jiang G  Wei F 《Chemosphere》2011,84(7):957-963
The concern about emissions of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs) from steel industrial parks has increased in the past decades. In this study, polyurethane foam (PUF)-disk based passive air samples were collected in and around a big steel industrial park of Anshan, Northeast China from June 2008 to March 2009. The levels, seasonal variations and potential sources of PCDD/Fs, PCBs and PBDEs in the atmosphere around the steel industrial complex were investigated, and potential contribution of these three groups of persistent organic pollutants (POPs) from iron and steel production was also assessed. The air concentrations of ∑17PCDD/Fs (summer: 0.02-2.77 pg m−3; winter: 0.20-9.79 pg m−3), ∑19PCBs (summer: 23.5-155.8 pg m−3; winter: 14.6-81.3 pg m−3) and ∑13PBDEs (summer: 2.91-10.7 pg m−3; winter: 1.10-3.89 pg m−3) in this targeted industrial park were relatively low in comparison to other studies, which implied that the industrial activities of iron and steel had not resulted in serious contamination to the ambient air in this area. On the whole, the air concentrations of PCDD/Fs in winter were higher than those of summer, whereas the concentrations of PCBs and PBDEs showed opposite trends. The result from principal component analysis indicated that coal combustion might be the main contributor of PCDD/F sources in this area.  相似文献   

17.
The study was prompted to characterize the B-type esterase activities in the terrestrial snail Xeropicta derbentina and to evaluate its sensitivity to organophosphorus and carbamate pesticides. Specific cholinesterase and carboxylesterase activities were mainly obtained with acetylthiocholine (Km = 77.2 mM; Vmax = 38.2 mU/mg protein) and 1-naphthyl acetate (Km = 222 mM, Vmax = 1095 mU/mg protein) substrates, respectively. Acetylcholinesterase activity was concentration-dependently inhibited by chlorpyrifos-oxon, dichlorvos, carbaryl and carbofuran (IC50 = 1.35 × 10−5-3.80 × 10−8 M). The organophosphate-inhibited acetylcholinesterase activity was reactivated in the presence of pyridine-2-aldoxime methochloride. Carboxylesterase activity was inhibited by organophosphorus insecticides (IC50 = 1.20 × 10−5-2.98 × 10−8 M) but not by carbamates. B-esterase-specific differences in the inhibition by organophosphates and carbamates are discussed with respect to the buffering capacity of the carboxylesterase to reduce pesticide toxicity. These results suggest that B-type esterases in X. derbentina are suitable biomarkers of pesticide exposure and that this snail could be used as sentinel species in field monitoring of Mediterranean climate regions.  相似文献   

18.
Liu G  Zheng M  Du B  Nie Z  Zhang B  Liu W  Li C  Hu J 《Chemosphere》2012,89(4):467-472
Iron ore sintering processes constitute significant sources of dioxins, and studies have confirmed a close correlation between polychlorinated naphthalenes (PCNs) and dioxin formation. Thus, iron ore sintering processes are thought to be a potential source of PCNs, although intensive investigations on PCN emissions from sintering processes have not been carried out. Therefore, the aim of the present study was to qualify and quantify PCN emissions from nine sintering plants operating on different industrial scales. PCN concentrations ranged from 3 to 983 ng m−3 (0.4-23.3 pg TEQPCN m−3) and emission factors ranged from 14 to 1749 μg t−1 (0.5-41.5 ng TEQPCN t−1), with a geometric mean of 84 μg t−1 (2.1 ng TEQPCN t−1). The estimated annual emission of PCNs from sintering processes in China was 1390 mg TEQPCN. These figures will assist in the development of a PCN emissions inventory. Regarding emission characteristics, PCNs mainly comprised low-chlorinated homologs. The ratios of several characteristic PCN congeners were also measured and compared with those from other sources. Taken together, these results may provide useful information for identifying the sources of PCNs produced by iron ore sintering processes.  相似文献   

19.
This study presents the field investigations into the effects of cover soils and leachate subsurface irrigation on N2O emissions from municipal solid waste landfills. Landfill Site A and Site B, covered with carefully chosen infertile soils, were selected to monitor their diurnal and seasonal variations of N2O emissions. The annual average N2O flux was 469 ± 796 μg N2O-N m−2 h−1 in Site B with leachate subsurface irrigation, three times that of Site A without leachate irrigation. When an additional soil containing lower contents of carbon and nitrogen was introduced to cover part of Site B, its N2O fluxes decreased by 1-2 orders of magnitude compared with the left area of Site B. This suggested that carefully selected cover soils could substantially reduce N2O emissions even under leachate subsurface irrigation. Statistical analysis proved that the availabilities of soil moisture and mineralized nitrogen were the key parameters controlling landfill N2O emissions.  相似文献   

20.
The main objective of this work was to assess the atmospheric concentrations and seasonal variations of selected POPs in a sub-alpine location where few data are available. A monitoring and research station was set up at the JRC Ispra EMEP site (Italy). We present and discuss a one-year data set (2005-2006) on PCB air concentrations. ∑7PCBs monthly averaged concentration varied from 31 to 76 pg m−3. Concentrations in the gas phase (21-72 pg m−3) were higher than those in the particulate phase (3-10 pg m−3). Advection of air masses and re-volatilization from local sources seem to play a dominant role as drivers of PCB atmospheric concentrations in the area. Indications of seasonal variation affecting PCB congener patterns and the gas/particulate partitioning were found. Modeling calculations suggest a predominant importance of the wet deposition in this region (1 μg m−2 yr−1 ∑7PCBs yearly total wet deposition flux; 650-2400 pg L−1 rainwater concentrations).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号