首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Aquatic macrophytes are unchangeable biological filters and they carry out purification of the water bodies by accumulating dissolved metals and toxins in their tissue. In view of their potential to entrap several toxic heavy metals, 45 macrophytes belonging to 8 families collected from two different physiographic locations (36 from Sevan Lake, Armenia; 9 from Carambolim Lake, Old Goa, India) were studied for estimation of 14 heavy metals. The study was aimed at understanding the importance of these macrophytes in accumulation of toxic metals and controlling the heavy metal pollution and suggesting the remedial measures, if any, for the preservation and restoration of lake ecosystem. Inductively Coupled Plasma-Atomic Emission Spectrometric (ICP-AES) analyses of these aquatic macrophytes have shown the importance of aquatic macrophytes in accumulation of heavy metals and maintaining the clarity of water bodies beside their role in trophic systems. Accumulation of most of the heavy metals was higher in root system. The representative macrophytes from two different physiographic locations show similar trends and order in accumulating different metals generally. Of the 14 metals investigated, 9 (Ca, Fe, Al, Cr, Cu, Ba, Ti, Co and Pb) showed higher rates of accumulation in the root whereas 3 (Mn, Zn and Mg) showed more accumulation in stem and 1 (Ca) showed higher accumulation in the leaves. In most of the samples Cu was accumulated more in the roots (50+/-47.15 microg/g) and less in flowers (9.52+/-3.97 microg/g). Occurrence of heavy metal was much higher in macrophytes of Sevan Lake than that of the Carambolim Lake. The accumulation of 14 elements was in order of Ca>Mg>Fe>Al>Mn>Ba>Zn>Ti>Cu>Cr>Co>Ni>Pb>Cd. The present study revealed that the aquatic macrophytes play a very significant role in removing the different metals from the ambient environments. They probably play a major role in reducing the effect of high concentration of heavy metals. Therefore, the macrophyte community of the Sevan Lake area needs to be protected and restored on a priority basis. Accumulation of highly toxic metals like--Cr, Cd, Pb and Ni was lower as compared to the essential metals like Ca, Fe and Mn in all the macrophytes from both the lake systems, consequently high metal concentrations observed in both the areas may not directly reflect on the pollution level.  相似文献   

2.
为研究城市湖泊富营养化对水生植物叶片元素组成的影响,在植物生长季,对南京3个湖泊的6种常见水生植物进行碳(C)、氮(N)、磷(P)生态化学计量学研究,并分析驱动水生植物叶片元素变化的关键环境因子。结果表明:(1)水生植物叶片C、N、P含量变化范围分别为397.03~672.70、10.63~39.16及1.15~13.30 mg/g,叶片C/N、C/P及N/P变化范围分别为13.15~50.36、31.39~458.60及1.88~19.06,其中叶片P含量变异最大,叶片C含量变异最小;(2) Spearman相关性分析表明,芦苇(Phragmites australis)、睡莲(Nymphaea tetragona)和金鱼藻(Ceratophyllum demersum)叶片元素组成与湖泊富营养化综合指数具有显著相关性,叶片P含量随湖泊富营养指数升高而增加,叶片C/P及N/P随之减小;(3) RDA分析表明,春季水生植物叶片C、N、P含量及C/N/P变化主要受水体高锰酸盐指数(COD_(Mn))和底泥总有机碳(SOC)含量的共同影响,夏季主要受水体总磷(TP_W)浓度的影响,秋季主要受底泥总磷(TP_S)含量的影响。  相似文献   

3.
The use of cuprous fungicides in cocoa production in the southern part of the state of Bahia (Brazil) for decades has caused an accumulation of copper in various components of the cocoa plantations, and a contamination of regional freshwater ecosystems is suspected. Urban and industrial sources are supposed to contribute to water pollution and eutrophication of the Rio Cachoeira, the main river in this region. In order to study the metal contamination and nutritional status of this freshwater ecosystem, samples of the aquatic macrophytes Eichhornia crassipes and Pistia stratiotes were collected at seven sites along the river course. The samples were analysed for their copper, aluminium, chromium, nitrogen and phosphorus concentrations. The levels of heavy metals increased in the downstream direction, particularly in the roots of water hyacinth. A dramatic increase of nitrogen and phosphorus concentrations in water as well as in plant tissues was found in samples collected downstream from the city of Itabuna. Metal input and eutrophication were attributed to agricultural, industrial and urban sources in the region. Biomonitoring of the water quality using aquatic macrophytes as accumulative indicator plants is recommended in addition to chemical water analyses.  相似文献   

4.
Aquatic sediments form an important sink for manufactured nanomaterials, like carbon nanotubes (CNT) and fullerenes, thus potentially causing adverse effects to the aquatic environment, especially to benthic organisms. To date, most nanoparticle effect studies used single species tests in the laboratory, which lacks ecological realism. Here, we studied the effects of multiwalled CNT (MWCNT) contaminated sediments on benthic macroinvertebrate communities. Sediment was taken from an unpolluted site, cleaned from invertebrates, mixed with increasing levels of MWCNTs (0, 0.002, 0.02, 0.2 and 2g/kg dry weight), transferred to trays and randomly relocated in the original unpolluted site, which now acted as a donor system for recolonization by benthic species. After three months of exposure, the trays were regained, organic (OC) and residual carbon (RC) were measured, and benthic organisms and aquatic macrophytes were identified. ANOVA revealed a significantly higher number of individuals with increasing MWCNT concentrations. The Shannon index showed no significant effect of MWCNT addition on biodiversity. Multivariate statistics applied to the complete macroinvertebrate dataset, did show effects on the community level. Principal Component Analysis (PCA) showed differences in taxa composition related to MWCNT levels indicating differences in sensitivity of the taxa. Redundancy Analysis (RDA) revealed that MWCNT dose, presence of macrophytes, and spatial distribution explained 38.3% of the total variation in the data set, of which MWCNT dose contributed with 18.9%. Still, the net contribution of MWCNT dose was not statistically significant, indicating that negative community effects are not likely to occur at environmentally relevant future CNT concentrations in aquatic sediments.  相似文献   

5.
水生植物群落在湖泊生态修复过程中作用显著,但目前人工重建的水生植物群落抗外界干扰能力弱,群落稳定性差,这就需要我们对人工重建的水生植物群落结构及其演替的生态学过程进行研究,从而探索受损群落的修复途径。于2003年在富营养化水体中采用物理生态工程进行了水生植物群落的重建研究,对群落演替动态变化过程进行了持续3年的观测。结果表明:水生植物之间发生生态位重叠时,其结果往往是以一个物种取代另一个物种,随着生态位重叠程度下降,种间关系和群落结构趋于稳定;而当物种空间位置错开时,生长期相近的物种共存则变为可能,因此在群落的构建过程中应当避免同时引入生态位重叠较高的物种,应注意植物间时间序列及空间结构的分离;此外还通过物种间的竞争表现,对几种常见水生植物构建的群落稳定性做了初步探讨.  相似文献   

6.
In experiments performed in aquariums, the daily consumption of Chara vulgaris alga by crayfish (Astacus astacus L.) has been determined. These quantitative data have been used to make a prognosis of the effect of the A. astacus population on the biomass of macrophytes in Lake Berezovo (Pskov oblast). The density of the crayfish population and the biomass of higher aquatic vegetation in the lake have been determined in field studies. Extrapolation of the results of laboratory experiments to a natural water body has shown that crayfish are capable of controlling no less than 40% of submersed macrophytes in the area used by their population.__________Translated from Ekologiya, No. 4, 2005, pp. 300–305.Original Russian Text Copyright © 2005 by Kholodkevich, Shumilova, Fedotov, Zhuravlev.  相似文献   

7.
研究浅水湖泊中植物残体对水生植物的表现率,用于重建近代水生植被历史,可为治理湖泊富营养化,恢复湖泊生态环境提供依据。研究选址为英国北部的一个小湖泊,通过水生植物调查及表层沉积物中植物残体和孢粉分析,及地理信息系统方法定量研究植物残体对水生植物的表现率。结果表明:沉积物中植物残体精确地反映了植物优势种的存在;植物和植物残体的关系是很复杂的,有些植物在残体中表现率明显超高,而有些表现率偏低; 应把叶子和其它非繁殖植株部分作为恢复近代多年生植物历史依据;植物残体传输性较差,主要集中在植物母体附近;利用植物残体与孢粉分析相结合的方法能更准确地重建植被历史。  相似文献   

8.
富营养浅水湖泊的退化与生态恢复   总被引:14,自引:2,他引:12  
初步讨论了富营养浅水湖泊的退化现象的造成退化的主要原因,对湖泊生态恢复的目标和对策等问题也作了探讨,以武汉东湖为例,提出以水源保护地为主要功能的富营养浅水胡泊的恢复和整体优化对策,即恢复沉水植被、建立控制面源污染的半自然的人工湿地生态系统,优化水产养殖结构和恢复湖泊生物多样性等。对生物操纵在长江中下游富营养浅水湖泊恢复中的作用也进行了讨论。  相似文献   

9.
In this work we experimentally estimated the capacities of the key components of the Yenisei River (Russia): particulate suspended matter (seston), diatom microalgae, and submerged macrophytes for accumulating 241Am from water. In our experiments large particles of seston (>8 μm), comparable in size with diatoms, took up most of americium from water. The accumulation of americium by isolated diatom algae (Asterionella formosa and Diatoma vulgare) was lower than by total seston. The concentration factors (CFs) of 241Am for seston of the Yenisei River in our experiments were (2.8-6.9)·105; for diatoms - (1.5-4.2)·104. The CFs for aquatic plant Elodea canadensis were within the same order of magnitude as those for diatoms. Activity concentration and CFs of 241Am were nearly the same in experiments under dark and light conditions. This is indicative of an energy independent mechanism of americium uptake from the water by diatoms and submerged macrophytes.  相似文献   

10.
To document the short-term dynamics of Cs, 4 kg of (133)Cs were introduced into an 11.4-ha, 157 000 m(3) reservoir previously contaminated with (137)Cs from past reactor operations at the US Department of Energy's Savannah River Site near Aiken, South Carolina, USA. The (133)Cs addition resulted in an increase of 6.1 MBq of (137)Cs (1.9 mug (137)Cs) in the water column over the following 260 days. Possible sources for the increased (137)Cs included (1) release from the sediments, (2) release from the approximately 26 000 kg of aquatic macrophytes that occupied 80% of the reservoir, and (3) wash-in from the pond's watershed. Data are presented to indicate that release from the sediments was the principal source of the (137)Cs increase. The fraction of (137)Cs released from the sediments (0.7%) is consistent with laboratory measurements of (137)Cs desorption from neighboring ponds on the Savannah River Site.  相似文献   

11.
The probable occurrence and rate of foliar absorption of stable cesium (133Cs) from the water column by aquatic macrophyte species was analyzed following the addition of 133Cs into a small reservoir near Aiken, South Carolina, USA. An uptake parameter u (10(3)Lkg(-1)d(-1)) and a loss rate parameter k (d(-1)) were estimated for each species using time series of 133Cs concentrations in the water and plant tissues. Foliar uptake, as indicated by rapid increases in plant concentrations following the 133Cs addition, occurred in two floating-leaf species, Brasenia schreberi and Nymphaea odorata, and two submerged species, Myriophyllum spicatum and Utricularia inflata. These species had values of u> or =0.75 x 10(3)Lkg(-1)d(-1). Less evidence for foliar uptake was observed in three emergent species, including Typha latifolia. Ratios of u to k for B. schreberi, M. spicatum, N. odorata and U. inflata can be used to estimate concentration ratios (CR) at equilibrium, and these estimates were generally within a factor of 2 of the CR for 137Cs for these species in the same reservoir. This correspondence suggests that foliar uptake of Cs was the principal absorption mechanism for these species. Assessments of: (1) the prevalence of foliar uptake of potassium, rubidium and Cs isotopes by aquatic macrophytes and (2) the possible importance of foliar uptake of Cs in other lentic systems are made from a review of foliar uptake studies and estimation of comparable u and k values from lake studies involving Cs releases.  相似文献   

12.
滇池人工湿地的植物群落学特征研究   总被引:12,自引:1,他引:12  
用植物群落生态学方法,研究了滇池小河口的天然湿地以及表流和潜流两种人工湿地的植被群落学特征。研究区内调查发现有12种植物群落,包含有植物17种。结果表明:表流人工湿地的群落多样性大于潜流人工湿地,甚至也大于天然湿地;在两种人工湿地中,植物群落中的层次数比较接近;从植被群落结构来看,在物种多样性和shannon wiener指数方面表现为潜流人工湿地大于表流人工湿地,天然湿地居中。从天然湿地到表流湿地,再到潜流湿地,随着湿地环境水文条件的变化,植物群落组成与分布状况也在变化,表现出从湿地植物向陆生植物演替的趋势。研究表明两种人工湿地中的芦苇(Phragmites australis)群落长势不同。在人工湿地中适宜构建芦苇群落,在表面流人工湿地植物选择中可以考虑水芹菜(Oenanthe stolonifera)和慈菇(Sagittaria sagittifolia)。人工湿地的水文条件与湿地植物之间的相互关系是人工湿地进一步研究的重要方面。  相似文献   

13.
在骆马湖中选择有大型水生植物生长区域及无草对照区,测定主要水质指标,采集沉积物柱状样,分层测定沉积物氮磷元素含量及磷酸酶活性,探讨大型水生植物对骆马湖生态系统中氮磷元素及磷酸酶活性影响特征,结果表明:(1)大型水生植物生长区上覆水透明度明显高于对照(CK),是对照(CK)19倍;但有草区凯氏氮(KN)、可溶性氮(DN)含量低于对照(CK),方差分析表明二者差异极显著(〖WTBX〗p〖WTBZ〗≤001);(2)大型水生植物生长能降低磷酸酶的活性,有草区不同深度沉积物酸(碱)磷酸酶活性总体小于对照(CK),但沉积物表层磷酸酶活性最强;(3)有草区不同深度沉积物TP含量低于对照(CK),但有草区表层沉积物凯氏氮(KN)含量高于对照(CK ).  相似文献   

14.
Pesticides are used in modern agriculture to increase crop yields, but they may pose a serious threat to aquatic ecosystems. Pesticides may enter water bodies through diffuse and point sources, but diffuse sources are probably the most important. Among diffuse pollution, surface runoff and erosion, leaching and drainage represent the major pathways. The most commonly used mitigation techniques to prevent pesticide input into water bodies include edge-of-field and riparian buffer strips, vegetated ditches and constructed wetlands. The first attempts to use wetland macrophytes for pesticide removal were carried out as early as the 1970s, but only in the last decade have constructed wetlands for pesticide mitigation become widespread. The paper summarizes 47 studies in which removal of 87 pesticides was monitored. The survey revealed that constructed wetlands with free water surface are the most commonly used type. Also, it has been identified that removal of pesticides is highly variable. The results of the survey revealed that the highest pesticide removal was achieved for pesticides of the organochlorine, strobilurin/strobin, organosphosphate and pyrethroid groups while the lowest removals were observed for pesticides of the triazinone, aryloxyalkanoic acid and urea groups. The removal of pesticides generally increases with increasing value of KOC but the relationship is not strong.  相似文献   

15.
Five 10 μg Cd·l?1 were continuously input to aquatic microcosm channels for one year. Cadmium accumulation in both biotic and abiotic components was determined. Cadmium inputs and outputs equilibrated within approximately 20 days of initial Cd inputs. Most community components accumulated Cd proportional to Cd water concentrations. Equilibrium Cd concentrations of sediments, aufwuchs, macrophytes, chironomids, and mosquito fish exposed to 10 μg Cd·l?1 were 0.59, 55, 250, 40, and 40 μg Cd·g?1, dry weight, respectively. Cadmium was rapidly eliminated from all biotic components when Cd inputs were terminated. Cadmium concentrations were similar to those in control channels within a few weeks in the aufwuchs community to a few months in macrophytes after Cd inputs were terminated. Cadmium uptake fluxes by the aufwuchs community and mosquito fish were first order, with respect to Cd concentration in the water. The rate constants for uptake and depuration for the aufwuchs community were 0.42 and 0.66 d?1, respectively (concentration basis). The rate constants for uptake and depuration of Cd by mosquitofish were approximately 25 and 0.004 d?1, respectively (concentration basis). Cadmium concentrations in organic headpool sediments had not significantly decreased six months after cessation of Cd inputs, which indicates that the abiotic half time for contaminated organic sediments is very long. Half times for elimination from channel sand sediments were 72 and 38 d for 5 and 10 μg·l?1 exposure, respectively, after Cd inputs were terminated Cd concentrations in macroinvertebrates varied seasonally. The carrying capacity of the channels microcosm limited the number of samples of secondary and tertiary consumers which could be sampled. It was concluded that concluded that experimental channels of the size described here were not appropriate as screening tools for the fates of trace contaminants, but were effective for the study of trace contaminants, especially in conjunction with mathematical modeling efforts and less complex laboratory studies.  相似文献   

16.
A transplant experiment was performed to determine the relative importances of root uptake from the sediments and foliar uptake from the water column in determining the accumulation of 137Cs by aquatic macrophytes. Uncontaminated individuals of three species, Brasenia schreberi, Nymphaea odorata and Nymphoides cordata, were transplanted into pots containing either contaminated sediments (i.e. 1.2 Bq 137Cs g−1 dry mass) or uncontaminated sediments (i.e. < 0.1 Bq g−1 dry mass) and immersed in Pond B, a former reactor cooling pond where 137Cs concentrations in surface waters range from 0.4 to 0.8 Bq liter−1. The plants in uncontaminated sediments rapidly accumulated 137Cs from the water column and after 35 days of immersion had 137Cs concentrations in leaves that were: (1) not statistically significantly different from those for plants in contaminated sediments; and (2) similar to those for the same species growing naturally in Pond B. The similarity in 137Cs concentrations between naturally-occurring plants and those in pots with uncontaminated sediments suggests that foliar uptake from the water column is the principal mode of Cs accumulation by these species in Pond B.  相似文献   

17.
以植被生物完整性评价梁子湖湖滨湿地生态系统健康   总被引:5,自引:0,他引:5  
湖滨湿地植被是湖滨带生态系统的主要特征,以湖滨湿地植被为对象可评价湖滨带生态系统健康状况。通过对梁子湖湖滨湿地植被的详细调查,共鉴定出植物182种,隶属于52科128属,其中湿生植物147种,水生植物35种。水生植物中有20种挺水植物,6种浮叶植物和9种沉水植物。采用植被生物完整性(VIBI)方法评价梁子湖湖滨湿地生态系统健康,对21个备选指标进行筛选分析,建立了以挺水植物物种数、多年生植物物种数、外来物种百分比、香农多样性指数、植物区系质量指数FQAI、耐受性物种百分比、敏感性物种百分比为核心指标的评价体系,三分法对指标进行赋值,将梁子湖湖滨湿地划分为健康、良好、一般和较差4个等级。评价结果表明,梁子湖湖滨湿地22个调查位点中,处于健康状态的有3个位点,良好6个,共占总位点数的41%,一般和较差分别为7个和6个,共占59%。总体上看,东梁子湖和牛山湖湖滨湿地位点健康状况较好,而西梁子湖湖滨湿地差异性较大,山坡湖南部湖湾和前江大湖北部位点健康状况良好,张桥湖湖滨湿地健康状况一般,评价较差的6个位点集中在宁港湖周围和前江大湖南部沿岸。底质和人类活动如水位调控、围网养殖、放牧等是影响梁子湖湖滨湿地植被生物完整性的主要原因。  相似文献   

18.
低溶解氧对苦草生长的影响   总被引:2,自引:0,他引:2  
针对太湖梅梁湾生态净化示范区内重建的沉水植物存在的腐烂死亡问题及伴随的底层水体溶解氧偏低现象,在室外模拟生态系统内进行了低氧对沉水植物(苦草)生长的影响试验。结果表明:无论沉积物类型如何,一个月的低氧处理(溶解氧平均值为1.6 mg/L)对苦草株重、株高、分蘖数及叶片数等指标的影响均不明显,对块茎的影响则较显著,表现为块茎数量与重量显著下降。对岸边沉积物处理组而言,低氧对苦草根系的影响显著,表现为根须变细且数量增加,根系活力明显下降,中心沉积物处理组则不显著。同时,低氧处理使岸边沉积物处理组的沉积物氧化还原电位显著下降、水体营养盐浓度上升,尤其是磷酸盐浓度显著增加,中心沉积物处理组的环境理化因子变幅则相对较小。分析认为,低氧对苦草生长的影响虽不明显,但对其种群扩张有潜在的不利作用;梅梁湾生态净化示范区内沉水植物的腐烂死亡,低氧的作用是次要或间接的。  相似文献   

19.
鄱阳湖典型湿地沉水植物的分布格局及其水环境影响因子   总被引:4,自引:0,他引:4  
沉水植物是湖泊湿地生态系统中关键组分,调查研究沉水植物分布格局及其水环境影响因子,对于沉水植被的恢复与重建具有重要的指导意义。2013年5月初期分别对鄱阳湖典型湿地区域中有沉水植物的25个样地进行群落结构调查,采用系统取样方法对沉水植物进行调查采样并监测水环境因子,在野外调查的基础上运用GIS软件制作鄱阳湖典型区域沉水植物的生物量分布图,并采用主成分分析(PCA)和典范对应分析(CCA)方法分析其主要影响因子。结果表明:鄱阳湖湿地沉水植物以苦草(Vallisneria natans)为广布种,其中蚌湖及白沙湖以黑藻(Hydrilla verticillata)为优势种,白沙洲及乐安河龙口段以苦草为优势种,伴生种主要有金鱼藻(Ceratophyllum demersum)、马来眼子菜(Potamogeton malaianus)、菹草(P.crispus)、小茨藻(Najas minor)、大茨藻(N.marina)、刺苦草(V.spinulosa)和水车前(Ottelia alismoides)等。采用双向指示种分析法将研究区沉水植物分为6个群落;5月初大部分沉水植物尚处于生长季初期,生物量相对较低,仅菹草的生物量较大;沉水植物与浮叶植物共存现象明显。主成分分析(PCA)结果显示,第一主成分中水深、总磷和溶解氧等因子的系数值较大,第二主成分中pH值、化学需氧量和水体透明度等因子的系数值较大,是影响沉水植物分布的关键因子;典范对应分析(CCA)结果显示,水深、总磷和总氮对苦草和黑藻的影响显著,水体透明度是马来眼子菜的主要影响因子。  相似文献   

20.
鄱阳湖水生植被30年演变及其驱动因素分析   总被引:2,自引:0,他引:2  
基于1983和2013年两次鄱阳湖综合科学考察植被调查结果发现,30年来鄱阳湖水生植被呈退行性演变。主要体现在:(1)水生植被面积大幅缩减,沉水植被面积减少37.7%,菱等敏感物种面积减幅为87.6%;(2)群落结构简单化,组成物种由5~8种下降至3~5种,苦草替代竹叶眼子菜成为优势物种;(3)生物多样性降低,单位面积生物量减少。驱动此演变的主要因素包括:(1)长期持续的低枯湖水位压缩了水生植物的生存空间;(2)湖水氮磷浓度增加恶化沉水植被的生境;(3)洪水灾害干扰沉水植物正常生长发育,诱发沉水植被演替;(4)过度的人类活动直接或间接损害沉水植被。为了遏制退行性演变趋势、保护湿地植被生态系统的健康,建议采取有力的湖泊管理措施,将人类活动控制在湿地生态系统可承受范围之内。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号