首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Volatile organic compounds (VOCs) are the major pollutants in indoor air, which significantly impact indoor air quality and thus influencing human health. A long-term exposure to VOCs will be detrimental to human health causing sick building syndrome (SBS). Photocatalytic oxidation of VOCs is a cost-effective technology for VOCs removal compared with adsorption, biofiltration, or thermal catalysis. In this paper, we review the current exposure level of VOCs in various indoor environment and state of the art technology for photocatalytic oxidation of VOCs from indoor air. The concentrations and emission rates of commonly occurring VOCs in indoor air are presented. The effective catalyst systems, under UV and visible light, are discussed and the kinetics of photocatalytic oxidation is also presented.  相似文献   

2.
Sensory effects in eyes and airways are common symptoms reported by aircraft crew and office workers. Neurological symptoms, such as headache, have also been reported. To assess the commonality and differences in exposures and health symptoms, a literature search of aircraft cabin and office air concentrations of non-reactive volatile organic compounds (VOCs) and ozone-initiated terpene reaction products were compiled and assessed. Data for tricresyl phosphates, in particular tri-ortho-cresyl phosphate (ToCP), were also compiled, as well as information on other risk factors such as low relative humidity.A conservative health risk assessment for eye, airway and neurological effects was undertaken based on a “worst-case scenario” which assumed a simultaneous constant exposure for 8 h to identified maximum concentrations in aircraft and offices. This used guidelines and reference values for sensory irritation for eyes and upper airways and airflow limitation; a tolerable daily intake value was used for ToCP. The assessment involved the use of hazard quotients or indexes, defined as the summed ratio(s) (%) of compound concentration(s) divided by their guideline value(s).The concentration data suggest that, under the assumption of a conservative “worst-case scenario”, aircraft air and office concentrations of the compounds in question are not likely to be associated with sensory symptoms in eyes and airways. This is supported by the fact that maximum concentrations are, in general, associated with infrequent incidents and brief exposures. Sensory symptoms, in particular in eyes, appear to be exacerbated by environmental and occupational conditions that differ in aircraft and offices, e.g., ozone incidents, low relative humidity, low cabin pressure, and visual display unit work. The data do not support airflow limitation effects. For ToCP, in view of the conservative approach adopted here and the rareness of reported incidents, the health risk of exposure to this compound in aircraft is considered negligible.  相似文献   

3.
An emission model for indoor volatile organic compounds (VOCs) based on mass balance considerations has been presented and validated under steady state conditions. Comparison were made for the measured and predicted concentrations of 37 selected VOCs and TVOC through a case intervention study on the filters of the ventilation system in a new commercial air-conditioned office building. The intervention involved replacing media filters with electronic and carbon filtration. TVOC and 37 compounds selected for their health and comfort impact, representation of major chemical classes that occur in indoor air and their utility as markers of pollution sources were studied. The concentration levels predicted by the model were compared with actual measurements. Twenty-five target compounds and the TVOC were adequately described by the model where the measured concentrations were in agreement with the predicted concentrations. Modeling of the remaining 12 compounds was found to be affected by the emission rates that were occupant related.  相似文献   

4.
Employees in six day-care institutions were asked to fill out a simple questionnaire before and one year after technical changes were made in their buildings. The institution were defined as sick buildings, based on a prevalence (exceeding 40%) of irritative symptoms and general symptoms among the employees. Based on the technical measurements there were no obvious reasons for the complaints. It was decided, however, to remove man-made mineral-acoustic ceilings and to install mechanical ventilation. One year later there was a significant reduction in the prevalence of symptoms (irritative and general symptoms related to the sick building syndrome) among the employees. The study indicates that systematic monitoring of employees' symptoms before and after corrective action is an important indicator of the benefit of the actions and might be used routinely by architects, engineers, and local authorities in dealing with indoor climate problems. Follow-up studies might give more knowledge of the causes of sick building syndrome.  相似文献   

5.
The Swedish building code of 1975 emphasizes energy conservation and encourages the construction of tightly insulated structures with adequate ventilation systems. Some of the new buildings constructed along these guidelines have been labeled “sick,” because people working in them report an unusual number of health problems—e.g., eye irritation, skin rashes, and fatigue. One possible indicator of whether a building is “healthy” or “sick” may exist in the pattern of chemicals present in the air. This article outlines an approach designed to find sets of chemicals that can be used to separate buildings according to their designation as sick and healthy. Air samples were taken from a healthy and sick preschool and subsequently analyzed by gas chromatography. The prevalence of different chemical substances was determined and compared across 16 different locations from which air samples were obtained, including outdoor, supply, room, and exhaust air. In all, 158 different chemical substances were found; more in the healthy building than in the sick one. Cluster analysis, based on the pattern of presence and absence of chemicals, was able to separate locations within and between the two types of building. A large number of chemicals (approx. one-half the total) were effective in distinguishing among locations. The ten most critical chemicals in this respect were subjected to more complete statistical analysis in order to highlight further possible differences between the buildings. The general approach described may prove useful in recognizing the environmental conditions associated with the “sick building syndrome.”  相似文献   

6.
The relationship between the odor strength of total air samples and the odor strengths of the constituents was investigated in three field experiments in an office building and a new preschool. The odor strength was scaled by magnitude estimation according to a master scale principle which results in comparable values for the total and the constituent odors. Between 60 and 120 chemical components were detected by GC/FID in the indoor air samples (N = 66). Most (81%) of the detected components in an air sample were odorous, even though most of them were of the low concentrations. By a method of pattern analysis, chemical as well as odor patterns of indoor air were found to be characteristics of different buildings. From the odor patterns (POG), the “odor print” of the outdoor air associated with the buildings was also recognized in the indoor air. Thus, the “odor print” of an air sample is different from its “chemical print”. A model was found that predicts the overall odor strength of an air sample from the number of FID-detected components most frequently reported to have a strong odor.  相似文献   

7.
8.
In the frame of the OFFICAIR project, indoor and outdoor PM2.5 samples were collected in office buildings across Europe in two sampling campaigns (summer and winter). The ability of the particles to deplete physiologically relevant antioxidants (ascorbic acid (AA), reduced glutathione (GSH)) in a synthetic respiratory tract lining fluid, i.e., oxidative potential (OP), was assessed. Furthermore, the link between particulate OP and the concentration of the PM constituents was investigated.The mean indoor PM2.5 mass concentration values were substantially lower than the related outdoor values with a mean indoor/outdoor PM2.5 mass concentration ratio of 0.62 and 0.61 for the summer and winter campaigns respectively. The OP of PM2.5 varied markedly across Europe with the highest outdoor OPAA m−3 and OPGSH m−3 (% antioxidant depletion/m3 air) values obtained for Hungary, while PM2.5 collected in Finland exhibited the lowest values. Seasonal variation could be observed for both indoor and outdoor OPAA m−3 and OPGSH m−3 with higher mean values during winter. The indoor/outdoor OPAA m−3 and OPGSH m−3 ratios were less than one with 4 and 17 exceptions out of the 40 cases respectively. These results indicate that indoor air is generally less oxidatively challenging than outdoors. Correlation analysis revealed that trace elements play an important role in determining OP, in particular, the Cu content. Indoor air chemistry might affect OP since weaker correlations were obtained for indoor PM2.5. Our findings also suggest that office workers may be exposed to health relevant PM constituents to a different extent within the same building.  相似文献   

9.
Dry and irritated mucous membranes of the eyes and airways are common symptoms reported in office-like environments. Earlier studies suggested that indoor pollutants were responsible. We have re-evaluated, by review of the literature, how low relative humidity (RH) may influence the immediately perceived indoor air quality (IAQ), including odour, and cause irritation symptoms (i.e. longer-term perceived IAQ). "Relative humidity" were searched in major databases, and combined with: air quality, cabin air, dry eyes, formaldehyde, inflammation, mucous membranes, offices, ozone, pungency, sensory irritation, particles, precorneal tear film, sick building syndrome, stuffy air, and VOCs. The impact of RH on the immediately and longer-term perceived IAQ by VOCs, ozone, and particles is complex, because both the thermodynamic condition and the emission characteristics of building materials are influenced. Epidemiological, clinical, and human exposure studies indicate that low RH plays a role in the increase of reporting eye irritation symptoms and alteration of the precorneal tear film. These effects may be exacerbated during visual display unit work. The recommendation that IAQ should be "dry and cool" may be useful for evaluation of the immediately perceived IAQ in material emission testing, but should be considered cautiously about the development of irritation symptoms in eyes and upper airways during a workday. Studies indicate that RH about 40% is better for the eyes and upper airways than levels below 30%. The optimal RH may differ for the eyes and the airways regarding desiccation of the mucous membranes.  相似文献   

10.
Improper natural ventilation practices may deteriorate indoor air quality when in close proximity to roadways, although the intention is often to reduce energy consumption. In this study, we employed a CFD-based air quality model to quantify the impact of traffic-related air pollution on the indoor air quality of a naturally ventilated building. Our study found that the building envelope restricts dispersion and dilution of particulate matter. The indoor concentration in the baseline condition located 10 m away from the roadway is roughly 16–21% greater than that at the edge of the roadway. The indoor flow recirculation creates a well-mixed zone with little variation in fine particle concentration (i.e., 253 nm). For ultrafine particles (< 100 nm), a noticeable decrease in particle concentrations indoors with increasing distance from the road is observed due to Brownian and turbulent diffusion. In addition, the indoor concentration strongly depends on the distance between the roadway and building, particle size, wind condition, and window size and location. A break-even point is observed at D ~ 2.1 (normalized distance from the roadway by the width of the road). The indoor particle concentration is greater than that at the highway where D < 2.1, and vice versa. For new building planning, the distance from the roadway and the ambient wind condition need to be considered at the early design stage whereas the size and location of the window openings, the interior layout, and the placement of fresh air intakes are important to the indoor air quality of existing buildings adjacent to roadways.  相似文献   

11.
Sixteen existing multi-family buildings (94 apartments) in Finland and 20 (96 apartments) in Lithuania were investigated prior to their renovation in order to develop and test out a common protocol for the indoor environmental quality (IEQ) assessment, and to assess the potential for improving IEQ along with energy efficiency. Baseline data on buildings, as well as data on temperature (T), relative humidity (RH), carbon dioxide (CO2), carbon monoxide (CO), particulate matter (PM), nitrogen dioxide (NO2), formaldehyde, volatile organic compounds (VOCs), radon, and microbial content in settled dust were collected from each apartment. In addition, questionnaire data regarding housing quality and health were collected from the occupants. The results indicated that most measured IEQ parameters were within recommended limits. However, different baselines in each country were observed especially for parameters related to thermal conditions and ventilation. Different baselines were also observed for the respondents' satisfaction with their residence and indoor air quality, as well as their behavior related to indoor environment. In this paper, we present some evidence for the potential in improving IEQ along with energy efficiency in the current building stock, followed by discussion of possible IEQ indicators and development of the assessment protocol.  相似文献   

12.
Addition of urea-based antifreeze admixtures during cement mixing can make it possible to produce concrete cement in construction of buildings in cold weather; this, however, has led to increasing indoor air pollution due to continuous transformation and emission from urea to gaseous ammonia in indoor concrete wall. It is believed that ammonia is harmful to human body and exposure to ammonia can cause some serious symptoms such as headaches, burns, and even permanent damage to the eyes and lungs. In order to understand the emission of ammonia from indoor concrete wall in civil building and assess the health risk of people living in these buildings, the experimental pieces of concrete wall were first prepared by concreting cement and urea-based antifreeze admixtures to simulate the indoor wall in civil building in this work. Then environmental chamber was adopted for studying the effect of temperature, relative humility and air exchange rate on emission of ammonia from experimental pieces of concrete wall. Also the field experiment was made at selected rooms in given civil buildings. Exposure and potential dose of adult and children exposed to indoor/outdoor ammonia in summer and in winter are calculated and evaluated by using Scenario Evaluation Approach. The results indicated that high air exchange rate leads to decreased ammonia concentration, and elevation of temperature causes increasing ammonia concentration and volatilizing rate in chamber. The complete emission of ammonia from the wall containing urea-based antifreeze admixtures needs more than 10 years in general. Ventilating or improving air exchange can play a significant role in reducing ammonia concentration in actual rooms in field experiments. Urea-based antifreeze admixtures in concrete wall can give rise to high exposure and potential dose, especially in summer. Generally, adults have a high potential dose than children, while children have personal average dose rate beyond adults in the same conditions.  相似文献   

13.
A spatial comparison of pollutant concentrations within the residential environment is undertaken, comparing pollutant concentrations from three indoor sampling locations (zones). The indoor air quality base was obtained from sampling the indoor air of 12 residential sites and two office buildings in the metropolitan Boston area. Each residential site was monitored continuously for two weeks, and data were reduced into hourly averages. Interzonal comparisons of the mean of hourly averages, 24-h averages, and daily maximum hourly concentrations were made at all sites. Linear regressions were computed between daily maximum hourly concentrations and mean 24-h concentrations of NO, NO2, and CO for kitchens to determine whether maximum hourly concentrations could be predicted from the 24-h concentration. These pollutants show interzonal statistical differences in residences with gas-fired cooking facilities but not in residences with electric cooking facilities. It was determined that, while one indoor sampling zone is not sufficient to specify indoor pollutant concentration maxima in residences having indoor sources of pollution, the daily mean of hourly pollutant concentrations obtained from one indoor zone can adequately describe the indoor environment. In addition, the maximum indoor hourly concentration for NO, NO2, and CO can be estimated for residences with all electric facilities, by using the mean 24-h concentration. The reliability of similar estimates for NO, NO2, and CO in residences with unvented gas appliances is reduced because of substantially more scatter in the paired data point, particularly at higher pollutant concentrations.  相似文献   

14.
The effect of reduced air infiltration rate caused by energy-saving measures has been studied by comparing the indoor climate in 25 sealed apartments with the conditions in 25 unsealed apartments in four seasonal periods. The indoor temperature in bedrooms during February and March was 19.3 °C in sealed apartments and 17.8 °C in unsealed apartments, and the occupants in the sealed apartments correspondingly complained less frequently of draught problems during the winter. When the frequency of window opening was at its minimum (February–March), there was a higher indoor humidity in sealed compared with unsealed apartments, and this probably accounts for an increased occurrence of house-dust mites in dust from the sealed apartments during the winter. Also in February–March there was a slight increase in the concentration of suspended particulate matter in sealed apartments. Considering health effects of a reduced air infiltration rate, it can be predicted that the increased indoor air humidity will indirectly increase the frequency and severity of house-dust mite allergy in the population.  相似文献   

15.
The WHO Regional Office for Europe organized a working group in Dubrovnik, Yugoslavia, on 26–30 August 1985, which discussed radon as a pollutant affecting indoor air quality. Much of the natural background radiation to which the general public is exposed comes from the decay of 226Ra which produces radon gas and other products. Because radium is a trace element in most rock and soil, indoor concentrations of radon can come from a wide variety of substances, such as building materials and the soil under building foundations. Tap water taken from wells or underground springs may be an additional source. Radon daughter concentrations are considerably higher indoors than outdoors and are of the order of 2–5 Bq m−3 equilibrium equivalent radon (EER) concentration. It has been estimated that current exposure to radon gas could account for as much as 5–15% of all lung cancer deaths. It was recommended that, in general, buildings with concentrations of more than 100 Bq m−3 EER, as an annual average, should be considered for remedial action to lower such concentrations if simple measures are possible.  相似文献   

16.
ABSTRACT

This paper examines the provincial government of British Columbia's recent proposal of building a Liquefied Natural Gas (LNG) industry, in which natural gas extracted through hydraulic fracturing will be liquefied and then exported to Asian markets. Drawing upon the growing literature on energopower, petro-state, and petro-culture, selected texts and images from “LNG in BC”—the project's official branding website—were analyzed through a multimodal critical discourse analysis. The results reveal two primary strategies of legitimation: the first emphasizes the economic benefits of LNG development in terms of employment and taxation revenues; the second defines LNG as a means of strengthening B.C.’s environmental leadership. The second narrative depends heavily upon the symbolic values of natural gas, contrasting its “clean” appearance (as a colorless and odorless gas) with the material density and “toxic sensuality” of other “dirty” fossil fuels (such as coal, oil, and bitumen). The website also presents a linear and simplified “storyline” of the generation of LNG which emphasizes the simple, “clean” process of liquefaction to distract attention from the ecological and health risks of hydraulic fracturing.  相似文献   

17.
A subcommittee of the Nordic Committee for Building Codes has released guidelines for building regulations regarding indoor air quality, especially concerning ventilation. The main features of the guidelines, such as acceptable outdoor air quality for ventilation and minimum outdoor air flows for dwellings and offices, are presented and discussed. Mechanical ventilation is, in principle, required in all buildings including dwellings, due to the requirement of a minimum outdoor air change of 0.5 h−1 and the normal highly airtight nature of new buildings. The guidelines are a basis for designing energy-efficient buildings while maintaining an indoor air quality which provides acceptable comfort and does not impair health.  相似文献   

18.
To date, personal volatile organic compounds (VOCs) exposure and residential indoor and outdoor VOCs levels have not been characterized in Korea. In this study, residential indoor and outdoor VOCs concentrations were measured and compared simultaneously with the personal exposure for each of 30 participants in a medium city, Asan, and in a metropolitan city, Seoul. Factors that influence personal VOCs exposures were assessed in relation to house characteristics and time activity information. All VOC concentrations were measured using passive samplers during a 24-h period and analyzed using GC-MS. Ten target VOCs were benzene, trichloroethylene, toluene, o-xylene, p-xylene, ethylbenzene, MIBK, n-octane, styrene, and 1,2-dichlorobenzene. Residential indoor and outdoor VOCs concentrations measured in Seoul were significantly higher than those in Asan. Indoor/outdoor (I/O) ratios for all target compounds ranged from 0.94 to 1.51 and I/O ratios of Asan were a little higher than those of Seoul. Results indicate that time activity information can be used to predict personal exposures, although such predictions will result in an over estimation compared to measured exposures. Factors which influence the indoor VOCs level and its personal exposure in relation to house characteristics included house age, indoor smoking, and house type.  相似文献   

19.
The pollution profiles of volatile organic compounds (VOCs) emitted from different recycling workshops processing different types of plastic solid waste (PSW) and their health risks were investigated. A total of 64 VOCs including alkanes, alkenes, monoaromatics, oxygenated VOCs (OVOCs), chlorinated VOCs (ClVOCs) and acrylonitrile during the melting extrusion procedure were identified and quantified. The highest concentration of total VOCs (TVOC) occurred in the poly(acrylonitrile-butadiene styrene) (ABS) recycling workshop, followed by the polystyrene (PS), polypropylene (PP), polyamide (PA), polyvinyl chloride (PVC), polyethylene (PE) and polycarbonate (PC) workshops. Monoaromatics were found as the major component emitted from the ABS and PS recycling workshops, while alkanes were mainly emitted from the PE and PP recycling processes, and OVOCs from the PVC and PA recycling workshops. According to the occupational exposure limits' (OEL) assessment, the workers suffered acute and chronic health risks in the ABS and PS recycling workshops. Meanwhile, it was found that most VOCs in the indoor microenvironments were originated from the melting extrusion process, while the highest TVOC concentration was observed in the PS rather than in the ABS recycling workshop. Non-cancer hazard indices (HIs) of all individual VOCs were < 1.0, whereas the total HI in the PS recycling workshop was 1.9, posing an adverse chronic health threat. Lifetime cancer risk assessment suggested that the residents also suffered from definite cancer risk in the PS, PA, ABS and PVC recycling workshops.  相似文献   

20.
BackgroundThere are reports of developmental and reproductive health effects associated with the widely used biocide triclosan.ObjectiveApply the Navigation Guide systematic review methodology to answer the question: Does exposure to triclosan have adverse effects on human development or reproduction?MethodsWe applied the first 3 steps of the Navigation Guide methodology: 1) Specify a study question, 2) Select the evidence, and 3) Rate quality and strength of the evidence. We developed a protocol, conducted a comprehensive search of the literature, and identified relevant studies using pre-specified criteria. We assessed the number and type of all relevant studies. We evaluated each included study for risk of bias and rated the quality and strength of the evidence for the selected outcomes. We conducted a meta-analysis on a subset of suitable data.ResultsWe found 4282 potentially relevant records, and 81 records met our inclusion criteria. Of the more than 100 endpoints identified by our search, we focused our evaluation on hormone concentration outcomes, which had the largest human and non-human mammalian data set. Three human studies and 8 studies conducted in rats reported thyroxine levels as outcomes. The rat data were amenable to meta-analysis. Because only one of the human thyroxine studies quantified exposure, we did not conduct a meta-analysis of the human data. Through meta-analysis of the data for rats, we estimated for prenatal exposure a 0.09% (95% CI: − 0.20, 0.02) reduction in thyroxine concentration per mg triclosan/kg-bw in fetal and young rats compared to control. For postnatal exposure we estimated a 0.31% (95% CI: − 0.38, − 0.23) reduction in thyroxine per mg triclosan/kg-bw, also compared to control. Overall, we found low to moderate risk of bias across the human studies and moderate to high risk of bias across the non-human studies, and assigned a “moderate/low” quality rating to the body of evidence for human thyroid hormone alterations and a “moderate” quality rating to the body of evidence for non-human thyroid hormone alterations.ConclusionBased on this application of the Navigation Guide systematic review methodology, we concluded that there was “sufficient” non-human evidence and “inadequate” human evidence of an association between triclosan exposure and thyroxine concentrations, and consequently, triclosan is “possibly toxic” to reproductive and developmental health. Thyroid hormone disruption is an upstream indicator of developmental toxicity. Additional endpoints may be identified as being of equal or greater concern as other data are developed or evaluated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号